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Highly migratory marine species can travel long distances and across entire

ocean basins to reach foraging and breeding grounds, yet gaps persist in our

knowledge of oceanic dispersal and habitat use. This is especially true for sea

turtles, whose complex life history and lengthy pelagic stage present unique

conservation challenges. Few studies have explored how these young at-sea

turtles navigate their environment, but advancements in satellite technology

and numerical models have shown that active and passive movements are

used in relation to open ocean features. Here, we provide the first study, to

the best of our knowledge, to simultaneously combine a high-resolution

physical forcing ocean circulation model with long-term multi-year tracking

data of young, trans-oceanic North Pacific loggerhead sea turtles during their

‘lost years’ at sea. From 2010 to 2014, we compare simulated trajectories of

passive transport with empirical data of 1–3 year old turtles released off

Japan (29.7–37.5 straight carapace length cm). After several years, the at-sea

distribution of simulated current-driven trajectories significantly differed

from that of the observed turtle tracks. These results underscore current theories

on active dispersal by young oceanic-stage sea turtles and give further weight

to hypotheses of juvenile foraging strategies for this species. Such informa-

tion can also provide critical geographical information for spatially explicit

conservation approaches to this endangered population.
1. Introduction
Understanding animal movement and distribution has been inherently difficult in

the open ocean. Animals with complex life histories can undergo long-distance

migrations and use a variety of habitats throughout various stages [1]. Extended

time in the pelagic environment can make understanding their navigational be-

haviour and habitat selection along migratory routes difficult. This is especially

true for sea turtles, which disperse into the ocean upon hatching and remain rela-

tively undetectable for several years [2,3]. During this time, the gaps in knowledge

of where they disperse, what habitats they use and the length of time they exploit

these habitats, are characterized as the ‘lost years’ [2]. With their small size,

positive buoyancy and limited locomotion, it was long assumed that young ocea-

nic-stage sea turtles passively drift through the large-scale gyres transported along

their migratory pathways by surface ocean currents, spending years undergoing a

‘long-term, unidirectional gyre-based developmental migration’ [1,2].

However, developments in electronic tracking and biologging capabilities,

coupled with laboratory experiments, have begun to shed light on the predomi-

nant hypotheses of entirely passive at-sea behaviour and distribution [3–6].

It is now known that oceanic dispersal is a product of passive and active move-

ments [7–10]. Emerging studies have begun to recognize that even early-stage

http://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2016.0690&domain=pdf&date_stamp=2016-06-01
mailto:dbriscoe@stanford.edu
http://dx.doi.org/10.1098/rspb.2016.0690
http://dx.doi.org/10.1098/rspb.2016.0690
http://rspb.royalsocietypublishing.org
http://rspb.royalsocietypublishing.org


rspb.royalsocietypublishing.org
Proc.R.Soc.B

283:20160690

2
turtles rely on some level of active swimming to achieve success

with long-distance ocean transport [3,5]. In combination with

well-known geomagnetic navigational cues [4], small amounts

of directional swimming can exert a strong effect on migratory

routes and endpoints within ocean circulation [3,10,11].

Because the ocean is a complex and dynamic environ-

ment, inferences about the directed movement of an

individual animal within the open ocean require attention

to the underlying physical processes that shape migratory

pathways [8,12,13]. This is especially true for ocean currents,

which have been shown to play key roles in sea turtle ecology

[7,8]. Biophysical analyses that incorporate high-resolution

hydrodynamic models into particle-tracking algorithms can

be useful tools to study supposed patterns of passively drift-

ing particles [14]. Such simulations serve as ‘null models’ to

test hypotheses on dispersal and distribution [10]. Studies

using numerical simulation models to compare long-term

drift trajectories with sea turtle tracking data have enhanced

the understanding of how sea turtles successfully manage the

long-distance journey across entire ocean basins [5,6,8,11].

Specifically, they have helped reconstruct timelines between

empirical observations of adults with distant reproductive

and foraging grounds [15]. Such studies have also given

rise to imprint hypotheses (see [5]), which tie the role of pas-

sive dispersal in the evolution of active migration routes and

habitat preference in later life-history stages [5,9,16].

For loggerhead sea turtles (Caretta caretta), current knowl-

edge of post-hatchling navigation and dispersal has been

based, almost exclusively, on studies of the North Atlantic

population [4,6]. However, growth rates, developmental

migrations and foraging strategies may differ among popu-

lations and ocean basins [17,18]. Even within a population,

considerable variation may exist between migratory trajec-

tories and the length of time necessary for hatchlings from

the same cohort to reach foraging locations, not to mention

the locations themselves (i.e. alternative foraging strategies;

[1,19–21]). Thus, understanding scenarios of how these ani-

mals spend this life-history stage is critical, as the success of

the population critically depends on the survival of juveniles

[22]. In the Atlantic, studies now suggest that hatchling and

juvenile sea turtles are distributed around the ocean basin

to a certain extent by prevailing currents, but that active

swimming may augment movement patterns such that

young sea turtles may significantly differ in spatio-temporal

distribution from distributions that would be expected for

passively drifting objects [10].

In the North Pacific, focus on the loggerhead sea turtle

has increased as the conservation status of this population

has recently been changed to endangered status [23]. Nesting

exclusively in Japan, hatchlings from this population under-

take developmental migrations that span the entire North

Pacific basin [24–27]. Animals from this subpopulation are

genetically distinct from other loggerhead subpopulations

[28]. Foraging hotspots for juveniles have been identified in

the central North Pacific [29,30] and in the eastern Pacific

off the Baja California Peninsula (BCP), Mexico [27,31,32].

Upon maturity, turtles migrate back to their natal beaches

of Japan and remain in the western Pacific as adults [25,33].

Knowledge of this population’s juvenile stage stems

from exceptional insights into the movement ecology and

environmental correlates within pelagic habitat [29,30,34–38].

However, connectivity between their oceanic dispersal and

foraging grounds has remained poorly understood. From an
ecological perspective, much can still be learned as to how phys-

ical forcing from ocean circulation influences the dispersal

pathways and spatio-temporal dispersal of young juveniles

from this population. From a conservation standpoint, current

United States fisheries management strategies in the central

North Pacific Ocean are specifically geared towards the

interaction with at-sea loggerheads [39], PIFSC TurtleWatch

Programme (http://www.pifsc.noaa.gov/eod/turtlewatch.

php). This may still leave potentially important foraging areas

within the high seas unprotected. For this reason, understanding

transport and behavioural responses during this stage is crucial.

Here, we combine high-resolution ocean circulation models

with long-term, previously unpublished 20–36 month old log-

gerhead sea turtle tracks from the North Pacific Ocean basin.

The trajectories of passively drifting particles are compared

with those of observed turtles released from the same date

and nesting location in the western North Pacific, thereby test-

ing the passive migration hypothesis for juvenile loggerhead

sea turtles in the North Pacific Ocean. Such insights will help

assess the role of long-distance transport from currents and

provide useful long-term information on small juveniles

during a period where little is known [40]. This knowledge

can also provide critical geographical information for conser-

vation management strategies in areas that may host high

concentrations of young individuals from this population.
2. Material and methods
(a) Sea turtle tracks
During 2010–2011, Argos-linked satellite transmitters were

attached to the carapaces of 44 juvenile loggerhead sea turtles,

aged 1–3 years (29.7–37.5 SCL cm), following the procedures rec-

ommended in Balazs et al. [41] and Parker et al. [37]. These tracks

represent new, never before published data. Turtles were hatched

and raised in the Port of Nagoya Public Aquarium in Minato-ku,

Japan. All loggerhead turtles were outfitted with Telonics

(Mesa, AZ) model TAM-2619 (n ¼ 4) TAM-2639 (n ¼ 4) or Wildlife

Computers (Redmond, WA) SPOT5 (n ¼ 36) electronic transmitters.

Turtles were released from ships in two batches, offshore of

Japan. Seventeen turtles were released in April 2010 at 298 N

1308 E, and 27 turtles were released in July 2011, at 368 N 1418 E

(figure 1a and electronic supplementary material, table S1).

Locations were collected by ARGOS-CLS. All raw surface

locations were filtered using a Bayesian state space switching

model [42], which regularized track positions at daily 24 h inter-

vals. Such methodologies have been used in sea turtle

movement studies to estimate animal location while accounting

for satellite positioning errors [18].

(b) Particle simulation
Particle dispersal was simulated using the particle-tracking program

ICHTHYOP (v. 3.2) [43]. Surface current velocity fields were

extracted from the global hybrid coordinate ocean model

(HYCOM) 1/12-degree analysis (http://hycom.org). HYCOM is

forced using wind speed, wind stress, precipitation and heat flux

[11]. The resulting data product uses satellite altimetry, sea surface

height and in situ measurements of temperature and salinity. The

standard global HYCOM output has a 1 day temporal resolution

and 0.088 spatial resolution. The HYCOM product can resolve

mesoscale features known to be related to sea turtle dispersal and

movement (e.g. fronts [19,34,36,44], currents [7,8] and eddies [29,45]).

Particle-tracking start dates were centred around the deploy-

ments of actual satellite-tagged turtles. Between April 2010 and

July 2011, 3000 particles were released per year, for a total of
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Figure 1. (a) Spatial distribution of 44 satellite deployed loggerhead tracks from 2010 to 2013. Probability of an animal within a given cell (utilization distribution, UD)
ranges from 0 to 100. The two main deploy locations are shown with black dots. Spatial distribution (UD) of 6000 simulated particles, released at the same date per
region as observed turtles. Release dates centred around actual turtle deploys. Simulations ran for (b) 0 – 865 days (equal to the maximum number of turtle tracking
days) and for long-term comparison, (c) 0 – 1460 days (4 years). Release locations are shown with grey dots.
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6000 tracked particles. For each year, 1000 particles were released

on the exact date coinciding with sea turtle deployment. Another

1000 were released the day before and after sea turtle deploy-

ment date. Separate release dates will experience a wider range

of physical oceanographic conditions and provide a more repre-

sentative view of dispersal scenarios [46]. In order to minimize

the influence of coastal transport and retention unable to be

quantified by HYCOM [14], particles were released approxi-

mately 50 km offshore within a zone that corresponded to the

main deployment locations for 2010 and 2011. The movement

of individual particles through HYCOM velocity fields was

simulated using Lagrangian advection with a fourth-order

Runge–Kutta time-stepping method [43], similar to Putman

et al. [6]. Transport of particles was calculated every half an

hour and recorded at 24 h intervals.

For each release date, particles were tracked in the model for

(i) 865 days and (ii) 4 years. The first scenario corresponded to

the maximum number of days an animal transmitted (electronic

supplementary material, table S1). The second scenario was the

longest possible uninterrupted time series of HYCOM data that

corresponded to the earliest tag deployment date. This length

also fell within the window of time a hatchling turtle could

conceivably undergo a trans-Pacific migration to reach eastern

boundary foraging grounds [47]. Simulations starting in 2010

ran through to 2014. Simulations starting in 2011 ran through

2014 and then ‘looped’ back over to resume in 2010 for a total
of 4 years. The methodology of ‘looping’ has been used for

previous particle-tracking simulations for sea turtles (see [6,14])

and for oceanographic simulations [48]. Such a technique helps

to diminish the impact of anomalous ocean current conditions

on dispersal outcomes from just a single year [6].

Given the varied duration of satellite tag transmissions, tracks

were normalized and time weighted using a threshold scheme

[49,50]. Briefly, each location estimate was weighted by the inverse

number of individuals with locations on the same day of trans-

mission. Beyond an 85th percentile threshold, animal locations

received equal weighting. Locations were then summed within

0.188888 � 0.188888 grid cells. From these values, time-integrated utiliz-

ation distributions (UDs) were calculated to show the probability

of an animal being found within a grid cell [51]. Similar grid

summation and UD calculations were performed for simulated

particle densities; however, particle trajectories were not weighted

as all trajectories ran for exactly the same length of time during

both scenarios.

As they traverse the North Pacific, loggerhead sea turtles are

thought to move from the stronger eastward currents of the

North Pacific Subtropical Gyre’s (NPSG) Kuroshio Extension Cur-

rent (KEC), west of 1558 E and Bifurcation Region (KEBR), defined

as the prevailing current system from 1558 E to 1808 longitude [29],

to the weaker flows of the North Pacific Current (NPC), east of 1808
longitude. Currents are further weakened by 1608 W [52]. The per-

centage of sea turtles and particles that passed through the KEBR



Table 1. Percentage of turtle tracks and particles transported eastward across the North Pacific and their average directional heading (degrees). (Asterisk denotes
statistically significant ( p , 0.05) directionality (Rayleigh’s z-test) along longitudinal dispersal.)

east of 15588888 E east of 18088888 east of 16088888 W east of 14088888 W (%)

turtles 100% (93.48)* 64.4% (112.78)* 6.7% (56.38) (n.s.) 0

particles 95.4% (65.58) (n.s.) 66.7% (65.48) (n.s.) 66.58% (64.78) (n.s.) 47.18
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(1558 E), NPC (1808 E) and eastern North Pacific (1608 W) was

recorded. In order to highlight where animal movement may

differ from the prevailing current (particles), we compared the

average velocity and directional heading of sea turtle movement

and particle drift along their eastward trajectories. Speed

(km h21) and directional headings were calculated along each indi-

vidual sea turtle and particle location. Mean speed was then

averaged by degree longitude. Mean directional headings were

calculated as the 14 day average heading to minimize the variable

accuracy estimates from ARGOS [53,54]. Directional headings of

sea turtles and particles were then summarized at the boundaries

of the prevailing currents (1558 E, 1808 E and 1608 W; table 1).

A first-order Rayleigh’s z-test [55] was employed to determine

the existence of: (i) a prevailing direction of current flow (particles),

and (ii) directional uniformity among individual turtle tracks.

Mardia–Watson–Wheeler tests of homogeneity were used to

test for significant differences between sea turtle and particle

mean headings, in effect highlighting the presence of active move-

ment against prevailing current drift. As the number of turtles

moving east of 18088888 diminished substantially (e.g. below 10% by

16088888W), subsequent longitudes were not included in further stat-

istical analyses. All statistical analyses were carried out using the

Circular package in R [56].
3. Results
(a) Dispersal and spatial extent
Young oceanic loggerheads dispersed over a wide area, with

the highest abundance of turtles found between 1758E and

1758 W (figure 1a). Track durations ranged from 173 to 865

days, with a mean value of 468.8 days (+164.2 days s.d.; elec-

tronic supplementary material, table S1). The average distance

travelled by a turtle was 11 290 km (+3067.9 km s.d.). The

average easternmost longitude by 44 turtles was 175.58 W.

The maximum eastward longitude reached by an individual

animal was 150.08 W.

Under both simulation scenarios (865 days and 4 years),

dispersal routes encompassed nearly the width of the entire

North Pacific Ocean, with high abundances near 18088888 and in

the eastern North Pacific (figure 1b,c). After 865 days, particles

dispersed into the eastern North Pacific, with an average east-

ernmost longitude of 173.58 W and a maximum of longitude of

1258 W. After 4 years, the mean distance travelled by particles

was 28 642 km (+18 417.2 s.d.). The average easternmost

longitude was 130.28 W with a maximum of 124.48 W. Neither

simulated trajectories nor sea turtles had reached the coastal

waters of BCP, Mexico (figure 1a,c).

(b) Active versus passive movements
Sea turtle and particle velocities decreased with eastward

location; however, particle drift velocities did increase again

near 1508 W. While sea turtle velocities were faster than particle

velocities near 1408 E, 1658 E and 1758 W, (figure 2a), average

eastward velocities were significantly slower for turtles
(1.0+0.4 km h21) than for particles (1.2+0.4 km h21;

Mann–Whitney U-test, U103 ¼ 3254, p ¼ 0.007). The KEC is a

fast-moving western boundary current, and as expected, the

greatest velocities for both turtles (2.3+0.9 km h21) and par-

ticles (2.3+6.5 km h21) were found west of 1558 E, within

the bounds of the KEC (figure 2a).

One hundred per cent of turtles and 95% of all particles

moved through the KEC and into the KEBR (1558 E; table 1).

By 1808, more than half of all tracks and particles continued

in an eastward direction (64.4% and 66.7%, respectively).

Crossing both locations (1558 E and 1808), particles consistently

travelled in a northeastward direction, whereas sea turtles

headed in an east/southeast direction (figure 2b). Sea turtles

moving into both the KEBR at 1558 E and the NPC at 1808 E

showed a statistically significant directional orientation (Ray-

leigh’s z p ¼ 2.8 � 10213 and p ¼ 1.7 � 1028, respectively;

table 1). Results of Mardia–Watson–Wheeler tests showed a

significant difference between turtle orientation and particles

at both 1558 E and 1808 (W155 ¼ 38.9, d.f.¼ 2, p ¼ 3.6 � 1029

and W180 ¼ 38.4, d.f. ¼ 2, p ¼ 4.5 � 1029, respectively). There

were too few data points to perform these tests for turtles

east of 1608 W.
4. Discussion
In just a few years after leaving the coastal waters of Japan,

young oceanic loggerheads disperse over a large area of the

North Pacific Ocean. Our results provide the first evidence, to

the best of our knowledge, for the Pacific Ocean that young

(1–3 year old) loggerhead sea turtles are not passively distribu-

ted by current but exhibit some active swimming along

migratory routes. These results, coupled with sample trajec-

tories of the four longest transmitting animal tracks (greater

than 2 years; electronic supplementary material, figure S1),

show that sea turtles demonstrated oriented swimming in

both stronger current regimes (KEBR) and weaker currents of

the CNP. The KEBR is a possible foraging hotspot for oceanic

North Pacific loggerheads and shows a high residency for

small-sized captive and larger wild-caught juveniles [29]. Such

movements may allow turtles to use the biologically rich

waters of the KEBR while staying out of the Kuroshio

countercurrent (KCC). Indeed, the spatial overlap of a separate

dataset of turtles (n ¼ 43) tracked from 2000 to 2004 [29] with the

data presented here (n ¼ 44, 2010–2013) supports the hypo-

thesis that this area may be an important and persistent

foraging location for juveniles of this population [27].

The high concentration of passively drifting particles and

increase in particle velocity within the eastern North Pacific

(figure 1b,c) are consistent with the large-scale circulation pat-

terns in the NPSG. The NPSG causes surface convergence and

retention of biomass and debris [52]. Various studies have

described this feature, often called the ‘great North Pacific

Garbage Patch’ or ‘Eastern Garbage Patch’ [57]. However, the
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data still present a fragmented understanding of basin-wide

connectivity of this population. The fact that the easternmost

area used by young juvenile North Pacific loggerhead sea tur-

tles (figure 1a) significantly differed from that of the passively

drifting particles (figure 1b) adds to the current gaps in knowl-

edge of this population. As neither turtles nor particles reached

Baja California, the migration strategies and known relation-

ship to a highly populated foraging ground in the eastern

North Pacific remain unknown.

Regardless, young juvenile loggerheads are found in these

eastern foraging grounds. Most recently, Tomaszewicz et al.
[47] provided the first ever empirical age estimates for juvenile

North Pacific loggerhead sea turtles along the BCP. Their results

found juvenile loggerheads in Baja California ranged from 3 to

24 years of age. Juvenile loggerheads are believed to undergo an

ontogenetic shift from oceanic to coastal waters upon reaching a

straight carapace length (SCL, of 42–59 cm [20,58]. The SCL of

the youngest and smallest juveniles found off BCP (aged 3–6

years; 27.7–42.3 cm SCL) [47] overlap with the range of

measured sizes of deployed captive-reared turtles in this

study (SCL of 29.7–37.5 cm). This suggests that after 1 year of

transmission after deployment, sea turtles from this study

might be old enough and of comparable size to undergo a simi-

lar shift to neritic waters, but at present, no such tracking data

confirm this. Four of the 44 sea turtles transmitted for more
than 2 years, yet none displayed a trans-Pacific migration to

Baja California (electronic supplementary material, figure S1).

Like many of the observed tracks, the longest transmitting

tracks exhibited oriented behaviour in marked contrast to par-

ticle simulation scenarios (electronic supplementary material,

figure S1). Given the time of year (summer–autumn), perhaps

these eastward moving animals reversed direction to time a

return that would allow them to exploit the highest seasonally

productive waters of the KEBR–KEC and subsequently the

TZCF in the autumn [29]. This timing may also enable an over-

wintering strategy [59] in order to remain in productive and

thermally optimal ocean conditions. Indeed, limitations still

exist in the length of time these animals can be monitored.

(a) Application to conservation and spatially explicit
threats

Basin-level differences in environmental and oceanographic

conditions can affect population dynamics, access to resources,

growth rates and age at maturity [52]. Bailey [18] reinforced

this basin-level comparison for leatherbacks (Dermochelys coria-
cea), suggesting that the processes which drive foraging

success may strongly shape the conservation status of conspeci-

fic populations. Despite great advancements in satellite

telemetry and biologging capabilities, limitations still exist in
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the ability to track individuals throughout their life-history

stages. Combining tracking dispersal with existing empirical

information on young stage juveniles can provide useful infor-

mation where such gaps in knowledge still exist [40]. The use

of state-of-the-art numerical simulation-ocean circulation

models has shed light on previous knowledge of at-sea

orientation strategies, suggesting that even the ‘general’ distri-

bution of turtles might not be well predicted by ocean currents

alone [46]. As a first approximation, dispersal studies can pro-

vide us with useful scenarios of at-sea behaviour for young

oceanic sea turtles [10,60]. However, these predictions will not

depict exactly how an animal travels at sea [10]. They might pro-

vide a useful ‘null model’ for examining the role of ocean

currents on the ecology of marine species [5,46,61]. Therefore,

there are certain caveats to drawing direct movement compari-

sons between simulations and observed turtles in this study.

Foremost, simulations assumed entirely passive drift that is typi-

cally representative of hatchlings, whereas observed turtle tracks

represent stronger, more capable 1–3 year old turtles [29].

Second, these data rely primarily on the behaviour of captive-

reared animals; however, previous studies by Polovina et al.
[29] and Abecassis et al. [30] note that there are no apparent

differences in the post-release behaviours of sea turtles that

have been in captivity and wild turtles. Narazaki et al. [59]

noted spatial overlap between similar-sized wild-caught and

head-started juveniles in the western Pacific. Nonetheless,

results can provide a long-term window of the at-sea behaviour

and movements of ‘lost years’ juveniles. Therefore, comparison

of observed animal movement with simulations over a variety of

ocean conditions can provide useful information during an

otherwise cryptic life-history stage [6,8,11].

In summary, we have shown that the orientation and distri-

bution of juvenile loggerhead sea turtles can differ from
predominant currents in the North Pacific Ocean. This infor-

mation can have a profound influence on traditional

hypotheses of oceanic transport and basin-scale connectivity.

The time that it takes to traverse the open ocean and the fact

that these highly migratory animals spend years to decades

in this pelagic habitat leaves sea turtles vulnerable to anthropo-

genic threats, in particular bycatch in fisheries [39]. Knowledge

of dispersal patterns, the areas highly frequented by vulnerable

sea turtles and the corridors of movement between life stages is

a priority for sea turtle conservation [40,46]. Such information

can be used for conservation management strategies that

ensure these populations persist with time.
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