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Bayesian inference of species divergence times is an unusual statistical pro-

blem, because the divergence time parameters are not identifiable unless

both fossil calibrations and sequence data are available. Commonly used

marginal priors on divergence times derived from fossil calibrations may

conflict with node order on the phylogenetic tree causing a change in the

prior on divergence times for a particular topology. Care should be taken

to avoid confusing this effect with changes due to informative sequence

data. This effect is illustrated with examples. A topology-consistent prior

that preserves the marginal priors is defined and examples are constructed.

Conflicts between fossil calibrations and relative branch lengths (based on

sequence data) can cause estimates of divergence times that are grossly

incorrect, yet have a narrow posterior distribution. An example of this

effect is given; it is recommended that overly narrow posterior distributions

of divergence times should be carefully scrutinized.

This article is part of the themed issue ‘Dating species divergences using

rocks and clocks’.
1. Introduction
Integrated Bayesian divergence time estimation combines information about the

absolute ages of direct ancestors (or ancestors on side-branches), inferred from

the palaeontological dating of fossils, with information about the relative ages

of direct ancestors—inferred from patterns of substitution among molecular

sequences of extant species [1]. The fossil and molecular data are co-dependent,

because some ancestors in a phylogeny are not found in the fossil record (and

therefore cannot be dated directly) and because the relative ages of the direct

ancestors of extant species inferred from sequence data cannot be translated

into estimates of absolute ages without information (usually from fossil calibra-

tions) about the substitution rates per unit time on each lineage, only the

product of rate and time is identifiable [2]. By combining the two sources of infor-

mation, precise estimates of absolute ages can potentially be obtained for all

nodes in a phylogenetic tree; this may not be possible using either fossils or

sequences alone. Integrating molecular and palaeontological data in a combined

Bayesian analysis is a highly challenging statistical problem.

There are multiple layers of complexity to the divergence time inference pro-

blem. To study the core problem, I will focus on the relationship between two

sets of variables that in reality are never directly observed: (i) the rooted phylo-

genetic tree of species (with branch lengths measured in units of expected

substitutions) and (ii) the set of fossil calibrations for direct ancestors of the

sampled species (assumed to have a specified age distribution). In practice,

these are unobserved variables that are either integrated over in a Bayesian

analysis or indirectly inferred, and the level of information about the variables

is highly dataset dependent. A ‘strict’ molecular clock and an infinite number of

sites are needed to exactly determine relative branch lengths. In reality, the

sequence data are finite, although the relative information content may some-

times approach that of ‘infinite data’ [2] and the molecular clock, needed to

infer relative branch lengths, is generally imperfect—especially for more
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distantly related species. ‘Relaxed clock’ models are often

used to infer relative branch lengths, introducing additional

uncertainty (reviewed in [3]).

The placement of fossils on ancestral lineages must also

be inferred based on very limited morphological information

and errors in assigning fossils to ancestral lineages can have

catastrophic effects on inferences [2]. Recently developed

‘tip-dating’ methods (often referred to as total-evidence

dating) attempt to model morphological evolution and infer

fossil placements as part of the inference process [4,5]. How-

ever, morphological evolution can be difficult to model [6]

and the information content of morphological characters is

often hard to judge. Finally, fossil ages are prone to uncer-

tainties that may be difficult to capture in a parametric

prior distribution (reviewed in [7]).

Perhaps surprisingly, even in the idealized situation out-

lined above, where the species tree, fossil lineage assignments

and calibration priors are treated as known, the problem of

divergence time estimation is complex. In this paper,

I focus on the problem of how to specify a prior for diver-

gence times (based on the calibration data and the species

tree) that will lead to reasonable posterior inferences. I

begin by discussing the effect of the node ordering in a tree

topology on the divergence time prior. I consider particular

cases in which conflicts of marginal calibrations and node

ranks may (perhaps inadvertently) lead to a reduction of

the prior variances of divergence times (a more informative

prior). Next, I consider the effect of combining a species

tree, with fixed relative branch lengths, with a fossil-cali-

bration prior. Here, I step out of the ‘ideal world’ to

examine the effect of a misplaced calibration on the posterior

density of divergence times. Such conflicts can be difficult to

identify and are not always reflected by increased variance in

the posterior as would be the case in a more normal Bayesian

inference scenario. This is the so-called ‘infinite sites’ case, in

which sequence data are maximally informative about the

products of branch lengths and rates, fixing the relative

lengths of branches on the species tree. The effect of conflicts

between fossil calibrations and sequence data can in this case

lead to extreme outcomes in terms of both bias of point esti-

mates and underestimation of the posterior uncertainty of

parameter estimates.
2. The target of inference
It is illuminating to begin by considering the nature of differences

in the information available from molecular sequences versus

fossils and the targets of inference for each. Two limitations of

the molecular data are: (i) it only allows us to date speciation

events that gave rise to species that are currently extant and (ii)

it only allows relative ages of divergence events to be inferred

unless the substitution rate is known from other sources. The

combination of morphology and absolute fossil ages via calibra-

tions, on the other hand, in principle allows absolute ages to be

inferred for speciation events that give rise to both extant and

extinct species. However, to do so, morphological data must

allow us to accurately infer both the species tree topology (includ-

ing the placement of fossils that are direct ancestors) and the

absolute ages of speciation events for which no fossils have

been sampled. This would require both clock-like rates of mor-

phological evolution and an adequate model of morphological

change to allow the species tree to be accurately inferred. By
combining disparate sources of information (fossil ages, mor-

phology and sequences), and assuming that morphological

evolution can be adequately modelled, it is possible (in principle)

to estimate everything. Such ‘total-evidence’ methods are only

now being developed (e.g. [5]) and it is not yet clear how well

they will work. Alternative approaches model both the fossiliza-

tion process and cladogenesis, using morphology only indirectly

[8,9]. For example, Heath et al. [9] place a weaker constraint on

fossils—that they descend from a particular node—but allow

them to attach as either direct ancestors, or extinct side-branches,

to any lineages descended from the node. This method appears

promising based on the authors’ simulations, although the

effect of an incorrect assignment of a fossil to a crown group

needs to be further explored, as does the amount of information

actually available to infer divergence times in such a weakly

constrained model.

One difference between existing methods for divergence

time estimation is the treatment of species tree topology.

One class of methods [2,10,11] assumes that the topology is

fixed and focuses on estimating divergence times for a specific

topology. A second class of methods treats the species tree top-

ology as uncertain and focuses on jointly estimating both the

topology and the divergence times [12]. The above dichotomy

is similar to the general statistical problem of whether one

should ‘model average’ to obtain parameter estimates because

a tree topology appears more like a statistical model than a

parameter [13]. Model averaging is appropriate if a parameter

has the same statistical interpretation under different models.

In this context, different topologies can be viewed as different

statistical models with different sets of partially overlapping

divergence time parameters. In some cases, the meaning of

the divergence times may be very different under different

topologies, suggesting model averaging may not be appropri-

ate. Divergence time estimation is clearly sensible within the

context of a particular fully specified species tree topology.

Thus, this paper focuses exclusively on the problem of estimat-

ing divergence times when the species tree topology is fixed.
3. The priors
The prior on divergence times encapsulates information from

dated fossils and a model of cladogenesis applied to diver-

gence events for which no fossil-based age distributions are

available. As indicated earlier, I will assume here that the top-

ology of the species tree is fixed and only the ages of

divergence events in the tree are unknown. I will also

assume that the fossils are direct ancestors that can be

assigned to lineages [2,10]. Newer methods [4,5,8,9] allow

fossils to be on ‘side-branches’ which makes the problem

more complex but potentially avoids the conflicts between

tree topology and calibration priors as outlined below.

(a) Effect of ordered tree nodes
The tree topology imposes a rank order on the fossil ages.

Any nodes that are direct ancestors (or descendents)

in the tree have an order relative to one another. In a com-

pletely asymmetrical tree with s tips, for example (figure 1),

the s – 1 divergence times are rank ordered t ¼ ft1, t2, . . . ,

ts�2, ts�1g, such that tj . ti if j . i. If the topology is not

altered, this rank order must be preserved when prior prob-

ability distributions are applied for variables in t. If the

prior on t is not applied jointly (with the ordering
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Figure 1. Fully asymmetrical phylogenetic tree of six species. ti denotes
species divergence time i.

123

t1

t2

Figure 2. Phylogenetic tree of three species. ti denotes species divergence
time i.
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determined) then the prior will be altered once the constraints

are introduced via the tree topology. In the mcmctree pro-

gram [2,11], for example, the prior combining fossil

calibrations and tree node ages is

fTðtÞ ¼ fTðtC�jtCÞfCðtCÞ, ð3:1Þ

where tC # t is the set of divergence times for nodes with

fossil-calibration-based priors and tC� , t is the set of diver-

gence times for nodes without calibrations. The density fC(:)

is the prior for calibration nodes (see equation (3.2)). The den-

sity fT(:jtC) specifies the joint distribution of nodes without
calibrations given a set of calibrated nodes. If tC� ¼ ;, then

tC ¼ t and the only effect of the prior is to constrain the

rank order of the nodes (see below).

What is perhaps not obvious from this formulation is that

fT(:) both maps the calibration variables to nodes on the tree T
and imposes a rank order among them. Thus, even if all nodes

have calibrations, the density fT(t) = fC(t) except in the par-

ticular case of a topology-consistent prior on node calibrations

(see below). In some cases, there may be a negligible difference

between the two densities, however, because the calibrations

are in general agreement with the rank ordering of nodes in

the tree. Conflicts of fossil dates with tree-based node order-

ings cause differences between the marginal calibration prior

specified by the program user and the joint prior actually

used by the program. This can cause a user to misunderstand

the effect of the data versus the prior on inferences. Because

the realized prior is different from the prior originally speci-

fied by the user, this observed change could be erroneously

interpreted as due to the influence of the data.

The formulation of equation (2.1) was applied by Yang &

Rannala [2] using a birth–death process prior to obtain the

density of divergence times by conditioning on the ages of

nodes for which fossil calibrations are available. Namely,

one can derive a conditioned birth–death prior for which

particular node times are fixed variables. The remaining

uncalibrated nodes are determined by a birth–death process

conditioned on the ages of the fixed nodes. Drummond et al.
[12] also used a birth–death prior but did not condition

on the fossil calibrations; this is technically incorrect as it

effectively applies two priors to nodes with calibrations [11].

In existing programs, such as mcmctree [2,11] and

BEAST [14] that implement flexible calibration priors, the

constraints on the ordering of the divergence times are

implicitly imposed by the MCMC program. These con-

straints can be represented explicitly by the use of an

indicator function

fTðtÞ ¼
fTðtÞIRðtÞÐ

fTðtÞIRðtÞdt
,

where IR(t) ¼ 1 if the set t satisfies the order constraints of

the topology and 0 otherwise. We assume here that a

region of state space A exists such that IR(t*) ¼ 1 for any

t� [ A ensuring that the ratio is well defined. In most exist-

ing programs, the calibration priors are specified marginally

and treated as independent. Thus, if fi(ti) is the prior density

of the divergence time for calibrated node i, the joint density

of the k calibrated nodes is

fCðtCÞ ¼
Y

fi:ti[tCg
fiðtiÞ ð3:2Þ

The ‘soft-tailed’ marginal densities (such as the g distri-

bution) considered by Yang & Rannala [2] have positive

density on (0, 1) and thus assign positive probability density

to combinations of variables that are incompatible with the

rank order imposed by topology. The total probability of

these incompatible outcomes is

D ¼
ð

fCðtÞ½1� IRðtÞ�dt:

If D is small, then there is little difference between the cali-

bration priors and the priors realized on the particular tree

topology. If D is large, this indicates a conflict between

fossil-calibration priors and the node ordering implied by

the topology.

Example 3.1. Overlapping uniform divergence times.

Consider the phylogeny of three species shown in figure 2.

The nodes are rank ordered so that t1 , t2. Now, suppose

that both divergence times have a uniform prior density

f ðtiÞ ¼
1

b� a
if ti [ ða, bÞ,

0 otherwise:

8<
:

The expectation and variance are

EðtiÞ ¼
aþ b

2
and VðtiÞ ¼

ðb� aÞ2

12
:

The probability associated with topology-incompatible

outcomes (i.e. t1 � t2) is

D ¼
ðb

a

ðb

t1

1

ðb� aÞ2
dt1dt2 ¼

1

2
:

Thus, half the probability associated with the original priors

has been eliminated by the rank order constraint.

The original state space is a square region in two dimen-

sions and the constrained state space is a right triangle. It is

interesting to consider the marginal distributions in this

case. The expected values are

Eðt1Þ ¼
ðb

a

ðt2

a
t1

2

ðb� aÞ2
dt1dt2 ¼

2aþ b
3

,
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Eðt2Þ ¼
ðb

a

ðt2

a
t1

2

ðb� aÞ2
dt1dt2 ¼

aþ 2b
3

,

and the variances are

Vðt1Þ ¼ Vðt2Þ ¼
ðb� aÞ2

18
:

Thus, the rank order constrain has caused the mean diver-

gence time to increase for t2 and decrease for t1. Moreover,

the variance is decreased for both variables.

(b) Topology-consistent priors
The condition fT(t) ¼ fC(t) can be achieved if the fossil-

calibration prior itself imposes an appropriate rank order

on nodes. In that case, IRðtÞ ¼ 1 is always insured. A general

definition of a topology-consistent prior is thus any prior

density on divergence times for which D ¼ 0.

Example 3.2. Non-overlapping uniform divergence times.

Consider again the three species tree of figure 2. Suppose

the prior densities on divergence times t1 and t2 are uniform

on non-overlapping intervals a1 , Rþ and a2 , Rþ satisfy-

ing a1 > a2¼ ;, where Rþ denotes the positive real number

line. The prior probability densities

f1ðt1Þ ¼
1

b1 � a1
for all t1 [ a1 ¼ ða1, b1Þ

and

f2ðt1Þ ¼
1

b2 � a2
for all t2 [ a2 ¼ ða2, b2Þ,

with b2 . b1 have D ¼ 0 and are topology consistent. This

is possible because the uniform distribution has positive

density for only a subset of R.

Theorem 3.3. A joint density for a set of rank-ordered nodes
constructed as an n-tuple of independent random variables, each
with non-zero density on Rþ is not topology consistent.

By definition, a topology-consistent prior on the

rank-ordered node ages t must satisfy

D ¼
ð

f ðtÞ½1� IRðtÞ�dt ¼ 0:

Suppose that we construct a prior as an n-tuple of indepen-

dent continuous random variables where fi(ti) is the density

of variable ti with fi(ti) . 0 for all ti [ Rþ: The joint density

is

f ðtÞ ¼
Yn

i¼1

fiðtiÞ for all t [ Rn,

which is strictly positive on Rn. By the definition of rank-

ordered variables, a set of values t� [ Rn always exists

that violate the inequalities such that [1� IR(t�)] . 0: Thus,

both f (t�) . 0 and ½1� IR(t�)� . 0 hold over some region,

so that D . 0. The prior is therefore not topology consistent

according to the definition.

Example 3.4. Partially overlapping exponential divergence

times. To illustrate theorem 3.3 with a simple example,
consider again the three species tree of figure 2. Suppose

the priors’ densities on divergence times t1 and t2 are

exponential with densities

f1ðt1Þ ¼ ae�at1 and f1ðt2Þ ¼ be�bt2 ,

where t2 . t1. The region of conflict has density

D ¼
ð1

0

ð1

t2

ae�at1 be�bt2 dt1dt2 ¼
b

aþ b
. 0:

Clearly, any choice of parametrizations for the exponential

priors will give positive density to regions that conflict with

the node rank orders and so no topology-consistent prior

exists that can be constructed from duplets of independent

exponential densities. The expected values of the variables

under the constraint t2 . t1 are

Eðt1Þ ¼
ð1

0

ðt2

0

t1
aþ b

a

� �
abe�ðat1þbt2Þdt1dt2 ¼

1

aþ b

and

Eðt2Þ ¼
ð1

0

ðt2

0

t2
aþ b

a

� �
abe�ðat1þbt2Þdt1 dt2 ¼

1

b
þ 1

aþ b
:

Note that limb!0 E(t1) ¼ 1=a and lima!1 E(t2) ¼ 1=b, so with

a large prior mean for t2 or a small prior mean for t1 the mar-

ginals are little altered by the rank constraints as expected.

Example 3.5. Prior constructed as a convolution. Although

topology-consistent priors cannot be constructed as n-tuples

of independent random variables, it is always possible to con-

struct a topology-consistent prior using other functional

operations on independent random variables. A simple

example is the joint density obtained as a convolution of

independent random variables.

Consider the particular example of a topology-consistent

convolution prior for the fully asymmetrical tree of figure 1.

The basic idea is to model the time intervals between diver-

gence events in the tree as random variables rather than the

absolute ages of the divergences. For example, if we measure

time going backwards into the past and define y1 to be the

time at which the most recent speciation event occurred, y2

to be the time elapsed between the first and second speciation

event, and so on, the age of the ith speciation event is

ti ¼
Pi

j¼1 yj: Clearly, tj , ti if j . i since waiting times

between speciation events are assumed to be positive.

Any probability density on Rþ could be applied to yi so the

procedure generates a family of distributions. As a simple

example, one could choose the yi to be independent and identi-

cally distributed with density f(yi). More generally, one could

assume independence but have a density function that varies

according to the node rank. This is a rather awkward prior as it

imposes a requirement that the prior variance of calibration-

based divergence times is a strictly increasing function of the

node rank. This may not fit the biological reality of the calibration

data. A second requirement, that the ages of ranked nodes are

strictly increasing, is desirable, given the node constraints, and

insures that the prior is topology consistent.

More effort should be directed toward deriving flexi-

ble joint prior distributions for node ages that are topology

consistent, allowing phylogeneticists to propose prior distri-

butions that do not conflict with relative age constraints
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imposed by the tree topology. In lieu of this, it is important to

examine the form of the realized joint prior in an analysis by

running the MCMC program with a fixed likelihood to esti-

mate the prior. In general, topology constraints that are not

imposed by the user-specified prior will reduce the variance

of the realized prior and this can confound the influence of

data versus the prior.
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4. The combined information
In a ‘typical’ Bayesian analysis a parameter u is identifiable in

the sense that the likelihood of the observed data, X, is

uniquely determined by the parameter,

f ðXju1Þ= f ðXju2Þ if u1 = u2,

and therefore,

f ðujXÞ/ f ðXjuÞf ðuÞ

is eventually dominated by the likelihood, which depends on

the data rather than the prior on u. The posterior density of u

becomes a degenerate point mass with increasing data when

u is identifiable. In the case of a non-identifiable parameter, u,

the posterior density of u no longer converges to a point

mass, even when the amount of data tends to infinity, and

will instead become a density on a line, plane, etc., in hyper-

space. The form of the asymptotic density is completely

determined by the prior.

The divergence age estimation problem is not typical of most

Bayesian inference problems because the ‘prior’ on ages (based

on fossil data) is more akin to a likelihood function than a

prior. The complete likelihood can be partitioned into two com-

ponents: the first is the likelihood of the sequence data, D, which

we denote as f(Djt,r), given the fixed topology, divergence ages,

t, and per-site substitution rate r; the second is the likelihood of

the fossil ages, C, given their lineage assignments and the ages

of the divergence events of those lineages f(CjtC). The second

likelihood component comes into the analysis in a posterior form

f ðtCjCÞ/ f ðCjtCÞf ðtCÞ:

The above density includes the uncertainties of fossil age esti-

mates as well as the intuitions of the palaeontologist about

sampling effort, preservation rates, lineage assignments, etc.,

that are either formally, or informally, translated into the

posterior on tC. This posterior is then incorporated into a prior

on t. A peculiarity is that the first likelihood component (based

on D alone) does not allow t to be inferred when the

substitution rate r is unknown—the parameter is not identifiable.
The likelihood of the sequence data, D, depends on the

product of divergence time and substitution rate and is,

therefore, not identifiable because an uncountably infinite

number of combinations of divergence times and substitution

rates can be chosen that yield the same branch length (in

units of expected substitutions) and therefore the same likeli-

hood [15]. The implication is that without fossil calibrations

the absolute times will be entirely determined by the prior

on substitution rates and only the relative divergence times

are influenced by the data. By adding fossil ages, the model

becomes identifiable and the likelihoods will dominate infer-

ences as we add both more sequence data and more precise

fossil calibrations. The posterior can be formulated as

f ðtjD, CÞ/
ð

f ðDjt, rÞf ðCjtCÞf ðt�CjtCÞf ðtCÞf ðrÞ dr:
Yang & Rannala [2,11] considered the infinite sites limit

lim
D!1

f (tjD, C),

in which the branch lengths in units of expected substitutions

become essentially fixed at their true values. These are

referred to as the distances, d ¼ fdig, where di is the expected

number of substitutions per site on the path leading to any

extant species descending from node i. Yang & Rannala [2]

showed that this distribution is one-dimensional (determin-

ing the posterior density of the rate, r). One implication of

this result is that an error in any fossil placement will affect

all estimated divergence times. Another implication is that

estimated divergence times remain uncertain even with infi-

nite sequence data—this makes sense in the light of the

non-identifiability of absolute ages of divergence events

given the sequence likelihood.

(a) An example with three species
Yang & Rannala [2] derived the general form of the posterior

density of t for an infinite sequence length and a strict molecu-

lar clock. Here, I apply this result to a simple example with

three species (figure 2). There are two divergence event ages

in the tree t ¼ ft1, t2g and we assume that both have fossil

calibration priors. Let the prior on the substitution rate be

g(r) and the prior on ages be f(t1, t2). Using the relationship

di ¼ rti and applying a transformation of variables,

f ðt1jd1, d2Þ/ g
d1

t1

� �
� f t1,

d2

d1
t1

� �
� 1

d1
:

Let the prior on r be an exponential density with mean 1/l,

gðrÞ ¼ le�lr,

and let the prior on ti be

f ðtiÞ ¼
1

s
ffiffiffiffiffiffi
2p
p e�ððti�miÞ

2=2s2Þ,

with the joint prior on t being a product of the marginal

priors. Now, consider the specific case where 1/l ¼ 1029,

m1 ¼ 1 � 107, m2 ¼ 2 � 107 and s ¼ 1 � 104. If the true ages

are t1 ¼ m1 and t2 ¼ m2, and the mean of the rate prior is

equal to the true substitution rate, r ¼ 1029, then the posterior

of t1 is as shown in figure 3. If the calibration prior for t1 is

instead grossly incorrect with true t1 ¼ 1.5 � 1027 the result-

ing posterior is shown in figure 3. In this case, the incorrect

calibration prior leads to a posterior that is apparently very

precise but grossly incorrect.
5. Concluding remarks
The species divergence time inference problem has unusual

statistical properties owing to the fact that the two distinct

sources of data (sequence and fossil calibrations) will only

lead to an identifiable model when used in combination. Cor-

rect assignment of fossils to ancestral lineages appears

critical. Incorrect fossil assignments can result in posterior

densities that are highly inaccurate, yet appear very precise.

The specification of the prior on calibrations should also

be done with care as the combination of marginal fossil

calibrations with rank order constraints of phylogenetic

trees can cause a change in the prior that may reduce the

apparent uncertainty of divergence time estimates. This can

be checked by running an MCMC program using a fixed
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likelihood. Given the complexity of this problem, even

in the simplest scenarios, caution should be used when
interpreting the results of empirical analyses, and overly

narrow credible intervals for divergence times should

be scrutinized for evidence of fossil conflicts and possible

lineage mis-assignments of fossils.

Heled & Drummond [16] considered the more difficult

problem of finding a joint prior for both topology and diver-

gence times that preserves the marginal distributions of all

calibration priors. They were able to formulate a solution

for the case of a single calibration. In the case of a fixed top-

ology, their requirement is equivalent to what is referred to as

a topology-consistent prior in this paper. Theorem 3.3 there-

fore shows that for multiple calibrations, each with density on

the real line, the objective of preserving marginals for calibra-

tions is impossible to attain.
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