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Constructing a multi-dimensional prior on the times of divergence (the node

ages) of species in a phylogeny is not a trivial task, in particular, if the prior

density is the result of combining different sources of information such as a

speciation process with fossil calibration densities. Yang & Rannala (2006

Mol. Biol. Evol. 23, 212–226. (doi:10.1093/molbev/msj024)) laid out the gen-

eral approach to combine the birth–death process with arbitrary fossil-based

densities to construct a prior on divergence times. They achieved this by calcu-

lating the density of node ages without calibrations conditioned on the ages of

the calibrated nodes. Here, I show that the conditional density obtained by

Yang & Rannala is misspecified. The misspecified density can sometimes be

quite strange-looking and can lead to unintentionally informative priors on

node ages without fossil calibrations. I derive the correct density and provide

a few illustrative examples. Calculation of the density involves a sum over a

large set of labelled histories, and so obtaining the density in a computer

program seems hard at the moment. A general algorithm that may provide

a way forward is given.

This article is part of the themed issue ‘Dating species divergences using

rocks and clocks’.
1. Introduction
There has been much interest in using the Bayesian method to estimate the times of

divergence (the node ages) of species in phylogenies [1]. However, in a Bayesian

analysis, specifying the prior distribution on the ages of nodes is not a trivial

task: for a phylogeny with s species, there are s – 1 node ages to be estimated,

and thus a probability distribution with s – 1 dimensions needs to be constructed.

Such high-dimensional priors may be hard to specify, in particular if the prior is

built from different sources of information, such as when combining information

from the fossil record with a speciation process (such asthe birth–death process [2]).

For example, in the first Bayesian method of molecular clock dating, Thorne

et al. [3] used the Yule process (a speciation process) to construct the prior on

the node ages, but no attempt was made to combine the process with node-age

calibrations based on the fossil record. Later, Kishino et al. [4] used a gamma

density to specify the prior on the age of the phylogeny’s root, and then used

the Dirichlet distribution to construct the prior on the remaining node ages.

They innovatively used the ages of fossils as minimum or maximum constraints

on the ages of nodes (that is, by truncating the Dirichlet distribution). Thus, in

Kishino et al.’s method, information from the fossil record can be used to

inform the time prior throughout the phylogeny, but arbitrary fossil-based

calibration densities on node ages could not be used.

Bayesian methods to construct the prior on node ages by combining a speci-

ation process with arbitrary fossil-based distributions were developed later.

For example, Drummond et al. [5] introduced one such method, although no
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Figure 1. A misspecified birth – death prior with fossil calibrations. The inset
tree has point fossil calibrations on the ages of nodes 1 and 2: t1 ¼ 1 and
t2 ¼ 0:2 (white circles). The birth – death process with fossil calibrations is
used to construct the prior of t3 conditioned on the fossil ages. The correct
conditional prior is fBDðt3jt2 ¼ 0:2, t1 ¼ 1Þ ¼ 1=t1 (dashed-dotted line).
The misspecified conditional prior, f �BDðt3jt2 ¼ 0:2, t1 ¼ 1Þ, calculated
under the procedure of Yang & Rannala [2] is a piecewise uniform distri-
bution (solid line). The wiggly, dashed line shows the misspecified density
sampled by MCMC using the computer program MCMCTree, which implements
the misspecified prior. Because MCMCTree does not allow point calibrations, we
use t2 � Uð0:199, 0:201Þ and t1 � Uð0:999, 1:001Þ as an approximation
in the MCMC analysis. This example is analysed in §5, where full details
are given.
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mathematical details on how their prior is constructed were

initially given. Details of prior construction were given later

[6]: the prior density is constructed by simply multiplying

the speciation process density with the arbitrary probability

densities on nodes with fossil calibrations. This approach to

construct the prior seems undesirable as it ‘does not follow

the rules of probability calculus’ [6].

Yang & Rannala [2] laid out the correct approach to com-

bine a speciation process density with arbitrary probability

densities to construct the time prior. Let t1 be the age of the

root, and let t�1 ¼ ðt2, . . . , ts�1Þ be the ages of the remaining

s – 2 nodes in a phylogeny of s species. Write fBDðt�1jt1Þ for

the birth–death density of node ages conditioned on the

age of the root [2]. Let f ðt1Þ be a probability density (such

as the gamma) describing the age of the root. A joint prior

of divergence times can thus be constructed as

f ðt1, . . . , ts�1Þ ¼ fBDðt�1jt1Þ � f ðt1Þ:

Now suppose fossil calibration information is available

for a subset tc of the node ages (other than the root), while

t�c are the node ages without fossil calibrations, such that

t�1 ¼ ðtc, t�cÞ. Write f ðtcÞ for the joint probability density that

summarizes the fossil information about tc. A joint time

prior on all node ages that combines the birth–death process

density and the fossil-based densities can be constructed as

f ðt1, . . . , ts�1Þ ¼
fBDðt�c, tcjt1Þ

fBDðtcjt1Þ
� f ðtcÞ � f ðt1Þ

¼ fBDðt�cjtc, t1Þ � f ðtcÞ � f ðt1Þ:
ð1:1Þ

Thus, to calculate the time prior using fossil calibrations

and the birth–death process, one must calculate: (i)

fBDðt�c, tcjt1Þ, (ii) fBDðtcjt1Þ and (iii) f ðtcÞ � f ðt1Þ. Calculating

(i) and (iii) is straightforward; however, it turns out that cal-

culating (ii) is in general very hard. In fact, here I show that

the procedure proposed by Yang & Rannala to obtain (ii)

leads to a misspecified density. Thus, Yang & Rannala’s

resulting conditional density for node ages without calibra-

tions, fBDðt�cjtc, t1Þ, is also misspecified. The problem is

moderate, in the sense that the fossil calibration densities are

not affected, and estimated divergence times on the phylogeny

will be appropriately constrained by the fossil calibrations

specified by the user. However, the misspecified fBDðt�cjtc, t1Þ
density can look quite strange and sometimes can have mul-

tiple modes, and may thus lead to a multi-modal posterior

distribution for the ages of nodes without fossil calibrations.

Such misspecified densities may be biologically unrealistic.

An example of the misspecified prior is given in figure 1.

The prior of equation (1.1), using the misspecified den-

sities, has been implemented in the computer program

MCMCTree [7] for molecular clock dating of phylogenies.

The program is popular and has been used, for example, to

estimate node ages in phylogenies using genome-scale align-

ments (e.g. [8–10]). Given the popularity of MCMCTree, and

given the limitations of other methods (e.g. [3–5]), it is

important to obtain the correct prior density of divergence

times with fossil calibrations.

Thus, the purpose of this paper is to derive, from first

principles, the prior density of divergence times under the

birth–death process with fossil calibrations of equation

(1.1). Here, I show that calculation of the correct density in

small phylogenies is straightforward, and I give a general

form of the density for arbitrarily large phylogenies.
Unfortunately, the density involves a sum over the set of

possible labelled histories in the phylogeny (i.e. the possible

orderings of node ages given the rooted tree). This set can

be explosively large in phylogenies of many species, and

thus application of the general form of the density is imprac-

tical. Thus, I also sketch out a more efficient tree traversal

algorithm that can be used to calculate the density. A few

special cases where the MCMCTree program calculates the

density correctly are pointed out, and brief recommendations

to construct a reasonable prior in other cases are given.

The procedure of Yang & Rannala [2] is used to construct the

time prior in phylogenies of extant (or contemporaneous)

species. In some cases, data for extinct species may be available

(for example, molecular data for viruses sampled through time

[11] or morphological data for fossil species [12]), or data about

the temporal sampling frequency of fossils may also be available

(e.g. [13,14]). In such cases, it is not necessary to use fossil cali-

bration densities. The birth–death process conditioned on the

extant and extinct species can then be used to construct the

time prior [11,14]. Development of the time prior in the variety

of cases that may arise is an exciting and fast-paced area

of research. The focus of this paper is on the special case of

phylogenies of extant species with fossil calibration densities [2].
2. The birth – death process with species
sampling

The birth–death process with species sampling was intro-

duced by Yang & Rannala [15] for Bayesian estimation
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Figure 2. Two labelled histories for a four-species phylogeny. The labelled
histories are denoted p1 and p2, and they share the same the tree topology
t ¼ ((a,b),(c,d)). The empty circle indicates the youngest node in the phy-
logeny, which has age tð1Þ, while the small horizontal bar indicates the last
common ancestor of a and b, which has age ta,b.
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of phylogenies. Consider estimating the tree topology and

divergence times for s contemporaneous species. The ordered
divergence times are tð1Þ , tð2Þ , � � � , tðs�1Þ, where tðs�1Þ is

the age of the root. Under the birth–death process, the joint

(prior) distribution of a labelled history p (an ordering

of node ages for topology t) and a set of ordered times

conditioned on the age of the root and the s species is

fBDðp, tð1Þ, . . . , tðs�2Þjtðs�1Þ, sÞ¼PrðpÞ� fBDðtð1Þ, . . . , tðs�2Þjtðs�1ÞÞ,

¼ 1

NH
�ðs�2Þ!

Ys�2

i¼1

gðtðiÞjtðs�1ÞÞ,

ð2:1Þ

(eqn 5 in [15]), where gðtðiÞjtðs�1ÞÞ is the birth–death kernel den-

sity (eqn 4 in [2]), and NH ¼ s!ðs� 1Þ!=2s�1 is the total number

of labelled histories given s species. In the birth–death process,

all histories have the same probability of being sampled, and

thus PrðpÞ ¼ 1=NH.

For example, consider the case of four species. There

are NH ¼ 4!3!=23 ¼ 18 labelled histories, corresponding to

15 distinct rooted tree topologies. Figure 2 lists two of the his-

tories for one topology. Now consider the smallest time in the

phylogeny, tð1Þ, and the age of the last common ancestor of

species a and b, ta,b (we call ta,b a labelled time). In some

labelled histories, tð1Þ ¼ ta,b, but in general this is not the

case (figure 2). Clearly, Tð1Þ and Ta,b are different random

variables. Thus, in order to adapt the birth–death process

to estimation of divergence times on fixed topologies with

fossil calibrations, we need to derive the density of the

labelled times, so that we can apply fossil calibrations

on them.

For example, consider calculation of the distribution of

ta,b, given topology t (figure 2), fBDðta,bjtÞ. Half of the

time, we will sample history p1 (i.e. Prðp1jtÞ ¼ 1=2),

where ta,b , tc;d, and thus ta,b will have the density of an

order statistic of rank 1 (the minimum, [16]), and so

fBDðta,bjp1Þ ¼ 2 gðta,bÞ½1� Gðta,bÞ�, while the other half of the

time, we will sample p2 and thus ta,b will have the density of

the maximum, fBDðta,bjp2Þ ¼ 2 gðta,bÞGðta,bÞ. Thus, the density is

fBDðta,bjtÞ ¼ Prðp1jtÞfBDðta,bjp1Þ þ Prðp2jtÞfBDðta,bjp2Þ
¼ gðta,bÞ:

To obtain the joint density of ta,b and tc;d given t, note that

there are 2! ways to order the two times, but ‘only’ two of

those (the two labelled histories) are compatible with the

tree; this leads to

fBDðta,b, tc;djtÞ ¼
2!

2
� gðta,bÞgðtc;dÞ:
This observation can be generalized to any tree of s
species to obtain the joint density for the ages of the s – 2

internal nodes conditioned on the age of the root. One can

then use first principles of probability theory to derive the

marginal densities of the sets of nodes with fossil calibrations.

This is the topic of §3.
3. Birth – death prior of times with fossil
calibrations

Consider a phylogeny of s species, where the topology, t, of

the phylogeny is known. The s – 1 labelled divergence times

are t ¼ ðt1, . . . , ts�1Þ, where t1 is the age of the root. The joint

prior of t�1 ¼ ðt2, . . . , ts�1Þ conditioned on the age of the root

t1 and the tree topology t is

fBDðt�1jt1Þ ¼ K
Ys�1

i¼2

gðtijt1Þ � It, ð3:1Þ

where the indicator function It ¼ 0 if any node is older than

its parent, and It ¼ 1 if otherwise. Here K is the normalizing

constant

K ¼ 1Ð
T�1

Qs�1
i¼2 gðtijt1Þ � It dt�1

¼ ðs� 2Þ!
nH

, ð3:2Þ

where nH is the number of labelled histories given the

rooted tree. To derive K note that there are ðs� 2Þ! ways

to order the s – 2 internal node ages, but only nH of those

are compatible with the tree topology, thus resulting in

equation (3.2).

The joint time prior for all the node ages given the tree

topology is then

f ðtÞ ¼ fBDðt�1jt1Þf ðt1Þ,

where f ðt1Þ is the fossil-based calibration density of the root age.

Now suppose that, apart from the root, there is an

additional set of nodes, tc, with calibration information. The

set of nodes with no calibrations is t�c, so that t�1 ¼ ðt�c, tcÞ.
The calibrated nodes have joint calibration density f ðtcÞ:
The time prior is then defined as

f ðtÞ ¼ fBDðt�cjtc, t1Þ � f ðtcÞ � f ðt1Þ,

where

fBDðt�cjtc, t1Þ ¼
fBDðt�c, tcjt1Þ

fBDðtcjt1Þ
ð3:3Þ

and

fBDðtcjt1Þ ¼
ð

T�c

fBDðt�1jt1Þdt�c: ð3:4Þ

We can obtain a general expression for equation (3.4) by

using the theory of order statistics. Consider a particular

labelled history p given the rooted tree. Write tðiÞ for the

node age with rank i. For example, for history p ¼ ðt2 , t3Þ
in the tree of figure 1, the rank of t2 is unity (because t2 is

the youngest node), and so tð1Þ ¼ t2 and tð2Þ ¼ t3. The brackets

around the subscripts are used to emphasize that the vari-

ables are ordered. Let k be the number of nodes with fossil

calibrations, and let tðc1Þ , � � � , tðckÞ, be the ranked calibrated

times. The ordered node ages form a set of ordered statistics

given history p. Thus, the joint density of tc conditioned on

history p, is the joint density of the subset of order statistics,
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tðc1Þ, . . . , tðckÞ. This density is given (after suitably defining

tðc0Þ ¼ 0, tðckþ1Þ ¼ t1, c0 ¼ 0, ckþ1 ¼ s� 1) by

fBDðtcjt1, pÞ ¼
ð

T�c

fBDðt�1jt1, pÞdt�c

¼ ðs� 2Þ!�
Yk

j¼1

gðtðcjÞjt1Þ

�
Yk

j¼0

½Gðtðcjþ1Þjt1Þ � GðtðcjÞjt1Þ�c jþ1�cj�1

ðc jþ1 � cj � 1Þ!

( )
,

ð3:5Þ

([16], p. 12), where Gðtijt1Þ is the distribution function of

the birth–death kernel density, gðtijt1Þ. Now note that the

integration volume of equation (3.4) can be ‘sliced’ such

that each slice corresponds to a particular labelled history

p. Therefore, the integral of equation (3.4) can be expressed

as a sum of integrals over labelled histories, i.e. over the

slices (equation (3.5)). This gives

fBDðtcjt1Þ ¼
ð

T�c

fBDðt�1jt1Þdt�c

¼
X
p

ð
T�c

fBDðt�1jt1, pÞdt�c

¼
X
p

fBDðtcjt1, pÞ:

ð3:6Þ

Calculation of the conditional density fBDðtcjt1Þ by

using equation (3.6) is, in general, not very practical.

In trees of many species, the number of labelled histories

may be so explosively large that the sum may not be com-

puted. An algorithm to calculate equation (3.4) on a tree is

given in §6.

4. Misspecification of the time prior
in MCMCTree

As mentioned, the ordered times, TðiÞ, and the labelled

times, Tj, are different random variables, and so it would

be inappropriate to assume that they have the same prob-

ability distribution. Yet, this is what Yang & Rannala [2]

assumed when they adapted equation (2.1) to estimation

of divergence times on a fixed topology. They equated

the joint density of the set of labelled times (i.e. times that

refer to a specific common ancestor, such as ta,b) on a

fixed topology, with the joint density of ordered times on a

labelled history:

f�BDðt�1jt1, tÞ ¼ fBDðtð1Þ, . . . , tðs�2Þjtðs�1Þ, pÞ if p,

¼ ðs� 2Þ!
Ys�1

i¼2

gðtijt1Þ,
ð4:1Þ

thus the normalizing constant, K� ¼ ðs� 2Þ!, is incorrect

(eqn 9 in [2], cf. equation (3.1)). They then obtained a

misspecified marginal density for calibrated times by

integrating the density over the ordered times:

f�BDðtcjt1, tÞ ¼
ð

T�c

fBDðtð1Þ, . . . , tðs�2Þjtðs�1Þ, pÞdt�c if p,

¼ fBDðtcjt1, pÞ,
ð4:2Þ

(eqn 11 in [2], cf. equations (3.5) and (3.6)). The asterisk is

used to indicate that the densities are misspecified.
The misspecified prior is implemented in the computer

program MCMCTree [7], which performs Bayesian esti-

mation of divergence times on phylogenies by MCMC

sampling. Misspecification of the integration constant, K, is

unimportant, given that this constant cancels out during

MCMC sampling on fixed topologies. However, the use of

the misspecified conditional density is a more serious prob-

lem, as it can lead to strange time priors that do not reflect

the true density under the birth–death process. Note that

MCMCTree does not need to calculate fBDðtcjt1, pÞ for all

labelled histories p, it only does so for the particular labelled

history being proposed during MCMC sampling. Thus,

MCMCTree can perform much faster MCMC sampling

using the misspecified density of equation (4.2) than how it

would perform if it sampled the correct distribution

(equation (3.6)).

For some special cases, the misspecified (equations (4.1)

and (4.2)) and correct (equations (3.1) and (3.4)) densities

give the same result. Thus, for such cases, MCMCTree

(v. 4.8 at the time of writing) is guaranteed to calculate the

birth–death prior with fossil calibrations correctly. The

important cases are as follows:

(1) When there is a single calibration on the age of the

root, and the birth–death process is used to specify

the prior on all remaining nodes. In this case, only K
is miscalculated, but as mentioned, this is unimportant.

(2) For comb phylogenies, irrespective of the configuration

of the fossil calibrations. In a comb phylogeny, each

node has only one other internal node as its child (the

other child is a tip), and therefore there is a single labelled

history compatible with the tree. Thus, in this case,

equations (3.4) and (4.2) give the same result. K is also

calculated correctly.

(3) When all nodes have fossil calibrations, because in this

case the conditional density fBDðt�cjtc, t1Þ does not need

to be calculated.

In any other cases, the time prior needs to be examined

explicitly. In §5, a couple of examples of calculation of the

time prior under the correct and misspecified densities

are given.
5. Some examples
Consider the four-species phylogeny of figure 1. The age of the

root is t1 ¼ 1, and the age of node 2 is t2 ¼ 0:2. The age of node

3, t3, is unknown. We want to construct a prior density on t3

conditioned on t1 and t2 using the birth–death process:

(i) first we find fBDðt2, t3jt1Þ; (ii) then we find fBDðt2jt1Þ and

(iii) finally we find fBDðt3jt2, t1Þ ¼ fBDðt2, t3jt1Þ=fBDðt2jt1Þ.
The kernel density is gðtijt1Þ ¼ 1=t1 (a uniform distribution

between 0 and t1) with distribution function Gðtijt1Þ ¼ ti=t1.

This is the limiting case when the parameters of the birth–

death process are m ¼ l, r ¼ 0 [2]. Using equations (3.1) and

(3.4), we obtain

fBDðt2, t3jt1Þ ¼
1

t2
1

,

fBDðt2jt1Þ ¼
ðt1

0

1

t2
1

dt3 ¼
1

t1
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Figure 3. A misspecified, bimodal birth – death prior with fossil calibrations.
The inset tree has point fossil calibrations for nodes 1 – 5:
t1 ¼ 1, t2 ¼ 0:7, t3 ¼ 0:6, t4 ¼ 0:4, t5 ¼ 0:3 (white circles). The age
of node 6 is unknown. The conditional prior of t6 under the birth – death
process is fBDðt6jtc, t1Þ ¼ 1=t1 (not shown). The misspecified conditional
prior, f �BDðt6jtc, t1Þ (solid line), is a piecewise uniform distribution, where
each segment corresponds to one of the five labelled histories compatible
with the tree. The density has discontinuities located at the point fossil cali-
brations: 0.3, 0.4, 0.6 and 0.7. The misspecified normalizing constant is
K� ¼ ðs� 2Þ! ¼ 5! The correct constant is K ¼ ðs� 2Þ!=nH ¼ 5!=5.
Thus, the misspecified density integrates to 5 (i.e. K�=K ¼ 5). The misspe-
cified density is confirmed by MCMC sampling using MCMCTree (dashed line)
using uniform calibrations: ti � Uðc � 0:001, c þ 0:001Þ, where c is the
calibration age for node i.
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and fBDðt3jt2, t1Þ ¼

fBDðt2, t3jt1Þ
fBDðt2jt1Þ

¼ 1

t1
:

The same result can be obtained by noting that t2 and t3

are conditionally independent on t1 (i.e. two random

variables a and b are conditionally independent on c if

f ða, bjcÞ ¼ f ðajcÞf ðbjcÞ).
We now calculate the conditional density as currently

implemented in MCMCTree, that is, by using equation (4.2)

f�BDðt2jt1Þ ¼
fBDðt2jt1, t2 . t3Þ if t2 . t3,
fBDðt2jt1, t2 , t3Þ if t2 , t3:

�

Applying equation (3.5) to calculate fBDðt2jt1, pÞ gives

f�BDðt2jt1Þ¼
ðs�2Þ!gðt2jt1ÞGðt2jt1Þ¼

2t2

t2
1

if t2 . t3,

ðs�2Þ!gðt2jt1Þ½1�Gðt2jt1Þ�¼
2ðt1� t2Þ

t2
1

if t2 , t3:

0
BB@

The misspecified prior of t3 conditioned on t2 and t1 is

then given by

f�BDðt3jt2, t1Þ ¼

f�BDðt2, t3jt1Þ
fBDðt2jt1, t2 , t3Þ

¼ 1

t1 � t2
, if t2 , t3,

f�BDðt2, t3jt1Þ
fBDðt2jt1, t2 . t3Þ

¼ 1

t2
, if t3 , t2:

0
BB@

Using the fossil calibrations t1 ¼ 1 and t2 ¼ 0:2, we obtain

f�BDðt3jt2, t1Þ ¼

fBDðt3jt2 ¼ 0:2, t1 ¼ 1, t2 , t3Þ ¼
1

ð1� 0:2Þ
¼ 1:25 if 0:2 , t3 , 1,

fBDðt3jt2 ¼ 0:2, t1 ¼ 1, t2 . t3Þ ¼
1

0:2
¼ 5 if 0 , t3 , 0:2:

0
BBBBBB@

Note the density above is not a probability density as it

does not integrate to unity:
Ð t1

0 fBDðt3jt2, t1Þ dt3 ¼ 2 (this is

because K� ¼ 2 is twice what it should be). Figure 1 shows

the misspecified density 1=2f�BDðt3jt2, t1Þ and the correct

density fBDðt3jt2, t1Þ. The shape of the misspecified density

is confirmed numerically by MCMC sampling with

MCMCTree. The shape of the misspecified density is not

reasonable. Inadvertently, the user has specified an informa-

tive prior on t3, with half of the prior probability mass on the

narrow 0–0.2 interval, while a diffuse prior over the 0–1

interval was required.

Figure 3 shows an example where the resulting misspeci-

fied conditional prior is bimodal. Nodes 1–5 in the tree have

point calibrations, while the age of node 6 is unknown. Using

the uniform kernel density, it is easy to see that the correct

density of t6 conditioned on the calibrated times is simply

1=t1. However, under the procedure of equation (4.2), the

conditional density must be calculated over each one of

the five labelled histories on the tree. The resulting misspeci-

fied density is thus a piecewise uniform distribution, with

each segment of the distribution representing one labelled

history, and with the resulting distribution having two

modes (figure 3). Multi-modal time priors like this may not

be biologically realistic.
6. Integrating over histories: calculating the joint
density of tc

In small phylogenies (as in the four-species case), the mar-

ginal density fBDðtcjt1Þ can be obtained by solving the

integral of equation (3.4) directly. For large phylogenies, the

integral may be too cumbersome. Equation (3.6) offers an

alternative, by partitioning the integral as a sum over

the labelled histories, with each integral having a known

form (the joint density of a subset of order statistics,

equation (3.5)). However, for large phylogenies, the number

of labelled histories may be too large to make computation

of this sum practical. Here, I discuss a post-order tree traver-

sal algorithm to calculate the integral that may provide a

way forward.

Before laying out the algorithm, it is useful to note the fol-

lowing. Consider the two daughter nodes of the root. These

nodes are the last ancestors of two subtrees, which we call

the left and right subtrees. For example, in the tree of

figure 4, species a– f form the left subtree, while species g– j
form the right subtree. The times on each subtree are

conditionally independent on t1, and thus the joint density

of equation (3.1) can be written as

fBDðt�1jt1Þ ¼
ðsR � 1Þ!

nR

Y
gðtijt1Þ �

ðsL � 1Þ!
nL

Y
gðtjjt1Þ � It,

where sR and sL are the number of species on the right and

left subtrees, respectively (s ¼ sR þ sL), nR and nL are the

number of labelled histories on the right and left subtrees,
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Figure 4. A 10-species tree with fossil calibrations. Nodes 1, 3 and 6 have
fossil calibrations (white circles).
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and the products are over the node ages on the right subtree

(the ti’s), and over the left subtree (the tjs). For example,

for the tree of figure 4, sL ¼ 6, sR ¼ 4, nL ¼ 8 and nR ¼ 1.

Conditional independence simplifies calculation of the inte-

gral of equation (3.4) as the non-calibrated node times in

one subtree can be integrated out independently of the

other subtree.

Now we can use a post-order algorithm to traverse the

nodes of the 10-species phylogeny of figure 4 to integrate

out the node ages without calibrations. If we start by visiting

nodes on the left, then the first node age to be integrated out

is t9. The partial integral isðt7

0

gðt9jt1Þdt9 ¼ Gðt7jt1Þ:

The limits of integration are zero and t7 because

0 , t9 , t7. We next visit node 8, and integrate t8 out, givingðt7

0

gðt8jt1Þdt8 ¼ Gðt7jt1Þ:

The algorithm now returns to node 7, and we integrate t7

outðt5

0

gðt7jt1ÞG2ðt7jt1Þdt7 ¼
G3ðt5jt1Þ

3
:

The G2ðt7jt1Þ term inside the integral is the result of inte-

grating the two daughter node ages, t9 and t8, in the previous

steps. This integral is solved by recalling that gðxÞ ¼ G0ðxÞ.
The algorithm now returns to node 5. The age of node 6 is

not integrated out as it has a fossil calibration. Because

node 6 has no daughter nodes, we integrate t5 directlyðt1

t6

1

3
gðt5ÞG3ðt5jt1Þdt5 ¼

½G4ðt1jt1Þ � G4ðt6jt1Þ�
12

:

Thus, because the left subtree is independent of the right sub-

tree, and noting that Gðt1jt1Þ ¼ 1, we obtain the marginal

density of t6 (one of the calibrated times) as

fBDðt6jt1Þ ¼
ðsL � 1Þ!

nL
� 1

12
½1� G4ðt6jt1Þ� � gðt6jt1Þ,

¼ 1:25 gðt6jt1Þ½1� G4ðt6jt1Þ�:

Now integrating out the non-calibrated node ages (t2 and

t4) on the right subtree, we obtain the marginal density of t3

(the other calibrated time) as

fBDðt3jt1Þ ¼ 6Gðt3jt1Þgðt3jt1Þ½1� Gðt3jt1Þ�:
For example, if we set t1 ¼ 1, gðtjt1Þ ¼ 1=t1, and

Gðtjt1Þ ¼ t=t1, we obtain

fBDðt3jt1Þ ¼ 6t3ð1� t3Þ, ð6:1Þ

FBDðt3jt1Þ ¼ 6
t2
3

2
� t3

3

3

� �
, ð6:2Þ

fBDðt6jt1Þ ¼ 1:25ð1� t4
6Þ ð6:3Þ

and FBDðt6jt1Þ ¼ 1:25 t6 �
t5
6

5

� �
, ð6:4Þ

where FBD are the appropriate cumulative distribution

functions.

Figure 5 shows the marginal densities and distribution

functions of equations (6.1)–(6.4). To confirm the accuracy

of the analytical calculations, we use MCMCTree to obtain

samples from the joint distribution fBDðt�1jt1Þ (note this

density is correctly calculated by MCMCTree). The sampled

values of t6 and t3 can be summarized to obtain their

distributions (histograms), or their sampled cumulative dis-

tributions. The sampled and analytical functions match

almost perfectly (figure 5).
7. Discussion
The tree traversing algorithm laid out in §6 can be

implemented in a computer program by performing symbolic

integration of the corresponding densities at the nodes of

the tree. The symbolic solution to the integral can then be

evaluated to perform MCMC sampling. My initial analysis

suggests that all the possible integrals that can be generated

have analytic solutions. However, the task of writing computer

code to perform the symbolic integration may not be trivial. It

may be worth exploring in detail the special case of the uniform

kernel density, 1=t1. A relatively simple general solution to the

form of fBDðt�cjtc, t1Þ could perhaps be obtained under this

kernel. Alternatively, equation (3.6), which has a known

form, could be implemented in the program, but this would

make MCMC feasible only for small trees, or for certain special

types of large trees with few labelled histories. In the mean-

time, the biologist interested in using MCMTree for Bayesian

molecular clock dating must deal with the misspecified den-

sities, unless the analysis can be performed under one of the

three special cases laid out above.

The misspecification of the birth–death process in

MCMCTree only affects the prior density of times without

fossil calibrations; thus, the fossil calibration densities them-

selves are not affected. This means that in an analysis carried

out using the misspecified density, the node ages will be ade-

quately constrained by the fossil calibrations constructed by

the user (however, note that truncation effects among fossil

calibrations may affect the actual prior used, but this is entirely

another issue [17]). Users of MCMCTree are advised to obtain

MCMC samples from the prior (i.e. by running the program

without sequence data), so that the prior can be examined.

In most cases, the misspecified prior will be quite reasonable.

Multi-modal or other bizarre looking priors may be obtained

with MCMCTree especially if several very precise calibrations

are present throughout the tree. If the user considers the result-

ing priors to be biologically unrealistic, then several attempts

at tweaking the calibrations and recalculating the prior by

MCMC may provide a way forward. This advice should also

be followed when estimating divergence times using any of

the plethora of computer programs now available for Bayesian
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Figure 5. Marginal densities and distribution functions of two calibrated nodes in the 10-species phylogeny of figure 4. The marginal densities fBDðt3jt1Þ in (a), and
fBDðt6jt1Þ in (b) are shown as solid lines. The corresponding sampled densities obtained with MCMCTree are shown as histograms. The cumulative distribution
functions FBDðt3jt1Þ in (a’), and FBDðt6jt1Þ in (b’) are shown as thick dashed lines. The sampled cumulative distributions obtained with MCMCTree are shown
as solid lines (they overlap almost perfectly the analytical solutions). The analytic forms of the marginal densities and distribution functions are calculated according
to equations (6.1) – (6.4).
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clock dating (e.g. [18–21]): each program has its own

idiosyncratic way of dealing with fossil calibrations, and

unfortunately, it is not always possible to predict what the

resulting priors will be.
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