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Most molecular phylogenetic studies place all placental mammals into four

superordinal groups, Laurasiatheria (e.g. dogs, bats, whales), Euarchonto-

glires (e.g. humans, rodents, colugos), Xenarthra (e.g. armadillos, anteaters)

and Afrotheria (e.g. elephants, sea cows, tenrecs), and estimate that these

clades last shared a common ancestor 90–110 million years ago. This phylo-

geny has provided a framework for numerous functional and comparative

studies. Despite the high level of congruence among most molecular studies,

questions still remain regarding the position and divergence time of the root

of placental mammals, and certain ‘hard nodes’ such as the Laurasiatheria

polytomy and Paenungulata that seem impossible to resolve. Here, we explore

recent consensus and conflict among mammalian phylogenetic studies and

explore the reasons for the remaining conflicts. The question of whether the

mammal tree of life is or can be ever resolved is also addressed.

This article is part of the themed issue ‘Dating species divergences using

rocks and clocks’.
1. Introduction
Of all classes of animals, humans are most concerned with and fascinated by class

Mammalia, of which we are members. Class Mammalia contains warm-blooded

animals that have hair or fur, produce milk and typically give birth to live young

[1]. As of 2005, there are approximately 5400 living mammalian species that inha-

bit every biome on earth, range in size from the 2 g bumblebee bat to the 170

tonne blue whale, and exhibit unprecedented phenomic diversity and ecological

adaptations [1]. Class Mammalia is divided into two subclasses: Prototheria,

which contains the egg-laying monotremes (platypus and echidna), and

Theria, which contains the placental and marsupial clades [2]. The mammalian

fossil record extends deep into the Triassic (approx. 220 Ma) and records the evol-

ution of mammalian lineages through extreme changes in flora, environments

and landmasses during the Cretaceous Terrestrial Revolution (KTR) and the

Cretaceous–Palaeogene (KPg) mass extinction events [3–6].

Despite the keen interest in mammals, the evolutionary history of this clade has

been and remains at the centre of heated scientific debates [4,5,7–12]. In part, these

controversies stem from the widespread occurrence of convergent morphological

characters in mammals, which makes it difficult to tease apart homology and homo-

plasy in phylogenetic analyses that are solely based on these characters [4,9,13,14].

Molecules have proven more successful in recovering relationships among extant

taxa in the mammalian tree [4,5,15,16], but molecular data cannot be obtained

for most extinct taxa. Notable exceptions include South American ungulates and

glyptodonts, which have been positioned in the mammalian tree based on protein

sequences of type I collagen [17] and complete mitogenomic DNA sequences [18],

respectively. Even for molecular data, different data types require different

phylogenetic models [14], each of which has its own limitations [10]. Whole

genome analyses have promised to revolutionize our understanding of animal

evolutionary history, but some claims for the robust resolution of difficult nodes

with phylogenomic data are underpinned by problematic analyses and/or poor

data [10,19,20]. Despite these difficulties, there is consensus over the main topology
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[4–6] even though a few local polytomies are still unresolved

(e.g. placental root; branching pattern within Paenungulata; pos-

ition of Scandentia within Euarchontoglires; branching pattern

within Laurasiatheria [4,7,21,22]). Consensus on the timing and

biogeographic history of the placental mammal radiation has

proved more elusive [4–6,8,9] owing to morphological conver-

gence and uncertain phylogenetic relationships of fossil to

living taxa [9,13]; rapid cladogenesis at difficult to resolve

nodes [23]; disagreement over appropriate calibration strategies

for molecular dating analyses; and higher levels of incomplete-

ness in the Cretaceous and Early Cenozoic fossil record of the

Southern Hemisphere than Northern Hemisphere. Indeed, the

history of debate on these issues, in conjunction with the rich

database of mammalian fossils and genomes, provides an unpre-

cedented opportunity to explore the pros and cons of modern

methods for species tree estimation and timetree construction.

Here, we showcase some of the past and present debates per-

taining to the phylogenetic and evolutionary history of placental

mammals. We discuss the next generation of phylogenetic

methods and data that have been employed to resolve the placen-

tal mammal tree of life. We analyse a new molecular dataset

comprised of sequences for 286 mammals and four outgroups,

and date the divergence of these species to generate a novel time-

tree. We provide a roadmap for future analyses, detailing the

pros and cons of current methods, and highlight the ways

forward to finally resolve the mammal tree of life.
2. Shaking the morphological tree
In 1945, G.G. Simpson published ‘The classification of mammals’

[24]. This seminal work was based on morphological compari-

sons and is largely reflected in the landmark phylogeny

published by Novacek [25] in Nature. Novacek’s [25] morpho-

logical tree portrays a basal split between an edentate group

comprised of Xenarthra (e.g. armadillos, anteaters) and Pholi-

dota (pangolins) and a larger group that includes all other

placental mammal orders. The latter group includes Ungulata

(all hoofed mammals), Archonta (e.g. colugos, bats, primates),

Anagalida (e.g. rodents and elephant shrews), Carnivora and

Insectivora (table 1). Throughout the 1990s, aspects of this top-

ology [25] were challenged through new fossil finds and

phylogenetic analyses: for example, Beard [30] suggested a

closer affinity of Dermoptera (e.g. colugos) with Primates than

bats, and the finding of Eocene whale fossils (Artiocetus, Rodhoce-
tus) with diagnostic ankle bones suggested derivation of Cetacea

from Artiodactyla rather than from Mesonychia [31]. Neverthe-

less, a recent cladistic analysis of the largest morphological

dataset to date, which includes approximately 4500 characters

[8], has many features in common with Novacek’s [25] morpho-

logical tree and still supports numerous polyphyletic groups

including an ‘insectivore’ group, a ‘spiny hedgehog’ group, an

‘ant and termite eating’ group, a ‘tree-dwelling’ group and an

‘ungulate’ group [9] (table 1). On the molecular front, features

of Novacek’s [25] morphological tree were both corroborated

and challenged by early phylogenetic analyses of DNA

sequences (reviewed by Springer et al. [14]). Morphological

and molecular consensus emerged for Paenungulata (hyraxes,

manatees and elephants) [24,25, 32–37], and some molecular

studies [35,38] agreed with morphology in supporting Glires

(lagomorphs and rodents) [24,32,35,38,39]. Other morphological

hypotheses including Altungulata (perissodactyls and paenun-

gulates), Anagalida (rodents, lagomorphs, and elephant
shrews), Archonta (primates, dermopterans, treeshrews and

bats), Ungulata (paenungulates, perissodactyls, cetartiodactyls

and aardvarks) and Volitantia (bats and colugos) were rejected

by molecular data [35]. Of historical interest, early DNA studies

also suggested novel or throwback hypotheses including rodent

paraphyly, a basal split between rodents or hedgehogs and all

other placental mammals, and a modified version of Gregory’s

[40] Marsupionta (monotremes and marsupials) hypothesis, all

of which have now been debunked (reviewed in Novacek [25]

and Springer et al. [14]). These extraordinary hypotheses poten-

tially resulted from poor taxon sampling with its attendant long-

branch misplacement problems [14]. The next wave of studies

(see below) aimed to address these deficiencies with increased

gene and taxon sampling.
3. First wave of large-scale molecular data—
comparative molecular phylogenetics

At the turn of this millennium, the first large-scale molecular

phylogenetic studies were published [15,16,26] and drove the

most significant revisions of Novacek’s [25] phylogeny (table 1;

Springer et al. [14]). These initial studies, which included

representatives from all recognized mammalian orders, were

based on large multigene datasets comprised of both nuclear

and mitochondrial markers and provided support for four

superordinal clades of placental mammals that are still

recognized today: Afrotheria, Xenarthra, Euarchontoglires and

Laurasiatheria [15,16,26–29]. Subsequent studies of retrotran-

sposed elements and indels provided confirmatory support for

these four superordinal clades [13,15,16,26,29,41,42]. Afrotheria

contains the orders Tubulidentata (aardvarks), Afrosoricida

(e.g. golden moles and tenrecs), Macroscelidea (elephant

shrews), Hyracoidea (hyraxes), Sirenia (manatees, dugongs, sea

cows) and Proboscidea (e.g. elephants), with the latter three

orders grouping in the clade Paenungulata. Xenarthra contains

Cingulata (armadillos) and Pilosa (anteaters, sloths). The remain-

ing mammalian orders are grouped into Boreoeutheria, which is

further divided into the superordinal groups Laurasiatheria and

Euarchontoglires. Laurasiatheria unites phenotypically diverse

orders: Chiroptera (bats), Cetartiodactyla (e.g. cetaceans, cows

and pigs), Perissodactyla (e.g. rhinos and horses), Pholidota

(pangolins), Carnivora (e.g. lions, dogs, seals) and Eulipotyphla

(e.g. shrews and hedgehogs). Eurachontoglires contains Primates

(e.g. humans and monkeys), Scandentia (treeshrews), Glires (e.g.

rabbits and rodents) and Dermoptera (colugos).

While numerous studies support the monophyly of each of

the four superordinal groups, including studies with expanded

gene and taxon sampling [4], their branching order at the base of

Placentalia is still unresolved and remains hotly debated [43].

The three competing hypotheses for the placental root posit

basal splits between (i) Exafroplacentalia and Afrotheria,

(ii) Xenarthra and Epitheria, and (iii) Atlantogenata and

Boreoeutheria (Teeling & Hedges [43]; table 2). Many of the

early large-scale molecular phylogenetic studies favoured

Afrotheria versus Exafroplacentalia [15,16,26–28,44], but

Atlantogenata versus Boreoeutheria and to a lesser extent

Xenarthra versus Epitheria also received support, sometimes

in the same studies that provided support for Afrotheria

versus Exafroplacentalia [15,16,28]. Meredith et al.’s [4] multi-

gene dataset, which expanded gene sampling to 26 loci

(totalling approx. 35.6 kb) and extended taxonomic coverage

from mammalian orders to 97% of mammalian families, was



Table 1. Higher-level relationships of placental mammal orders based on morphology versus molecules. Orders (italics) are coloured by their superordinal
membership according to molecular studies. The majority of superordinal groups based on morphology are polyphyletic and reflect ecomorphological
convergence (e.g. ‘ant and termite eating group’ includes representatives from Xenarthra, Afrotheria, and Laurasiatheria).

morphology molecules

Novacek [24] O’Leary et al. [8] references [4 – 6,13 – 16,26 – 29]

Edentata

Cingulata, Pilosa,

Pholidota

other placental mammals

Carnivora

Insectivora

Eulipotyphla, Afrosoricida

Ungulata

Perissodactyla,

Cetartiodactyla,

Proboscidea, Sirenia, Hyracoidea,

Tubulidentata

Archonta

Primates, Dermoptera, Scandentia,

Chiroptera

Anagalida

Rodentia, Lagomorpha,

Macroscelidea

‘insectivore group’

Eulipotyphla, Afrosoricida,

Macroscelidea

other placental mammals

‘ant and termite eating group’

Cingulata, Pilosa, Pholidota,

Tubulidentata

‘tree-dwelling group’

Primates, Dermoptera, Scandentia,

Chiroptera

‘ungulate group’

Perissodactyla, Cetartiodactyla,

Proboscidea, Sirenia, Hyracoidea

Glires

Rodentia, Lagomorpha

Carnivora

Xenarthra

Cingulata, Pilosa

Afrotheria

Macroscelidea, Afroscoricida, Tubulidentata,

Hyracoidea, Proboscidea, Sirenia

Laurasiatheria

Eulipotyphla, Chiroptera, Perissodactyla,

Cetartiodactyla, Pholidota, Carnivora

Euarchontoglires

Rodentia, Lagomorpha, Dermoptera, Scandentia,

Primates
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insufficient to resolve the placental root and supported

Afrotheria versus Exafroplacentalia (DNA analyses) or Atlanto-

genata versus Boreoeutheria (amino acid analyses). Analyses of

coding indels and retroposons have also returned mixed results,

with some studies favouring a basal split between Xenarthra

and Epitheria [41] and others supporting Atlantogenata

versus Boreoeutheria [52]. The most comprehensive study

based on retroposon insertions provides commensurate levels

of support for each of the three competing hypotheses [64].

Aside from the placental root, other recalcitrant problems

in higher-level placental systematics include (i) the Laura-

siatheria polytomy, (ii) sister-group relationships within

Paenungulata, and (iii) the position of Scandentia (treeshrews)

within Euarchontoglires [14]. These difficult problems are

characterized by short internal branches, which are indicative

of rapid radiations, and are likely to remain difficult to resolve

owing to incomplete lineage sorting (ILS) and a variety of sys-

tematic biases including long branch misplacement and model

mis-specification that can hamper phylogenetic inference.

Even though these nodes and branches of the tree remained

unresolved, it was hoped that the promise of phylogenomic

analyses would resolve these ‘tricky’ branches [65].
4. Second wave of molecular data—comparative
phylogenomics

In 2001, the draft sequence of the human genome was published

[66,67]. Following its initial publication, researchers aimed to

discover, annotate and describe functional elements in the
human genome through cross-species comparisons with other

mammals [68]. In 2005, a sequencing effort began to maximize

the representation of mammals from each of the four superordi-

nal groups, which culminated in the publication of 29 mammal

genomes [68]. This particular sequencing effort, along with

ongoing large-scale sequencing initiatives such as Genome

10 K, which aims to sequence 10 000 vertebrate genomes, have

revolutionized comparative genomics and mammalian phylo-

genetics [69,70]. Different approaches to analyse these

computationally challenging, extremely large datasets have

included standard supermatrix methods (¼ total evidence),

with or without the incorporation of sophisticated models

that accommodate tree and dataset heterogeneity [6,45,53],

shortcut coalescence methods and concatalescence (¼ binning)

approaches that combine elements of concatenation with short-

cut coalescence [7]. The application of these methods to large

molecular datasets has not resulted in consensus for difficult

problems such as the placental root, the position of treeshrews

and the Laurasiatheria polytomy. Rather, these studies often

highlight incongruent results that arise from different phyloge-

nomic analyses of the same dataset. Conflicting results of

concatenation and coalescence studies, in particular, have

become the subject of spirited debates [7,9–11,19,71] that hear-

ken back to the ‘cladist/pheneticist/likelihood’ debates of the

1970s and 1980s [11].
5. Revolution in analytical methods
In the supermatrix approach, data from multiple gene

fragments are concatenated to form a single matrix for
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subsequent phylogenetic analyses [19]. The advantage of the

supermatrix approach lies in combining individual genes

into a single matrix for simultaneous analysis, an approach

which has the ability to decrease sampling error, offset

homoplastic signals in individual genes and uncover

hidden support [19,72] (table 3). Hidden support refers to

increased support for a clade in combined analysis relative

to the support obtained in separate analysis [19,73], and is

the primary advantage of the supermatrix approach. In

recent years, the supermatrix approach for species tree esti-

mation has been criticized by champions of coalescent

methods, who have correctly noted that concatenation

methods do not explicitly address the problem of ILS

[7,21,54,74–78]. Furthermore, it has been suggested that

the supermatrix approach can overestimate nodal support

when an incorrect model of sequence evolution is applied.

However, coalescence methods make their own assumptions

and the worthwhile goal of accounting for ILS introduces a

series of potential problems that may arise if these assump-

tions are violated. In particular, coalescence methods

assume recombination between but not within loci, gene

tree heterogeneity that results exclusively from ILS, and

neutral evolution [76,77].

Given the occurrence of unresolved nodes on the mam-

malian tree that are characterized by rapid divergences [65],

coalescent approaches may be better suited to resolving such

nodes than concatenation [21]. However, fully parametric

coalescent models such as *BEAST [79] and BEST [80],

which co-estimate gene trees and the species tree [81],

cannot be applied to large datasets because they are mas-

sively computationally intensive [19]. As such, shortcut
coalescence methods such as STEAC, STAR [76], MP-EST

[54] and ASTRAL [82], which carry out separate estimation

of gene trees and the species tree, have been applied to large

mammalian datasets [7,21] (table 3). Criticisms aimed at

recent applications of these shortcut methods to the placen-

tal tree have focused on inappropriate coalescent-gene

(c-gene) size and high levels of gene tree reconstruction

error [10]. One of the key assumptions of the multispecies

coalescent model is that recombination occurs between

c-genes but not within c-genes. To satisfy this assumption,

it is necessary to use gene trees that are inferred from

short stretches of DNA. Empirical evidence from primates

has shown that the average length of recombination free

c-genes is less than 100 bps [83,84]. This is particularly pro-

blematic for the application of coalescent approaches to

large taxonomic datasets because as the number of taxa

increases, c-gene size must decrease owing to the recombi-

nation rachet [19]. Recent phylogenomic studies with

coalescence methods have employed widely variable mean

locus lengths. McCormack et al.’s [21] mean locus length

for ultraconserved elements was only 410 bp, but Song

et al. [7] reported an average locus length of 3.1 kb for

protein-coding sequences. However, Song et al. [7] did not

consider the intervening introns and their true mean locus

length, measured from start codon to stop codon, is

139.6 kb [19]. This inadvertent application of coalescence

methods to ‘c-genes’ that are much too long was dubbed

concatalescence by Gatesy & Springer [85], because dispa-

rately spaced exons are first concatenated into coding

sequences and then subsequently analysed using shortcut

coalescence approaches. A recent study using simulated

data suggests that species tree estimation using coalescent
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methods may be more robust to recombination than

previously thought [86], but these simulations were for

relatively shallow divergences and only included a small

number of taxa. Further, these simulations [86] did not

compare the performance of coalescence methods to conca-

tenation in their study of the effects of recombination

on coalescence methods. More recently, the idea of con-

catalescence has been reimagined as statistical binning,

in which gene trees and alignments are assigned to a bin

based on ‘combinability’ before creating supergene trees

for downstream coalescence analysis [87]. Accurate gene

tree reconstructions are also central to the coalescent

approach as each tree is given equal weight in the analysis;

however, accurate reconstructions become increasingly diffi-

cult with decreasing c-gene sizes as more taxa are added to

the analysis [19]. It should be noted that many of the forces

impacting accurate gene tree reconstruction such as long

branches, mutational saturation and weak signal are also

problematic issues for supermatrix approaches [88].

At present, the relative advantages and disadvantages of

coalescence versus supermatrix approaches for phylogeny

reconstruction have not been fully explored. This is despite

the existence of many simulation studies, which have vari-

ably supported one method over the other depending on

the simulation parameters [82,87,89–93]. Future studies

should simulate more realistic c-gene sizes and increase

the number of taxa to better reflect empirical datasets, and

examine the effects of recombination on coalescence versus

concatenation methods [86].

Beyond the direct debate over coalescent and superma-

trix approaches to species tree construction, alternative

solutions are emerging within each of these camps. On

the coalescence front, single nuclear polymorphism (SNP)

methods such as SVDquartets [94] provide an alternative

to fully parametric and shortcut coalescence methods that

depend on gene trees. An important advantage of SNP

methods is that they avoid problems with the recombina-

tion ratchet [10]. Among novel supermatrix approaches,

Romiguier et al. [45] explored the effect of biased gene con-

version, as measured by GC content, which is an indicator

of recombination, on phylogenetic inference. Through com-

parative analysis of GC-rich and AT-rich datasets, they

showed that GC-rich genes induced a higher amount

of conflict between gene trees, whereas AT-rich datasets

provided increased resolution of relationships among

placental mammals [45]. Crucially, these compositionally

biased datasets supported different root node hypotheses

and in doing so highlight the potentially confounding

role composition bias can play in phylogenetic inference if

not adequately accounted for during data selection or

through appropriate model selection. Previous large-scale

supermatrix analyses of the placental tree have used

homogeneous models of sequence evolution [4,95]. How-

ever, among placental mammals, there exists considerable

heterogeneity among genes, lineage-specific substitution

rates and sequence compositional bias [53]. In an analysis

that accounted for heterogeneity across the phylogeny

using NDRH/NDCH node-discrete rate matrix hetero-

geneous/node-discrete composition heterogeneous models

and CAT to model heterogeneity across the data, Morgan

et al. [53] showed that employing models that account for

heterogeneity greatly improves phylogenetic resolution

compared to homogeneous models.
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6. Can comparative genomics resolve
problematic nodes in the placental tree?

Despite the abundance of genomic data for placental mammals

and the development of novel methods for phylogeny recon-

struction, the ‘tricky’ nodes are still unresolved. The placental

root node remains a matter of contention with claims of

strong support emerging for one or a number of the three

competing hypotheses using different data types and analyti-

cal methods: Exafroplacentalia [21,45,46], Epitheria [8] and

Atlantogenata [4,7,53]. However, the most recent study of the

placental tree has taken a ‘total evidence’ approach to resolve

the root by analysing morphological, nucleotide and micro-

RNA data using a supermatrix approach with heterogeneous

modelling, coalescent approaches with unbinned gene trees

and statistical binning [6]. In this study, Tarver et al. [6] recov-

ered high support for the Atlantogenata hypothesis (originally

described from coding indels by Murphy et al. [52]) from

their supermatrix and concatalescence analyses of nucleotides,

as well as from their micro-RNA dataset. Furthermore, to

investigate previous studies that supported other hypotheses

for the placental root, they re-analysed the datasets of

O’Leary et al. [8], Hallström & Janke [46] and the AT-rich data-

set of Romiguier et al. [45], and found that model fit for these

datasets could be improved using heterogeneous modelling,

and that reanalysis of the datasets of O’Leary et al. [8] and

Hallström & Janke [46] supported Atlantogenata [6]. While

the re-analysis of the Romiguier et al. [45] dataset only yielded

minimal support for Altlantogenata (approx. 0.5 posterior

probability), the dataset no longer recovered strong support

for Exafroplacentalia [6]. While consensus may be tipping in

favour of an Atlantogenata versus Boreoeutheria root,

advocates of this and other hypotheses for the placental root

have not provided compelling explanations for Nishihara

et al.’s [64] retroposon study that provides commensurate

levels of support for each of the three competing hypotheses,

i.e. 22, 25 and 21 L1 insertions favouring Exafroplacentalia,

Epitheria and Atlanatogenata, respectively. Unfortunately,

despite the large datasets, the other hard nodes also remain

to be resolved. At present, it is unclear if treeshrews

(Order Scandentia) are more closely related to Glires (rodents

and lagomorphs), Primatomorpha (primates and colugos)

or Dermoptera (colugos). Also, relationships among the

laurasiatherian clades Chiroptera, Ostentoria (carnivorans

and pangolins), Perissodactyla and Cetartiodactyla await

elucidation. There is still much research ahead for future

mammal phylogeneticists.
7. Dating the mammal tree—a time bomb
The timing of the origin and diversification of placental mam-

mals is a highly contentious topic in phylogenetics. At its core

lies disagreement on the timing of interordinal and intraordi-

nal divergences in relationship to the KPg boundary.

Archibald and Deutchsmann [96] proposed three models to

characterize the results of different studies. More recently,

each of these models has received support from one or more

large-scale studies of placental mammal phylogeny. Archibald

& Deutchsmann’s [96] three models are (i) the explosive model,

(ii) the short fuse model and (iii) the long fuse model. The

explosive model is generally favoured by palaeontologists and

proposes that both interordinal and intraordinal clagodenesis
within Placentalia occurred after the KPg boundary (approx.

66 Ma) in response to newly available ecospace vacated by

non-avian dinosaurs after the extinction event [8]. This

model rejects a crown position for all Mesozoic eutherians

and is consistent with O’Leary et al.’s [8] parsimony analysis

of a combined phenomic–genomic dataset for representative

extant and extinct eutherians.

By contrast, most molecular timetrees posit much older

interordinal divergences, wherein placental mammals orig-

inate in the Cretaceous and persisted at low diversity before

eventually experiencing an explosion in diversification [96].

Where molecular diversification models differ is in the dur-

ation of the lag period between the origin of placentals and

their burst of diversification. The long fuse model posits

interordinal cladogenesis in the Cretaceous followed by

intraordinal cladogenesis after the KPg mass extinction, and

is broadly supported by recent studies that have employed

large molecular datasets with different models for branch

rates (i.e. autocorrelated, independent) and multiple calibra-

tions from the fossil record [4–6,12,97]. We analysed a

dataset for Meredith et al.’s 26 genes that was expanded to

included 286 mammals and four outgroups (26 loci; see elec-

tronic supplementary material, table S1). We included only

therian taxa that are represented by at least 16 of 26 genes.

Timetree analyses were performed with mcmctree [98]

using autocorrelated rates with 99 hard-bounded calibra-

tions (see electronic supplementary material, table S2). The

results are highly congruent with Meredith et al.’s [4] original

timetree analyses and estimates from dos Reis et al. [5]

(figure 1). An estimated eutherian origin around approxi-

mately 170 Ma is in agreement with the fossil record

following the discovery of a stem eutherian fossil Juramaia
sinensis [101] from the Jurassic [4,5] and these results support

the long fuse model (figure 1). While limited intraordinal cla-

dogenesis may have commenced in the Late Cretaceous for a

few orders (e.g. Eulipotyphla), the vast majority of placental

intraordinal diversification takes place in the Cenozoic. The

long fuse model is also consistent with a major role for the

KPg extinction in promoting morphological and ecological

diversification in the wake of the ecological vacuum that

ensued after the KPg extinction event [4,5]. The short fuse

model agrees with the long fuse model in positing interordi-

nal cladogenesis in the Cretaceous, and further suggests that

many intraordinal divergences occurred well before the KPg

boundary. Among recent studies, support for this model is

more limited and derives mostly from Bininda-Emonds

et al.’s [95] mammalian supertree.

Both the short and long fuse models suggest that there

should be crown placentals from the Cretaceous, but recent

morphological parsimony analysis studies provide no support

for this prediction and instead, position all Cretaceous taxa out-

side of crown Placentalia [8,102–104]. Explanations for this

discrepancy are that (i) reconstructed divergence times in the

Cretaceous based on molecular data are inaccurate [8],

(ii) the placental fossil record is highly incomplete and it is sim-

pler to propose ghost lineages in the Cretaceous than virus-like

rates of molecular evolution in early placental mammals [9]

and (iii) morphological parsimony analyses that position

Cretaceous eutherians outside of crown Placentalia are inher-

ently unreliable owing to pervasive convergence in

morphological characters and clustering of the recent, which

is a form of long branch attraction that can result in stemward

slippage of fossil taxa. Below, we discuss each of these
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explanations for the perceived discrepancies between molecular

and palaeontological estimates for interordinal divergence times.

O’Leary et al.’s [8] timetree for Placentalia provides the most

explicit formulation of the explosive model. Importantly,

O’Leary et al.’s [8] estimated nodal ages for interordinal diver-

gences are minimum ages that are younger than true ages,

because the fossil record is incomplete [12]. O’Leary et al.’s [8]

enforcement of a maximum age of 66 Ma for the most recent

common ancestor of Placentalia suggests that as many as 10

interordinal divergences may have occurred in the 200 000

years just after the KPg boundary. This hypothesis requires

rates of molecular evolution that were accelerated more than

60� in early crown placentals relative to the stem placental

ancestor [9]. Such rates would be commensurate with those of

double-stranded DNA viruses. For these reasons, we reject

the explosive model of placental mammal diversification and

prefer the alternate explanations that ghost lineages extend

into the Cretaceous and/or morphological parsimony analyses

that position Cretaceous eutherians outside of Placentalia are

incorrect. Phillips [105] suggested that Meredith et al.’s [4] time-

tree dates require more than 250 Myr of ghost lineages in
Boreoeutheria, and for this reason proposed a soft explosive

model wherein most interordinal diverences in Placentalia

occurred after the KPg boundary. Phillip’s [105] soft explosive

model only allows for the emergence of the stem Afrotheria,

stem Xenarthra, stem Laurasiatheria and stem Euarchonto-

glires lineages in the Cretaceous. Phillips [105] also suggested

that Meredith et al.’s [4] interordinal divergences were inflated

because of rate-transference errors, and that these errors can be

mitigated by eliminating calibrations in clades that are charac-

terized by large body sizes and long lifespans that are the

source of rate transference errors. An alternate explanation is

that Phillips’ [105] interordinal divergence dates are too

young because they are dragged forward by divergence dates

in clades with large body size and long lifespan that are also

too young. Indeed, Phillip’s preferred timetree, which is

based on calibrations at only 27 nodes (contra 82 in Meredith

et al. [4]), has estimated dates at 62 of 136 internal nodes in Pla-

centalia that are younger than minimum ages implied by the

fossil record [106]. Included among these nodes are numerous

interordinal divergences as well as some divergences in clades

that are characterized by smaller body sizes (e.g. Eulipotyphla).
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By contrast, timetree analyses that exclude taxa based on large

body size and/or long lifespan thresholds provide support for

the long fuse model of placental diversification [29].

The final explanation for the perceived disagreement

between molecular studies that support Cretaceous interordinal

divergences and morphological parsimony analyses that place

Cretaceous eutherians outside of crown Placentalia is that

higher-level placental relationships in the latter are inaccurate

and unreliable. Along these lines, Sansom & Wills [107] docu-

mented fundamental taphonomic biases that will cause

stemward slippage of fossils. In addition, pseudo-extinction

analyses [13] have shown that the majority of living placental

orders move to a different superordinal group when molecular

data are recoded as missing and that some orders are rendered

polyphyletic or paraphyletic. Finally, cladistic analyses of the

largest morphological datasets [8,103] exhibit massive homo-

plasy problems that call into question the results of analyses

based on these datasets. In addition to problems with O’Leary

et al.’s [8] morphological dataset that were noted above,

Halliday et al.’s [103] dataset results in equally surprising

relationships and their unconstrained morphological parsi-

mony tree (their fig. 3) supports treeshrew diphyly, talpid

diphyly, elephant shrew diphyly, etc., and fails to recover vir-

tually every superordinal clade of placental mammals that is

well supported by numerous molecular datasets.

Molecular scaffolds or combined analyses with molecular

and morphological data can effectively rescue extant taxa, but

the results of pseudo-extinction analyses suggest that molecular

scaffolds/combined analyses are not effective for extinct taxa in

higher-level placental phylogenetics. Finally, several authors

(e.g. [108] for arctoid carnivorans) have suggested that parallel

evolutionary trends can result in excessive homoplasy among

living taxa that obscures relationships when diachronous term-

inals (i.e. extinct and extant taxa) are included in the same

analyses. In view of these difficulties, Cretaceous interordinal

divergences should not be rejected because they disagree

with morphological parsimony trees. New approaches for mol-

ecular dating include total evidence or tip dating, but these

approaches are dependent on accurate phylogenies and

should be used cautiously given potential problems with mor-

phological and palaeontological character data for placental

mammals (e.g. correlated homoplasy, taphonomic biases,

incompleteness) that are surpassed by the quantity, quality

and unambiguity of molecular data [109–111]. Future clever

and novel integrative research based on molecules, fossils

and timetree estimation methods will be required to resolve

the timing of origination and diversification of mammals.
8. The future
We have come so far and have greatly advanced our under-

standing of mammalian evolutionary history in the past

twenty years. These advances have resulted from (i) new

methods in molecular technologies enabling the fast and rapid

generation of huge amounts of sequence data from novel taxa

[69,70], (ii) the conception and implementation of novel analyti-

cal methods for accurately modelling sequence evolution and

allowing independent rates and models across branches and

(iii) the availability of fast and powerful computers that enable

computationally intensive phylogenetic analyses. However,

despite these advances, there are still three key areas that must

be addressed before we can have ‘mammal tree’ resolution.
First, the unresolved ‘hard’ nodes in the mammal tree of

life must be resolved. Whole genomes should provide the

required data, which if aligned and analysed correctly,

should aid in the resolution of these nodes. One requirement

is that the sequence data must be excellent, the genomes

must be at high coverage and ultimately at a chromosome

level assembly [112]. New sequencing technologies, such as

Dovetail and 10X Genomics, promise to aid in the difficult

task of scaffolding de novo genomes and coupled with long

sequence reads, such as PacBio sequencing, excellent chromo-

some level assemblies of de novo genomes are possible in the

near future [112]. Appropriate and correct analyses of these

data are required to resolve these problems. At present, the

field advances on two fronts. On one front, the supermatrix

approaches to solve these problems have been advanced

through the application of better fitting heterogeneous

models of sequence evolution, compared with analyses

employing widely and in some cases inappropriately used

homogeneous models [6,53]. On the other front, as outlined

above, the limitations, powers and pitfalls of novel gene tree

estimation methods must be elucidated to ascertain the best

methods to analyse these new whole genome data; however,

the refinement of statistical binning [82] shows promise to

address some of the criticisms of this approach. Potentially,

some of the ‘tricky’ nodes may not be resolved with phylo-

genomic analyses alone, but whole genome data will

provide accurate insertion positions of novel transposable

elements and insertion/deletion events that will provide inde-

pendent synapomorphic characters, indicative of true shared

ancestry. Non-molecular data can also be used to resolve

these hard nodes. Haeckel [113] originally proposed that the

study of morphological ontogenic development of embryos

may reveal phylogenetic affinities not present in the adults

[114]. New imaging technologies promise to provide novel

non-lethal ontogenic evo/devo data of developing embryos

[115], thus allowing for the study of protected and diverse

species, never possible before. Molecular phylogenetic trees

can act as a scaffold to differentiate between homoloplastic

and homologous morphological characters, ultimately provid-

ing true morphological synapomorphic characters to help

provide the data to resolve the difficult nodes [116]. All of

these data, interpreted together should provide the infor-

mation needed to resolve the mammal tree of life.

Second, to determine divergence times for this topology, we

still must accurately assign fossils to the appropriate branches,

whether across the tree or just at key basal nodes. This is a

more difficult task as certain lineages are extensively missing

fossil data (e.g. bats are missing more than 70% of fossil history;

Teeling et al. [117]), and also the key homologous structures

may be lost or modified during preservation. Uncovering

key transitions fossils, e.g. Eocene whale fossils (Artiocetus,
Rodhocetus), which contain diagnostic characters, could ulti-

mately resolve the tricky nodes. Therefore, more fossil finds,

particularly in the under-represented Southern Hemisphere

are required. The development in new sequencing technolo-

gies has revolutionized the field of ancient DNA. It is now

possible to sequence the whole genome of recent fossils and

ultimately place them on a tree, from as little as a single bone

(e.g. Denisovan [118]). This greatly advances our understand-

ing of fossil placement in the tree. The integration of both

molecular and morphological data and the contribution of

each data type to phylogenetic inference must also be explored.

Potentially these data cannot be analysed together, but each
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type of data offers unique insights into evolutionary history

and therefore must be considered. Further advances in diver-

gence time analyses are required to refine estimates, recent

simulation studies, which incorporate the multispecies coalesc-

ent model into estimates of divergence time show promise with

small datasets [119] and surely, the application of such an

approach to large empirical datasets is just around the corner.

With the new technological advances in sequencing, imaging,

computation and analytical methods, coupled with future

fossil finds, the next 20 years of phylogenetic research promise

to be exciting and dynamic, and ultimately, should result in the

resolution and dating of the mammal tree of life.
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