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Abstract
 To determine the exact role of sodium channel proteins inObjective:

migration, invasion and metastasis and understand the possible anti-invasion
and anti-metastatic activity of repurposed drugs with voltage gated sodium
channel blocking properties.

 A review of the published medical literature wasMaterial and methods:
performed searching for pharmaceuticals used in daily practice, with inhibitory
activity on voltage gated sodium channels. For every drug found, the literature
was reviewed in order to define if it may act against cancer cells as an
anti-invasion and anti-metastatic agent and if it was tested with this purpose in
the experimental and clinical settings.

 The following pharmaceuticals that fulfill the above mentioned effects,Results:
were found: phenytoin, carbamazepine, valproate, lamotrigine, ranolazine,
resveratrol, ropivacaine, lidocaine, mexiletine, flunarizine, and riluzole. Each of
them are independently described and analyzed.

The above mentioned pharmaceuticals have shownConclusions: 
anti-metastatic and anti-invasion activity and many of them deserve to be
tested in well-planned clinical trials as adjunct therapies for solid tumors and as
anti-metastatic agents. Antiepileptic drugs like phenytoin, carbamazepine and
valproate and the vasodilator flunarizine emerged as particularly useful for
anti-metastatic purposes.
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Introduction
The capacity to metastasize is one of the hallmarks of cancer1 and 
usually death due to cancer is not caused by the primary tumor but 
rather by the metastatic spread2. The lack of an effective therapy in 
prevention of metastasis results in a high mortality rate in oncology. 
So it seems reasonable that if the risk of metastasis can be reduced, 
the outlook of cancer patients may significantly improve survival 
and quality of life. Solving the metastasis problem is solving the 
cancer problem3.

Many natural products, like genistein4, resveratrol5 and curcumin6,7 
have shown interesting anti-metastasis activity. The same effect has 
been observed with older pharmaceuticals like aspirin8, not-as-old 
pharmaceuticals such as celecoxib6,9; new pharmaceuticals like 
ticagrelor10, as well as with more sophisticated molecules like 
dasatinib and ponatinib6 or ultrasophisticated drugs, like polymeric 
plerixafor11.

Many other compounds have also been identified as possessing anti-
metastatic effects, including increases in NO12, cimetidine, doxycy-
cline, heparin and low molecular heparins, and metapristone13.

High creativity has been employed in the search for anti-metastatic 
compounds. For example, Ardiani et al. developed a vaccine-based 
immunotherapy to enhance CD4 and CD8 T lymphocyte activity 
against Twist14. Twist is a transcription factor involved in invasion 
and metastasis.

Many known pharmaceuticals that are, or were, in use for other 
purposes than cancer treatment are demonstrating anti-metastatic 
activity. This is the case for thiobendazole, which is an antifun-
gal, anti-parasitic drug that has been used in medical practice for 
over 40 years, but which also shows anti-migratory and apoptosis- 
inducing activity15. The introduction of Food and Drug Admin-
istration (FDA)-approved products which are used for a purpose 

different for which it was originally approved is called repurposing 
of a drug.

Many new drugs are being introduced in the area of anti-metastatic 
activity. One such example, zoledronic acid16 is a biphosphonate 
that decreases bone metastasis. Denosumab17 is another example. 
It is a monoclonal antibody directed against the receptor activa-
tor of nuclear factor kappa B ligand (RANKL) that diminishes the 
number of circulating cancer cells and prevents bone metastasis. It 
is in Phase II clinical trials and has the advantage of subcutaneous 
administration, while zoledronic acid requires intravenous route 
(for further information on these compounds, see clinical trials 
NCT01952054, NCT01951586, NCT02129699)18.

Metastasis is a multi-step development. The different steps in the 
metastatic cascade can be targeted with a combination of drugs 
against each step. Migration and invasion are necessary steps for the 
metastatic cascade. There is no metastasis without prior migration 
of malignant cells, so that if migration and invasion are blocked, 
metastasis should not occur.

Invasion is the first step in metastasis, and in a very simplified 
view, it can be divided into three stages (Shown schematically in 
Figure 1):

1. Translocation of cells across extracellular matrix barriers

2. Degradation of matrix proteins by specific proteases

3. Cell migration

Voltage-gated sodium channels
Neurons and muscle cells (and excitable tissues in general) express 
voltage-gated sodium channel (VGSC) proteins; tumor cells may 
also express these proteins. VGSCs are important players in migra-
tion and invasion as it will be described in this manuscript.

Figure 1. Repurposed drugs acting at different levels of the metastatic cascade. (uPA: urinary plasminogen activator).
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Sodium channels were first described by Hodgkin and Huxley in 1952 
and knowledge about structure and physiology of VGSCs are mainly 
the result of seminal investigations developed by William Catterall19.

Sodium channels are glycosylated transmembrane proteins that 
form passages in the cell membrane for the penetration of sodium 
into the intracellular space according to their electrical gradients. 
Voltage-gated sodium channels (also known as VGSCs or ‘NaV’ 
channels) refers to the mechanism that triggers these proteins to 
allow sodium movement across the membrane.

There are nine known VGSCs (NaV1.1 to Nav1.9) that are mem-
bers of the superfamily of VGCSs. NaV1.1, 1.2, 1.3 and 1.6 are 
found in the central nervous system. NaV1.4 is found in muscle and 
NaV1.5 in cardiac muscle20.

VGSC is formed by a large subunit (α) and other smaller subunits 
(β). The α subunit is the core of the channel and is fully functional 
by itself, even without the presence of β subunits19–21.

When a cell expresses VGSC α subunits, this means that it is capa-
ble of conducting sodium into the cell. The structure of VGSC can 
be seen in Figure 2 and Figure 3. VGSCs modulate the exchange 
of Na+ across the cell membrane and the inflow of this electrolyte 
spikes the action potential in excitable tissues22.

It is well known that expression of VGSCs appears in cancer cells 
where it is not expressed in their normal counterparts, and plays a 
significant role in disease progression. Table 1 shows examples of 
the cancer tissues in which dysregulated expression of VGSCs were 
identified and the role they play.

Figure 2. An idealized drawing of α and β units of VGSCs.

Figure 3. Surface and side view of VGSC.

α 

β

β α β β
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Table 1. VGSC functional over-expression in different cancer tissues.

Cancer Reference Findings

Human breast cancer Fraser, 200523 VGSC (neonatal isoform of NaV1.5) was significantly upregulated in metastatic cells. 
VGSC activity increased endocytosis, migration and invasion

Non small-cell lung 
cáncer (NSCLC)

Roger, 200724 Strongly metastatic cell lines have functional VGSCs while normal cells do not have it. 
Inhibition of channels with tetrodotoxin (TTX) reduced invasivenes by 50%.

Small cell lung cáncer 
(SCLC)

Blandino, 199525

VGSCs are over-expressed in SCLC.

Cervical cancer cells Diaz, 200726 Nav1.2, Nav1.4, Nav1.6, and Nav1.7 transcripts were detected in cervical cancer cell 
specimens.

Prostate cancer Bennett, 200427 VGSC expression increases with invasion capacity that can be blocked with TTX. 
Increased VGSC expression is enough to increase invasive phenotype.

Metastatic ovarian 
cancer cells

Gao, 201028 Highly metastatic ovarian cells showed significantly elevated expression of Nav1.2, 
Nav1.4, Nav1.5 and Nav1.7. TTX reduced migration and invasion around 50%.

Human colon cancer 
cells

House, 201029

SCN5A, the gene coding for α sububit of VGSC is a regulator of the invasive phenotype.

T lymphocytes (Jurkat 
cells)

Fraser, 200430 Jurkat cells express VGSC and this protein has an important role in invasiveness of these 
cells.

Pancreatic cancer 
cells

Sato K, 199431 MIA-PaCa-2 and CAV cells were tested in vitro and in vivo with phenytoin (PHEN). Both 
cell lines showed growth inhibition in a dose dependable manner. This might be due to 
VGSC overexpression according to our criteria (the authors think that this was due to 
calcium channel blocking).

Mesothelial 
neoplastic cells

Fulgenzi, 200632 Express VGSCs, particularly NaV1.2, and NaV1.6, and NaV1.7. TTX decreased cell 
motility and migration.

Targeting these channels may represent a legitimate way of reduc-
ing or blocking the metastatic process.

The role of sodium channel in invasion, metastasis and carcinogen-
esis is insufficiently known.

Sodium channel proteins and cancer
In 1995, Grimes et al.33 investigated the differential electrophysi-
ological characteristics of VGSCs in two different rodent prostate 
cancer cell lines: the Mat-Ly-Lu cell line, which is a highly meta-
static line (more than 90% of metastasis to lung and lymph nodes 
under experimental conditions) and the AT-2 cell line with a much 
lower metastatic potential (less than 10% chance of developing 
metastasis in experimental conditions). They found fundamental 
differences in electrophysiological features between these two cell 
lines which displayed a direct relationship with in vitro invasive-
ness. Sodium inward currents were detected only in the Mat-Ly-Lu 
cell line and inhibition of VGSC protein with Tetrodotoxin (TTX; a 
powerful inhibitor of VGSCs) significantly reduced the capacity for 
invasion (mean reduction 33%). On the other hand, TTX showed 
no effect on invasion of AT-2 cell lines. The TTX-induced reduc-
tion of invasion showed a direct correlation with the amount of cells 
expressing VGSC in the culture.

No fundamental differences in the potassium channels were found 
between the two cell lines, except for a lower density of potassium 
channels in the Mat-Ly-Lu cell line. The authors concluded that 
ion channels may be involved in malignant cell behavior and that 
VGSCs could play a role in the metastatic process.

In 1997, Laniado et al.34 investigated the presence of VGSC in 
human prostate cell lines. As in the Grimes research they used 
two different cell lines: one with a low metastatic potential: the 
LN-Cap cell line which is androgen dependent and expresses 
prostate-specific antigen, and the PC-3 line which is more malig-
nant, does not express prostate-specific antigen and exhibits a high 
rate of metastatic potential.

As in the work by Grimes et al., they found that PC-3, the more 
malignant cell line, expressed VGSC protein and that inhibition 
of this channel protein with TTX reduced invasion in a significant 
way. LN-Cap cells did not express VGSC.

One of the conclusions reached by the authors was that cancer cells 
expressing functional VGSC had a selective advantage regarding 
migration and distant metastasis. In the case of both humans and 
rodents, not all cells in the highly malignant cell cultures showed 
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the presence of the VGSC protein. For example, in PC-3 cell culture 
only 10% of cells expressed a functional VGSC protein. This is the 
reason why the authors consider these cells as a clonal evolution 
that gives pro-tumor and pro-invasive advantages.

The correlation between VGSC protein expression and invasive-
ness in human and rat prostate cancer cells was confirmed by Smith 
et al.35 by comparing seven lines of rat prostate carcinoma cells with 
different metastatic ability, and nine human prostate carcinoma cell 
lines. In general, invading capacity of the basement membrane and 
metastatic ability showed a positive correlation with the percent-
age of cells expressing VGSC. But this positive correlation between 
percentage of cells expressing VGSCs and the percentage of cells 
being invasive occurred only up to 27% of the cells being invasive 
in the rat series and up to 12% of cells being invasive in the human 
series. Authors suggested that these discrepancies may be due to the 
necessity of other factors for invasive capability besides VGSC pres-
ence; i.e. this protein may represent a prerequisite for the invasive 
phenotype but other requirements must also be achieved for a full-
blown invasive phenotype. Fraser et al.36 determined the key role 
played by VGSCs in prostate cancer cells in invasion and motility 
and showed that TTX and phenytoin (PHEN) that are known VGSC 
blockers, decreased motility and invasiveness while channel open-
ers increased motility. However, the increased invasion capacity in 
VGSC-expressing cancer cells is not limited to prostate cancers. 

The same features were found in breast cancer cell lines MCF-7 
(estrogen receptor positive), MDA-MB-231 and MDA-MB-468 
(both estrogen receptor negative).

Baciotglu et al.38 when experimenting on a rat model of induced 
breast cancer showed the importance of inhibiting VGSCs in order 
to inhibit antioxidant response. They observed a survival improve-
ment in rats treated with a VGSC blocker.

An important location of VGSCs in cancer cells is in a cellular 
region directly involved in migration and invasion: the invadopodia. 
Invadopodias are protrusions of the plasma membrane, rich in actin 
that are strongly related to degradation of the extracellular matrix 
(ECM). Figure 4 and Figure 5 summarize how invadopodia works 
and the relation between VGSC and invadopodia.

According to Brisson et al.39, NaV 1.5 Na+ channels regulate the 
NHE-1 exchanger protein that increases proton extrusion with 
extracellular matrix acidification that promotes invasion and migra-
tion through activity of cystein cathepsines and degradation of 
extracellular matrix40.

A second mechanism of invasion promotion was described by 
Mader et al.41 through the EGFR-Scr-cortactin pathway. Src is 
activated by VGSCs and Src phosphorylates cortactin. Cortactin is 

Figure 4. Proton extrusion through VGSC and NHE-1 (sodium hydrogen exchanger-1) produces acidification of extracellular matrix 
surrounding the cellular membrane (yellow area in the figure). (Brisson 201339; Gillet 200940). Acidification activates cathepsine degradation 
of the extracellular matrix.
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Figure 5. VGSCs. The second mechanism of action is through activation of Src which increases MMP-2 and MMP-9 secretion and activity 
through phosphorylation of Cortactin. It is postulated that there is a feedback loop starting with MMPs products which induces the development 
of new invadopodia (Red circle around I). (This figure has been constructed based on references Gillet 200940, Brisson 2013133, Clark 200742 
and Mader 201141).

involved in MMP-9 and MMP-2 upregulation and secretion as can 
be seen in Figure 5. These events lead to matrix degradation, an 
integral step in cancer cell invasion42.

There are nine different VGSC α subunits and four different β sub-
units. The expression of these subunits may vary in the different 
tumor cells21. For example, NaV 1.5 is overexpressed in astrocy-
toma, breast and colon cancer. NaV 1.7 is found in breast, prostate 
and non small-cell lung cancer (NSCLC) and NaV 1.6 in cervical 
and prostate cancer. This suggests that the α subunits seem to be 
tissue specific.

The main players in the invadopodia complex, besides the VGSCs 
are Src kinase, cortactin and Rho-A GTPase. The exact relation 
between these players is not fully known and needs further research. 
(For further reading on invadopodia and cortactin, see references 
43,44).

One possible relation between invadopodia-Src-VGSCs is described 
in Figure 6.

Onganer and Djamgoz45 proposed the hypothesis that VGSC upreg-
ulation enhances the metastatic phenotype by enhancing endocytic 
membrane activity in SCLC.

Andrikopoulus et al.50 have demonstrated that VGSCs have 
pro-angiogenic functions by significantly increasing vascular 

endothelial growth factor (VEGF) signaling in endothelial cells. 
Endothelial cells express NaV1.5 and NaV1.7. TTX blocks, and 
NaV1.5 RNAi decreases endothelial cell proliferation and tubu-
lar differentiation that are essential steps in the angiogenesis 
process.

The important implications of VGSCs in cancer progression and 
invasion led Litan and Langhans51 to express that cancer is a chan-
nelopathy (For further reading on structure and functions of VGSC 
see reference 52).

Material and methods
A search was performed in the medical literature to find pharma-
ceuticals already in use for other purposes than cancer, that as an 
off-target effect could inhibit VSGCs and to determine if these phar-
maceuticals can actually decrease migration, invasion and metastatic 
potential of cancer. A Pubmed advanced search retrieved 50519 
articles under the search condition “voltage-gated sodium channel 
blocker” during the period of 1981–2015.

The articles that considered drugs that were not in clinical use or 
FDA-approved were not included in this study, with the exception 
of resveratrol and natural polyphenols.

The following drugs fulfilling these criteria were found: phenytoin, 
carbamazepine, lamotrigine valproate, ranolazine, resveratrol, ropi-
vacaine, lidocaine, mexiletine, flunarizine, and riluzole.
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Figure 6. Tarone et al.46 in 1985 reported the relation between the oncogenic Src and promotion of invadopodia. Berdeaux et al.47 reported 
that the small molecule GTPase Rho A activity is under control of oncogenic Src and localizes in the invadopodia complex and Durlong  
et al.48 (2013) showed that Rho-A regulates the expression and activity of NaV1.5 and found a positive feedback between NaV1.5 and Rho A 
in breast cancer cells. According to Timpson et al.49, cooperation between mutant p53 and oncogenic Ras activates Rho-A.

Figure 7. Activities of alpha and beta-1 subunits of VGSCs in cancer131–133.

A new search was performed in Pubmed for each of the above listed 
pharmaceuticals with two search criteria: 1) the drug and 2) the term 
cancer. The period considered was from 1962 to the current time.

Those VGSC blocking drugs that exhibited anti-cancer activity 
based mainly by other mechanisms are only briefly mentioned; 
valproic acid and lamotrigine probably act against cancer by his-
tone deacetylase inhibition and riluzole’s anti-cancer mechanism is 
probably related to the glutamatergic pathway.

Tetrodotoxin is also analyzed in spite of the fact that it is not in 
clinical use, because it is the traditional model molecule of VGSC 
blocking, against which other drugs are comparatively tested in the 
experimental setting.

Results
Tetrodotoxin (TTX)
Many biological toxins like those found in scorpions and sea 
anemones develop their toxicity by introducing modifications to the 
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properties of VGSCs52. This toxicity can be achieved by inactiva-
tion of VGSCs (as in the case of TTX) or on the contrary by persist-
ent activation of the channel (in the case of veratridine, acinitine 
and many others).

TTX is a powerful biological neurotoxin found in fishes of the 
Tetraodontiformes order and certain symbiotic bacteria. TTX binds 
to VGSCs and blocks its activity, mainly in the nervous system. It is 
used as a biotoxin for defensive or predatory purposes. TTX binds 
to the extracellular portion of VGSC, disabling the function of the 
ion channel and results in a very poisonous effect producing death 
through respiratory paralysis22.

Due to its high toxicity it is not used as a therapeutic agent, but 
TTX has been very useful in the experimental setting for the study 
of VGSCs physiology.

Phenytoin (Diphenylhydantoin; PHEN)
PHEN is an anticonvulsant that has been identified as a sodium 
channel blocker53,54 which has been held responsible for inducing 
lymphoma, pseudolymphoma, hematological malignancies and 
other cancers in patients under chronic treatment55. This carcino-
genic effect of phenytoin was not confirmed in large epidemiologi-
cal studies56. PHEN diminishes cell mediated immunity57.

Vernillo et al. in 199058 found that phenytoin inhibited bone resorp-
tion in rat osteosarcoma cells through significant reduction of 
collagenase and gelatinase activities. But Dyce et al.59 did not find 
evidence of PHEN’s gelatinase inhibitory activity in B16 melanoma 
cells in vitro. This may be evidence of tissue-specific activity which 
has not been investigated any further. Dyce et al. did not find 

important anti-metastatic activity either in a melanoma tail injec-
tion model in mice. But when the data of this publication is exam-
ined in detail, it seems that the anti-metastatic activity is not so 
low as mentioned by the authors: they found that after injection of 
tumor cells in the mice protected with PHEN, the animal developed 
mean pulmonary colonies 4.6 +/- 3.1 but when the mice received 
no PHEN, developed. 10.2 +/- 9.9 colonies. Beyond any statistical 
analysis the difference seems important.

Yang et al.60 found that NaV 1.5 was over-expressed in breast can-
cer cells with high metastatic potential, and the anticonvulsivant 
PHEN had the ability to reduce migration and invasion at clini-
cally achievable concentrations in MDA-MB-231 cells (which are 
strongly metastatic) and showed no effects on MCF-7 cells with 
low metastatic potential.

PHEN blocks Na+ channels and has a high affinity for VGSCs in 
the inactivated state of the channel61. Compared with verapamil, 
lidocaine and carbamacepine, PHEN had an intermediate potency 
between verapamil and lidocaine, being verapamil the strongest 
inhibitor and carbamazepine the weakest.

Abdul et al.62 studied the effect of four anticonvulsants (PHEN, car-
bamazepine, valproate and ethosuxinide) on the secretion of pros-
tate specific antigen and interleukin-6 in different human prostate 
cancer cell lines. PHEN and carbamazepine inhibited the secretion 
of both.

Fadiel et al.63 found that PHEN is a strong estrogen receptor α 
antagonist at clinically achievable concentrations and at the same 
time is a weak agonist.

Table 2. Summary of PHEN’s activity against cancer and metastasis.

Reference Findings

Nelson, 201564 PHEN at clinically achievable concentration reduces breast cancer growth, invasion and metastasis in vivo in 
a xenograft model.

Yang M, 201260 At clinically achievable concentration PHEN inhibited migration and invasion of highly metastatic breast 
cancer MDA-MB-231 cell line, and had no effect on MCF-7 cell line which has a low metastatic potential and 
do not express VGSCs.

Lee Ts, 201065 DPTH-N10 a phenytoin derivate drug, inhibits proliferation of COLO 205 colon cancer cell line.

Lyu Y, 200866 DPTH-N10 a phenytoin derivate drug, shows strong anti-angiogenic activity. Inhibits HUVEC proliferation and 
capillary like tube formation.

Sikes, 200367 New VGSC blockers based on PHEN, showed increased inhibition of prostate cancer growth.

Anderson, 200368 Developed new VGSC blockers based on the PHEN binding site study. These new VGSC blockers showed 
potent inhibition of prostate cancer cells growth (Androgen independent PC3 line).

Fraser, 200336 PHEN decreased motility of prostate cancer cells.

Abdul, 200162 PHEN and carbamazepine decreased PSA secretion in human prostate carcinoma cell lines.

Lobert, 199969 PHEN has inhibitory effects on microtubule assembly and has additive effects with vinblastine.

Kawamura, 199670 PHEN potentiates vinblastine citotoxicity.

Sato K, 199431 PHEN decreased growth of MIA PaCa-2 (pancreatic cancer cells).

Lang DG, 199371 PHEN, Carbamazepine and lamotrigine are inhibitors of sodium channels and reduces glutamate release in 
rat neuroblastoma cells.

Tittle, 199272 PHEN decreased growth in six murine tumor cell lines of lymphoid origin.
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There is an undesired side effect of PHEN that may represent a 
drawback for its use in cancer: immunological depression73–76. This 
is an issue that deserves further research. Finally it has to be men-
tioned that PHEN interacts with many other pharmaceuticals, par-
ticularly those usually employed in chemotherapy.

In summary, the main activities developed by PHEN in relation 
with cancer are:

VGSC blocking, microtubule polymerization blocking, immuno-
suppression, calcium channel blocking and enhancement of vin-
blastine cytotoxicity.

Carbamazepine
Carbamazepine is a sodium channel blocker, pro-autophagy agent 
and histone deacetylase inhibitor that has been in use since 1962 
for the treatment of seizures, neuropathic pain and bipolar disorders 
and has shown interesting anti-metastatic potential in the experi-
mental setting77. Studies have also insinuated preventative effects 
in prostate cancer78.

Carbamazepine induces Her2 protein degradation through the pro-
teosome without modifying its production79. This activity seems to 
be related to histone deacetylase inhibition rather than VGSC block-
ing. Growth inhibition in estrogen-receptor positive breast cancer 
cell lines seems probably a histone deacetylase inhibitor effect80.

Oxcarbazepine, a molecule related to carbamazepine is also a 
sodium channel blocker81 and a potassium channel blocker, but it 
has not been investigated for cancer.

The anti-cancer mechanisms shown by carbamazepine are in 
summary:

1)  VGSC blocker as anti-metastatic77.

2)  Histone deacetylase inhibition82.

3)  Her2 degradation by proteasome79.

Valproic acid (VAL)
An anticonvulsivant drug that exerts multiple actions related to anti-
cancer effects: calcium channel blocker, VGSC blocker, inhibition 
of histone deacetylase, potentiation of inhibitory activity of GABA, 
decreases angiogenesis, interferes with MAP kinase pathways and 
the β catenin-Wnt pathway83. Val is being tested in various clinical 
trials in leukemias and solid tumors84. Most of the anti-tumor activi-
ties of VAL seem to be related to the inhibition of histone deacety-
lase rather than VGSC blocking and further discussion goes beyond 
the scope of this review.

Ranolazine
Ranolazine, (Ranexa) is an antiarrhythmic drug indicated for the 
treatment of chronic angina that was first approved by FDA in 
2006. Common side effects are dizziness, constipation, headache 
and nausea85.

Ranolazine inhibits the late inward sodium current in heart mus-
cle, so that it works as a sodium channel inhibitor. Ranolazine is 
metabolized by the CYP3A enzyme.

Driffort et al.86 demonstrated that ranolazine inhibition of NaV1.5 
reduced breast cancer cells invasiveness in vivo and in vitro using 
the highly invasive MDA-MB-231 breast cancer cell line. This drug 
also efficiently decreased the activity of the embryonic/neonatal iso-
form of NaV1.5 (the active isoform usually found in human breast 
cancer cells). Ranolazine did not change the viability of the cell. 
It also decreased the pro-invasive morphology of MDA-MB-231 
breast cancer cells. They also demonstrated that injection of cancer 
cells through the tail vein of nude mice at non-toxic doses achieved 
a significant reduction in metastatic colonization.

Resveratrol and other polyphenols
Certain biologically active natural phenols like resveratrol and gen-
istein have shown effects on VGSCs, increasing hyperpolarized 
potentials during steady state inactivation88.

Resveratrol’s inhibitory effects on VGSC has consequences for the 
behaviour of metastatic cells. Fraser et al.89 showed that resveratrol 
significantly decreased lateral and transversal motility and invasion 
capacity of rat prostate cancer cells (MAT-Ly-Lu cells), without 
changes in cellular viability. They also found that resveratrol inhib-
ited VGSC in a dose-dependent manner and using TTX with resver-
atrol did not increase VGSC inhibition nor metastatic cell behavior. 
Resveratrol also inhibits epithelial sodium channels90.

Resveratrol is not the only polyphenol with VGSC blocking activ-
ity: quercetin and catechin showed similar effects91 in ventricular 
myocytes and genistein in rat cervical ganglia92 and nociceptive 
neurons93.

Gabapentin
Gabapentin is used for the treatment of pain and decreases expres-
sion of NaV1.7 and ERK-1/ERK-2 in ganglion neurons94,95 and 
expression of NaV1.296. We found no publications about gabapen-
tin as a possible anti-metastasis or anti-invasion treatment.

Riluzole
Riluzole is a drug used for amyotrophic lateral sclerosis and it is 
a known sodium channel blocker. This effect was demonstrated in 
human prostate cancer cell lines97. Most likely, the anticancer activ-
ity of riluzole is mainly related to other anticancer characteristics of 
this drug like downregulation of the glutamatergic pathway98.

Flunarizine
Flunarizine is a calcium channel blocker with a long plasma half-
life, used in migraine prevention, vertigo and adjuvant treatment of 
epilepsy, but has shown important activity as a VGSC blocker99–101. 
It binds calmodulin.

At low temperatures (22 degrees) flunarizine potentiate the binding 
of phenytoin to VGSC102.
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Flunarizine has shown anti-cancer activities in lymphoma and mul-
tiple myeloma103, and leukaemia104, but these anti-cancer activities 
were apparently related to induction of apoptosis, which is not a 
consequence of VGSC blockage. On melanoma cells, flunarizine 
showed decreased motility and invasion in vitro105,106. Flunarizine 
inhibited migration and phagocytosis in B16 melanoma cells and 
M5076 macrophage-like cancer cells107.

According to data found in medical literature we may consider anti-
cancer activities of flunarizine in the following way:

a)	 Activities dependent on VGSC blocking: decreased motility 
and invasion105–107.

b)	 Activities dependent on calcium channel blocking: vasodil-
atation and increased concentration of chemotherapeutic 
drugs in tumor tissues108–110, and increased radiosensitiv-
ity due to better oxygen delivery to anoxic areas of the 
tumor111.

c)	 WNT inhibition103.

d)	 Inhibition of lymphangiogenesis112.

e)	 Increase of melphalan`s citotoxicity in resistant ovarian can-
cer cells113 and in rhabdomyosarcoma114.

f)	 Positive modulation of doxorubicin in multidrug resistant 
phenotype colon adenocarcinoma cells115.

g)	 Decreased blood viscosity improving oxygen delivery to the 
tumor116.

h)	 Other anti-tumor activities: apoptosis and growth rate 
inhibition103,104,117.

Flunarizine has not been tested in cancer trials. The fact that it can 
significantly reduce motility in melanoma cells which is a highly 
metastasizing tumor and is also an inhibitor of lymphangiogen-
esis, makes it an interesting adjuvant therapy that deserves further 
research. The possible synergy with phenytoin is also an issue that 
should be explored.

However, flunarizine has also shown cytoprotective effects in 
certain tissues (auditory cells) against cisplatin118 and flunarizine 
may induce Nrf-2 overexpression that confers resistance to chem-
otherapy in some tumors like Her2 positive breast cancer119.

Local anaesthetics
Local anaesthetics eliminate pain through VGSC blocking on noci-
ceptive neurones.

Local anaesthetics like lidocaine have shown interesting anti-cancer 
effects in various cancer cells. Lidocaine is a VGSC blocker. The 
mechanisms involved in decreased proliferation seems related to 
the inhibitory actions of local anaesthetics on EGFR120 rather than 
VGSC blocking. Inhibition of invasion found in cancer cells treated 

with lidocaine (HT1080, HOS, and RPMI-7951) by Mammoto 
et al. was attributed by the authors to shedding of the extracellu-
lar domain of heparin binding epidermal growth factor-like growth 
factor and not to VGSC blocking121.

Baptista-Hon et al. described a decrease in metastatic potential of 
colon cancer cells (SW620 cells) by ropivacaine and decrease of 
Nav1.5 function (adult and neonatal isoforms)122.

Piegeler et al., 2012 identified decreased Src activity produced by 
amide-linked anaesthetics as an independent mechanism of migra-
tion and invasion decrease123.

Other drugs
Other drugs that have shown significant VGSC blocking activity 
and may have activity in the fight against migration, invasion and 
metastasis are: fluoxetin blocks NaV1.5124, and mexiletine125.

Intravenous propofol has been recognized as an anti-invasion drug 
in HeLa, HT1080, HOS and RPMI-75 cells by decreasing actin 
stress-fiber formation and focal adhesion inhibition, but this drug is 
not a VGSC blocker and the probable mechanism is through Rho-A 
modulation126.

All of the drugs we have mentioned are low cost pharmaceuticals, 
have predictable and well known side effects, and therefore they are 
adequate candidates for further clinical trials.

Discussion
Functionally active VGSCs are expressed in many metastatic can-
cer cells. This functional expression is an integral element of the 
metastatic process in many different solid tumors.

The essential role of this protein in invadopodia has been estab-
lished, so VGSCs became a legitimate target to decrease migration, 
invasion and metastasis. Repurposed drugs like anticonvulsants, 
(phenytoin in particular) have shown interesting anti-invasion 
effects.

Carbamazepine’s ability to induce Her2 protein degradation should 
be considered an interesting association to trastuzumab.

Targeting VGSCs may act in synergy with anti-angiogenic treat-
ments and with other chemotherapeutic drugs like vinblastine.

On the other hand in the review by Besson et al.127 there is a very 
important remark: VGSC is also present in macrophages and cells 
related with the immunologic system, so that disrupting VGSC`s 
activity may deteriorate also anti-tumor immunologic mechanisms.

Flunarizine represents a particularly interesting molecule because it 
may attack cancer from four different angles: invasion and migra-
tion through VGSC blocking, WNT pathway down-regulation, 
decreased lymphangiogenesis and better oxygenation of hypoxic 
areas which permits a better arrival of chemotherapeutic drugs and 
increased sensitivity to radiation. It has never been tested in clinical 
trials for cancer treatment.
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Future directions
New VGSCs blockers are under research. Sikes et al.67 developed 
new blockers based on the phenytoin binding site to VGSC. They 
found compounds with enhanced activity in VGSC blocking and 
antitumor activity against human prostate cancer cells.

The association of two or more VGSC blockers may show syner-
gistic enhanced anti-metastatic activity. Nerve growth factor (NGF) 
increases the number of VGSCs129; tanezumab, a new NGF inhibitor 
diminishes the amount of VGSCs128, so we may assume that tane-
zumab may develop synergistic activity with VGSC blockers. 
Tanezumab has not been tested in cancer and we think it deserves 
more research because NGF is also an anti-apoptotic protein130.

Stettner et al.134 found that men over 50 years of age may be benefited 
with the use of anticonvulsivants, regarding prostate cancer preven-
tion because they observed lower PSA levels compared with control 

groups. They also described a ranking of this preventive activity: 
valproic acid>levetiracetam>carbamazepine/oxcarbazepine>lamotr
igine. The authors also observed synergy between these drugs.

Conclusions
Repurposed VGSC blocker drugs, particularly phenytoin, fluna-
rizine and polyphenols, deserve clinical trials as complementary 
treatment to decrease the metastatic risk.
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This manuscript is well summarized with topics. However, I believe some more information needs to be
added.
 

As small molecules, such as FDA approved drugs, affect the tissue of the whole body, the
information of the data from genetic findings, such as NaV1.5 knockout mice data, is desired to be
included in the text
 
The idea that selecting the voltage gated sodium channel blocker by repurposing of a drug seems
attractive to fight invasion and metastasis of cancer. However, a concrete example for the medical
use is not shown in the text. Please provide an idea when a patient could use such a drug.  
 
Oxidative stress contributes to the invasion process. Figures 3 & 4 show that proton exfusion also
plays a role in the invadopodia complex. Do the author has an idea to connect oxidative stress and
the voltage gated sodium channel? If not, please ignore this comment.
 
Figure 7: “B1 subunit” should be replaced by “b(symbol)1 subunit”.
 
The author describes in the text that the voltage gated sodium channel is overexpressed in cancer
tissue, and its blockers could be used as cancer chemoprevention agents. It might be worth writing
a review article regarding carcinogenesis and the voltage gated sodium channel blocker in the
future.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.
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This article focuses attention on sodium channels as potential therapeutic targets for metastatic disease. 
Much work needs to be done to determine whether agents that act on sodium channels will blunt
metastatic activity in a clinically meaningful manner, but a spectrum of sodium channel blockers with only
minimal side-effects are already used clinically.  This novel approach thus merits careful study.

While at first glance it may seem surprising that voltage-gated sodium channels are proposed as
molecular targets within (presumably) non-excitable cells, there are many precedents for a role of these
channels in controlling effector actions in multiple types of cells that have traditionally been considered
non-excitable .  One example is provided by astrocytes, which express multiple types of sodium channels
that are functional within the cell membrane . These astrocytic sodium channels provide a return pathway
for Na ions that facilitates operation of the Na-K/ATPase in these cells .  Notably, expression of sodium
channels within astrocytes is highly dynamic, a phenomenon that is strikingly seen in scarring astrocytes
in disorders such as multiple sclerosis (MS) and its models where expression of Nav1.5 is up-regulated .
  Recent evidence indicates that these glial sodium channels participate in the astrocytic response to
injury, via a cascade that involves Na influx that activates reverse (Ca-importing) Na/Ca exchange . 
Given the large number of traditionally non-excitable cell-types (including microglia, macrophages, and
multiple other cell-types) where expression of voltage-gated sodium channels and a functional role for
these channels has been documented (reviewed in Black and Waxman, 2013 ), sodium channels may
emerge as therapeutic targets in multiple disorders.
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