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Abstract

A traditionally controversial taxon, the Tipulomorpha has been frequently discussed with
respect to both its familial composition and relationships with other Nematocera. The inter-
pretation of internal relationships within the Tipuloidea, which include the Tipulidae sensu
stricto, Cylindrotomidae, Pediciidae and Limoniidae, is also problematic. We sequenced
the first complete mitochondrial (mt) genome of Symplecta hybrida (Meigen, 1804), which
belongs to the subfamily Chioneinae of family Limoniidae, and another five nearly complete
mt genomes from the Tipuloidea. We did a comparative analysis of these mt genomics and
used them, along with some other representatives of the Nematocera to construct phyloge-
netic trees. Trees inferred by Bayesian methods strongly support a sister-group relationship
between Trichoceridae and Tipuloidea. Tipulomorpha are not supported as the earliest
branch of the Diptera. Furthermore, phylogenetic trees indicate that the family Limoniidae is
a paraphyletic group.

Introduction

The animal mitochondrial (mt) genome typically contains 13 protein-coding genes (PCGs), 22
transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes and a large non-coding region
(also referred to as the control region, or CR) [1]. It is being widely used for understanding the
phylogenetic relationships, because it can provide more phylogenetic information than shorter
individual nuclear genes and multiple genome-level characteristics, such as modes of control of
a replication and transcription, RNA secondary structures. Although there has been some criti-
cism of using mt genomes for phylogenetics as the effects of accelerated substitution rate and
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compositional heterogeneity may bias topological inferrence, the mt genome is still widely
used for understanding the phylogenetic relationships in many insect groups, such as the Para-
neoptera, Megaloptera, Coleoptera, and Orthoptera [2-5]. The number of sequenced mt
genomes has rapidly increased over the years, especially in the Diptera. By June 2015, there had
been 118 complete and nearly complete Diptera mt genome sequences which were available in
GenBank, including 45 nematoceran species representing 14 families. About half of these
genomes were from species which belong to the Culicidae; the other half, which were mostly
sequenced by two studies [6-7], represented the families Anisopodidae, Cecidomyiidae, Cera-
topogonidae, Chironomidae, Dixidae, Keroplatidae, Pachyneuridae, Psychodidae, Ptychopteri-
dae, Sciaridae, Tanyderidae, Tipulidae and Trichoceridae. A summary of available mt genome
sequences from the Nematocera is given in Table 1. Among these sequences, however, only
two complete and one nearly complete mt genomes representing the Tipulomorpha were
available.

The Tipulomorpha is a controversial group with both its familial composition and relation-
ships to other Nematocera disputed by different workers [24]. The Tipulomorpha has been
defined to include both the Tipulidae sensu lato (the Tipuloidea or crane flies) and the Tricho-
ceridae (winter crane flies) [25-29] or just the Tipulidae sensu lato [30]. A taxonomically
diverse group, the Tipulidae sensu lato (sometimes defined to include the families Cylindroto-
midae, Limoniidae, Pediciidae, and Tipulidae sensu stricto), have been recorded worldwide,
and have 15412 described species [31]. Adults of this group are easily recognized by their slen-
der bodies and extremely long legs in combination with two well-developed anal veins on the
wings. They usually live in moist, temperate environments, and are often found in herbaceous
vegetation near streams and lakes in the forested areas. The larvae of crane flies live in various
environments, including freshwater, marshes, moist soil and decaying wood [32]. The Tricho-
ceridae are superficially similar, small slender flies with long legs. They are different from the
Tipulidae sensu lato by the existence of three ocelli and a relatively short A, vein; some larval
characters are also not found in the tipuloids, such as the conical labrum and the divided man-
dible [33-34].

The phylogenetic relationships of Tipulomorpha within the Nematocera are also controver-
sial. The idea that the Tipulomorpha includes both the Tipulidae sensu lato and the Trichoceri-
dae was advocated by Hennig, who also suggested a sister-group relationship between
Tipulomorpha and all remaining Diptera [25-27]. This relationship was also suggested by sev-
eral other studies [35-37]. The sister-group relationship of Tipulidae sensu lato and Trichoceri-
dae was mainly supported by morphologic characters of the adults [38]. Wood and Borkent
restricted the Tipulomorpha to the Tipuloidea excluding Trichoceridae, which they also con-
sidered the sister-group to all other Diptera. According to Wood & Borkent, the Trichoceridae
belonged to the Psychodomorpha based on larval morphology [30]. This position of Trichocer-
idae, as proposed by Wood and Borkent, was subsequently accepted by Griffiths, but he sug-
gested that the tipuloid families should be moved from the earliest branch of the dipteran
phylogenetic tree and nested within Psychodomorpha [28]. This subordinate position of the
tipuloids was also suggested by Oosterbroek and Courtney [29]. In the Bayesian consensus
analysis of morphology by Lambkin et al. [39] Trichoceridae was sister to a clade composed of
Psychodidae + Bibionomorpha [39]. Yeates et al. [24] suggested that Tipulomorpha was para-
phyletic, with Trichoceridae nested within Psychodomorpha in their supertree analysis. They
recovered a restricted Tipulomorpha (equal to Tipuloidea alone) as the sister-group to the Bra-
chycera [24]. In the first molecular phylogenetic analysis of deep-level dipteran relationships,
using the 28S rRNA gene, Tipulomorpha was also paraphyletic [40], while the more recent,
multigene analysis by Wiegmann et al. [41] suggested that Tipulomorpha included Trichoceri-
dae. Recent transcriptome-based phylogenetic trees indicated that the Tipulomorpha
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Table 1. List of Taxon Included in This Study.

Order Family Species Length (bp) Accession No. Reference
Diptera Culicidae Anopheles 15455 NC_000875 Mitchell et al. (1993) [8]
quadrimaculatus Say
Anopheles gambiae 15363 NC_002084 Beard et al. (1993) [9]
Giles
Anopheles darling 15386 NC_014275 Moreno et al. (2010)
Root* [10]
Anopheles culicifacies | 15330 NC_027502 Hua, YQ. et al. (2015)
Giles [11]
Anopheles cruzii Dyar | 15449 NC_024740 Marinotti, O. et al.
& Knab
Anopheles deaneorum | 15424 NC_020663 Krzywinski et al. (2011)
Rosa-Freitas [12]
Anopheles albitarsis 15413 NC_020662 Krzywinski et al. (2011)
Lynch-Arribalzaga* [12]
Anopheles 15422 HQ335345 Krzywinski et al. (2011)
oryzalimnetes [12]
Wilkerson & Motoki
Anopheles janconnae 15425 HQ335348 Krzywinski et al. (2011)
Wilkerson & Sallum [12]
Anopheles farauti 15412 NC_020770 Logue et al. (2013) [13]
Laveran
Anopheles hinesorum 15336 NC_020769 Logue et al. (2013) [13]
Schmidt
Anopheles cracens 15412 NC_020768 Logue et al. (2013) [13]
Sallum & Peyton
Anopheles dirus 15404 JX219731 Logue et al. (2013) [13]
Peyton & Harrison
Anopheles punctulatus | >15412 JX219744 Logue et al. (2013) [13]
Donitz
Anopheles koliensis >15412 JX219743 Logue et al. (2013) [13]
Owen
Aedes albopictus 16665 NC_006817 Ho et al. unpublished
(Skuse)
Aedes aegypti 16655 NC_010241 Behura et al. (2011)
(Linnaeus) [14]
Aedes notoscriptus 15846 NC_025473 Hardy, C.M. et al.
(Skuse) (2014) [15]
Aedes vigilax (Skuse) 15877 KP995260 Hardy, C.M. et al.
(2015) [16]
Culex 15587 NC_014574 Behura et al. (2011)
quinquefasciatus Say* [14]
Culex pipiens 14856 NC_015079 Atyame et al. (2011)
Linnaeus [17]
Ochlerotatus vigilax 15877 NC_027494 Hardy, C.M. et al.
(Skuse) (2015) [15]
Ceratopogonidae Culicoides arakawae 18135 NC_009809 Matsumoto et al.
(Arakawa)* (2009) [18]
Sciaridae Bradysia amoena >14049 GQ387651 Beckenbach & Joy
(Winnertz)* (2009) [6]
Cecidomyiidae Mayetiola destructor 14759 NC_013066 Beckenbach & Joy
(Say)* (2009) [6]
Rhopalomyia pomum 14503 NC_013063 Beckenbach & Joy
Gagne* (2009) [6]
(Continued)
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Table 1. (Continued)

Order Family Species Length (bp) Accession No. Reference

Trichoceridae Trichocera bimacula 16140 NC_016169 Beckenbach (2012) [7]
Walker*

Paracladura 16143 NC_016173 Beckenbach (2012) [7]
trichoptera (Osten
Sacken)*

Anisopodidae Sylvicola fenestralis 16234 NC_016176 Beckenbach (2012) [7]
(Scopoli)*

Tipulidae Tipula abdominalis >14566 JN_861743 Beckenbach (2012) [7]
(Say)*

Ptychopteridae Ptychoptera sp.* 15214 NC_016201 Beckenbach (2012) [7]
Bittacomorphella >15609 JN_861745 Beckenbach (2012) [7]
fenderiana Alexander*

Tanyderidae Protoplasa fitchii 16154 NC_016202 Beckenbach (2012) [7]
Osten Sacken*

Pachyneuridae Cramptonomyia 16274 NC_016203 Beckenbach (2012) [7]
spenceri Alexander*

Keroplatidae Arachnocampa flava 16923 NC_016204 Beckenbach (2012) [7]
Harrison*

Chironomidae Chironomus tepperi 15652 NC_016167 Beckenbach (2012) [7]
Skuse*

Parochlus steinenii 16803 KT003702 Shin, SC. & Kim, SH.
Gercke

Dixidae Dixella sp.* 15574 KM245574 Kang et al. (2014) [19]

Psychodidae Nyssomyia umbratilis 15757 NC_026898 Kocher, A et al. (2015)
(Ward & Fraiha)* [20]

Limoniidae Symplecta hybrida 15811 KT970064 Present study
(Meigen)*

Rhipidia >14647 KT970063 Present study
chenwenyoungi

Zhang, Li & Yang *

Paradelphomyia sp.* >14636 KT970061 Present study

Cylindrotomidae Cylindrotoma sp.* >15372 KT970060 Present study

Pediciidae Pedicia sp.* >14829 KT970062 Present study

Tipulidae Tipula cockerelliana >14541 KT970065 Present study
Alexander*

Brachycera (suborder) | Tabanidae Cydistomyia 16247 NC_008756 Cameron, et al. 2007
duplonotata (Ricardo)* [21]

Nemestrinidae Trichophthalma 16396 NC_008755 Cameron, et al. 2007
punctata (Macquart)* [21]

Syrphidae Simosyrphus 16141 NC_008754 Cameron, et al. 2007
grandicornis [21]

(Macquart)*

Muscidae Haematobia irritans 16078 NC_007102 Lessinger, et al.

(Linnaeus)* unpublished
Mecoptera Boreidae Boreus elegans 16803 NC_015119 Beckenbach 2011[22]
Carpenter*

Bittacidae Bittacus pilicornis 15842 NC_015118 Beckenbach 2011[22]
Westwood*

Siphonaptera Ceratophyllidae Jellisonia amadoi 17031 NC_022710.1 Cameron, 2013 [23]

Ponce-Ulloa*

* Species used for phylogenetic analysis in this study.

doi:10.1371/journal.pone.0158167.t001
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(represented by Tipulidae alone as Trichoceridae has not been subject to RNAseq analysis yet)
represented neither the earliest branching dipteran infraorder, nor the most derived branch of
the lower Diptera (= Nematocera) [42-43].

Since there is only one nearly complete mt genome sequence of Tipuloidea (Tipula abdomi-
nalis, IN_861743) available in GenBank (as of June 2015) [6], we sequenced and described the
first complete and another five nearly complete mt genomes from Tipuloidea (Table 1), repre-
senting its four families (Cylindrotomidae, Limoniidae, Pediciidae and Tipulidae sensu stricto).
We annotated these genomes and did a comparative analysis of these mt genomics. Using
these new sequences, along with published representatives of the Nematocera, we constructed
phylogenetic trees of the Tipulomorpha. The implications of the phylogenetic relationship
between Trichoceridae and Tipuloidea, and the position of the Tipulomorpha in the lower Dip-
tera were given in this paper.

Materials and Methods
Ethics statement

No specific permits were required for the specimens collected for this study. The specimens
were collected by net. The specimens were common in China and the field studies did not
involve endangered or protected species. The species were not included in the “List of Protected
Animals in China”.

Specimen collection and preparing

All specimens used for DNA extraction were collected from China. The details of the collection
information were listed in S1 Table. Specimens were initially preserved in 95% EtOH in the
field, and then transferred to -20°C for the long-term storage at China Agricultural University
(CAU). Specimens were identified by Zehui Kang (CAU).

DNA extraction, PCR and Sequencing

Thoracic muscle tissues were removed for extraction of whole genomic DNA using the TIA-
Namp Genomic DNA Kit (TTANGEN). The mt genomes of six species were amplified using
NEB Long Taq DNA polymerase (New England Biolabs, Ipswich, MA). First, fragments of
500-1500 bp were amplified using standard primers conserved across insects [44]. Additional
sequences were obtained using taxon-specific primers designed based on these preliminary
sequence. The details of primers information are listed in S2 Table. PCR amplification condi-
tions are as follows: a hot-start denaturation step at 95°C for 30sec; 40 cycles of denaturation at
95°C for 10sec; annealing at 40-55°C for 50sec; extension at 65°C for 1kb/min; final elongation
step at 65°C for 10min. The quality of PCR products was evaluated by electrophoresis in a 1%
agarose gel stained with Gold View nucleic acid stain. Purified PCR amplicons were sequenced
in both directions using the BigDye Terminator Sequencing Kit ver. 3.1(Applied Bio Systems)
and ABI 3730XL Genetic Analyzer (PE Applied Biosystems, San Francisco, CA, USA) using
both amplification and internal primers designed via primer walking.

Bioinformatic and Phylogenetic analysis

Sequences were assembled manually. First, sequences were identified and aligned into contigs using
BioEdit version 7.0.5.3 [45]. After fully assembling each mt genome, we identified the protein-cod-
ing genes as open reading frames and by alignment with homologous sequences annotated in the
mt genomes of 45 published nematoceran species. The tRNA genes were identified using tRNAs-
can-SE [46], and analyzed with a COVE score cutoff of 1 for identifying all possible tRNA genes.

PLOS ONE | DOI:10.1371/journal.pone.0158167 June 24,2016 5/20



@’PLOS ‘ ONE

Comparative Mt Genome of Tipuloidea and Mt Genome Phylogeny of the Tipulomorpha

Those tRNA genes (the tRNAS" N of six sequenced species) that could not be identified using
tRNAscan and the rRNA genes were identified by alignment with homologous sequences from the
45 published nematoceran species. MEGA 5.0 [47] was used to analyze the nucleotide substitution
rates, base composition and codon usage. Nucleotide compositional skew was calculated using the
formulae: AT-skew = (A-T)/ (A+T); GC-skew = (G-C)/ (C+G) [48].

A phylogenetic analysis was conducted using a total of 29 species of Diptera as an ingroup
and three outgroup species from Diptera’s close relatives, Bittacus pilicornis, Westwood
(NC_015118) and Boreus elegans, Carpenter (NC_015119) of Mecoptera and Jellisonia amadoi,
Ponce-Ulloa of Siphonaptera [22-23]. Details of the species used for phylogenetic analysis in
this study are listed in Table 1.

Because tRNA™, tRNAS™ and tRNAM*' were not sequenced for the 5 species whose incom-
plete mt genomes were obtained, the phylogenetic analyses only include the remaining 19
tRNAs, 13 PCGs, IrRNA, and a portion of srRNA (the alignment was trimmed to exclude the
missing regions of srRNA). Each gene was aligned in MEGA 5.0 [47] based on the annotation
procedures proposed by Cameron [49]. Individual genes were concatenated into a single data
matrix using SequenceMatrix v1.7.8 [50]. Two datasets were assembled for phylogenetic analy-
ses: the first dataset consisted of the first and second codon positions of the 13 PCGs (PCG12),
two rRNAs and 19 tRNAs (PCG12RNA); the second dataset consisted of the first and
second codon positions of five PCGs (COI, CO2, CO3, CYTB and ATP6), which was excluded
the remaining eigth difficult aligned genes(5SPCG12RNA) [51], two rRNAs and 19 tRNAs
(5PCG12RNA). The two aligned datasets were 9815 and 6067 bp long for the PCG12RNA and
the 5PCG12RNA matrices respectively. We used PartitionFinder v1.1.1 [52] to select the best-
fit partitioning scheme and the substitution models for each partition. The best-fit partitioning
scheme for constructing phylogenetic tree is listed in S3 Table.

Bayesian inference (BI) was used for phylogenetic analyses. BI was conducted using
MrBayes 3.2.2 [53] for 2-4 million generations. We considered that the stationarity was
reached when the average standard deviation of split frequencies between runs was below 0.01,
which was tested using AWTY [54].

Results and Discussion
General Features of the Genomes

Six mt genomes of Tipuloidea were sequenced: Cylindrotoma sp. (15372bp), Paradelphomyia
sp. (14639bp), Pedicia sp. (14605bp), Rhipidia chenwenyoungi (13809bp), Symplecta hybrida
(15,811bp) and Tipula cockerelliana (14453bp) (GenBank accession number: KT970060-
KT970065). The mt genome of S. hybrida was complete and the remaining five were nearly
complete. The newly sequenced complete mt genome fall within the middle of the size range
previously reported for mt genomes from the Nematocera, which ranges from 15,214bp in Pty-
choptera (Ptychopteridae) to about 18,600bp in Bittacomorphella (Ptychopteridae) [6]. All mt
genomes are typical of insect mt genomes in gene content: 13 protein-coding genes, 22 tRNA
genes and two rRNA genes. Gene order is also identical to that of the ancestral insect mt
genome, with 23 genes encoded on the majority strand (J-strand), and the remaining 14 genes
encoded on the minority strand (N-strand) (Fig 1).

Three conserved regions were found in overlapping regions of genes of each sequenced
Tipuloidea: AARYYTTA (tRNA"?-tRNA“"), ATGATTA (ATP8-ATP6) and TTAACAT
(ND4-ND4L). These conserved regions are also shared with some other Diptera [56]. Further-
more, there were also two non-coding intergenic regions conserved in dipteran insects, which
have been shown to be binding sites for a bidirectional transcription termination factor
(DmTTF) [6]. The first one is located between tRNA“™ and fRNA™" and ranges from 19 bp to
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Symplecta (Symplecta) hybrida (Meigen, 1804)

Fig 1. Mitochondrial map of Symplecta hybrida. Circular maps were created using CGView [55]. The outermost circle
shows the gene arrangement and comparison, and the arrows indicated the orientation of gene transcription. The tRNAs are
abbreviated according to the IUPACIUB single-letter amino acid codes (S1: AGN; S2: UCN; L1: CUN; L2: UUR). The second
circle (a black sliding circle) shows the GC content, as the deviation from the average GC content of the entire sequence. The
third circle indicated the GC-skew, as the deviation from the average GC-skew of the entire sequence. The inner cycle
indicated the size and the location of the genes.

doi:10.1371/journal.pone.0158167.g001

32 bp in length. This intergenic region is absent in other insect orders and not completely con-
served in Diptera [6]. In Diptera, this intergenic region is present in all Brachycera and some
Nematocera, being absent in Culicidae [6]. The second intergenic region is found between
tRNASYN) and ND1 and ranges from 16bp to 38bp in length (S4 Table). It is highly con-
served across insects and similar sequences for this region are present in other orders, such as
Mecoptera [6, 57].
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The control region (CR) is the longest intergenic region in the mt genome. Only one com-
plete control region from S. hybrida was sequenced in this study. It is 897bp in length and
located in the conserved position between srRNA and tRNA™ [56]. It is a medium-sized CR in
the Nematocera, where the length of the control region ranges from 369bp in Ptychoptera to
about 3.7kb in Bittacomorphella [6]. We did not find any conserved features identified in other
insect CRs, such as poly-T stretch, (T'A), like stretch or stem-loop structure at the 3’-end of the
control region [56, 58]. However, we identified three tandem repeat copies of a sequence within
the CR with a total length of 174bp. The second and third repeat units are identical in sequence
while the first is much shorter at only 46 bp. Large tandem repeats in the control region are
common in the Nematocera, for example, Beckenbach detected such repeats in five nemato-
ceran species (Sylvicola fenestralis; Cramptonomyia spenceri; Protoplasa fitchii; Arachnocampa
flava; Bittacomorphella fenderiana)|[6].

Base composition

As with other insects, the nucleotide composition of the tipuloid mt genomes are biased
towards A and T [6, 56]. In general, the AT content of these mt genomes are intermediate for
nematocerans, in which AT content ranges from about 73% in the Trichocera (Trichoceridae)
to about 83% in Cecidomyiidae [6]. For protein-coding genes, the AT content of N strand
genes (average content: 76.8%) is higher than that of the J strand genes (average content:
72.9%). The AT content of PCG third codon positions is much higher than that of the first and
second codon positions. For RNA genes, the average AT content (81.5%) of the I'RNA is
slightly higher than that of the srRNA (75.9%). Each of the six tipuloid mt genomes overall has
a weakly positive AT-skew and a negative GC-skew on the J-strand, while for PCGs T content
is higher than A content. Of each codon position in the PCGs, AT-bias is strongest at the sec-
ond codon position. Statistics also indicated that the AT-bias is stronger in RNA-encoding
genes than in PCGs (Table 2).

Codon usage

Codon usage for the six tipuloid species is shown in S5 Table. The AT rich codons TTA (Leu),
ATT (Ile), TTT (Phe), ATA (Met), AAT (Asn) and TAT(Tyr) are the most frequently used
codons.

Among all sequenced nematoceran flies, the most commonly used start codons are the
canonical start codons ATN (Met/Ile), found in every PCG. Among them, ATG (Met) and
ATT (Ile) are the mostly common used start codons. ATG (Met) is used in ATP6, CO2, CO3,
CYTB, ND4 and ND4L for almost all nematoceran flies. This pattern is also observed in cyclor-
rhaphan flies [56]. ATT (Met) is found in 10 of the 13 PCGs (ATP6, ATP8, CO1, CO3, ND2,
NDA4L, and ND6) for almost all nematoceran flies, especially used for ND2, ATP8, ND3, and
ND6. However, another two conventional start codons ATA (Met) and ATC (Ile) are found in
a minority of the nematoceran species. GTG (Val), TCG (SerV*M) and TTG (LeuV"®) are used
for ND5, CO1 and ND1 respectively in most species. CCG (Pro) is identified as the start codon
for COI in C. arakawae (Ceratopogonidae) and Dixella sp. (Dixidae). TTA (Leu""®) is the
start codon of CO3 in R. pomum (Cecidomyiidae) (Fig 2, S6 Table).

Similar to most other Diptera, the most commonly used stop codon in tipuloids is TAA,
which was found in 7 of the 13 PCGs (ATP6, ATP8, CO1, CO3, ND2, ND4L, and ND6) for
almost all tipuloids. The stop codon TAG is used in almost all the ND1I and also can be found
in ND3 and CYTB. All the CO2 genes in tipuloids use the partial stop codon T, and the two
remaining PCGs (ND5 and ND4) of tipuloids’ mt genomes usually have the partial stop codon
T or TA. In all sequenced nematoceran flies, TAA is also the most commonly used stop codon
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Table 2. mitochondrial nucleotide composition in six tipuloid flies.

Region Cylindrotoma Paradelphomyia Pedicia Rhipidia Symplecta Tipula
PCGs(J) A+T% 72.7 75 70.2 74.9 74 70.6
G+C% 27.2 25.1 29.9 25.1 26 29.4
AT-skew -0.09 -0.11 -0.06 -0.13 -0.13 -0.11
GC-skew -0.14 -0.08 -0.15 -0.08 -0.06 -0.18
1stcondon A+T% 66.9 68.1 62 67.9 64.8 63.6
position(J)
G+C% 33.5 31.6 38 32.2 35.2 36.7
AT-skew -0.02 0.03 0.03 -0.03 -0.11 -0.01
GC-skew 0.18 0.17 0.11 0.2 0.16 0.09
2ndcondon A+T% 64.3 66.3 64.3 65.9 67.8 64.5
position(J)
G+C% 35.4 33.6 35.5 34.4 32.2 35.1
AT-skew -0.37 -0.36 -0.37 -0.37 -0.3 -0.36
GC-skew -0.27 -0.24 -0.24 -0.25 -0.25 -0.26
3rdcondon A+T% 87.5 90.2 83.8 91.8 89.7 83.7
position(J)
G+C% 12,5 9.8 16.1 8.7 10.3 16.7
AT-skew 0.04 -0.04 0.12 -0.05 -0.03 0
GC-skew -0.6 -0.3 -0.55 -0.49 -0.2 -0.59
PCGs(N) A+T% 77.5 78.3 74.2 78.7 78.1 745
G+C% 22,5 21.7 25.8 21.2 21.9 25.5
AT-skew -0.24 -0.22 -0.32 -0.17 -0.2 -0.22
GC-skew 0.26 0.28 0.33 0.25 0.25 0.34
1stcondon A+T% 74 741 70.6 74.3 72.8 775
position(N)
G+C% 26.1 25.8 29.7 25.4 27.2 22.8
AT-skew -0.19 -0.16 -0.19 -0.1 -0.15 -0.16
GC-skew 0.47 0.43 0.45 0.45 0.47 0.48
2ndcondon A+T% 68.7 69.4 68 69.3 68.3 69.2
position(N)
G+C% 31.6 30.4 32.4 31 31.7 31.2
AT-skew -0.43 -0.44 -0.44 -0.41 -0.43 -0.3
GC-skew 0 0.05 0.01 0.01 -0.01 0.26
3rdcondon A+T% 90.3 91.6 85.1 92.8 93.4 7741
position(N)
G+C% 9.7 8.9 15.2 7.4 6.6 22.6
AT-skew -0.15 -0.09 -0.34 -0.03 -0.07 -0.22
GC-skew 0.59 0.62 0.76 0.54 0.59 0.3
tRNA genes A+T% 78.1 80.9 75 80.3 75.9 75.8
G+C% 21.9 19.1 25 19.7 24.1 241
AT-skew 0 0.02 0 -0.01 0 0.02
GC-skew 0.12 0.14 0.09 0.16 0.13 0.09
IrRNA A+T% 82 83 80.1 82.5 81.5 80.1
G+C% 18 17 19.9 17.5 18.5 19.9
AT-skew -0.04 -0.1 -0.09 -0.01 -0.05 -0.03
GC-skew 0.29 0.31 0.3 0.28 0.29 0.36
srRNA A+T% 79.3 78.9 74.6 78.7 79.2 75.7
G+C% 20.7 21.1 25.5 21.3 20.8 24.3
AT-skew -0.03 -0.03 0 -0.01 -0.01 0.02
(Continued)
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Table 2. (Continued)

Region
GC-skew
Whole A+T%
mitgenome
G+C%
AT-skew
GC-skew

Cylindrotoma Paradelphomyia Pedicia Rhipidia Symplecta Tipula
0.26 0.27 0.26 0.23 0.25 0.25
76.7 77.5 7341 77.5 774 73.3
23.3 22.4 26.9 22.4 22.9 26.6
0.03 0.02 0.08 0 0.01 0.02
-0.18 -0.16 -0.21 -0.16 -0.14 -0.23

Note: The AT-bias and GC-bias of PCGs were calculated by the formulae: AT-skew = (A-T)/(A+T), GC-skew = (G-C)/(C+G).

doi:10.1371/journal.pone.0158167.t002

that found in every PCG, especially in ATP6, ND4l, ND6, ATP8, ND1, ND2 and ND3. All the
ATP6, ND4I, ND6 of nematoceran flies used TAA as stop codon, and TAG were found in a
minority of ATP8, NDI, ND2 and ND3. Two partial stop codons, T or TA, are found in COI,
CO2, CO3, ND4 and ND5, especially in CO1 and CO2. In ND4 and ND5, there are two kind of
partial stop codons (T or TA). (Fig 2, S6 Table).

Transfer and ribosomal RNAs

All 22 tRNA genes in S. hybrida and 19 of the 22 tRNA genes in the remaining five tipuloids
were identified. The length of mt tRNAs ranges from 64 bp to 72 bp. Most tRNA genes can be
folded into a typical clover-leaf secondary structure (Fig 3), whereas tRNAS" %N is an excep-
tion for lacking a DHU arm [59]. Some mispairings (U-U and G-U) are found in tRNAs. For
example, four mismatched base U-U pairs and 17G-U pairs are found in tRNA secondary
structures in S. hybrida, while no other types of mispairings are found.

The mt rRNA genes have frequently not been annotated via the use of functional features,
so it is hard to annotate them from their DNA sequences alone [56, 60-61]. Beckenbach has
proposed that the start of srRNA is AARGUUUU based on an alignment across dipteran and
mecopteran sequences [6]. Hence, we annotated the [rRNA gene as in other dipteran species,
where it is between tRNA™* (““N) and tRNA"*, while the srRNA gene is flanked at the 3’ end
by tRNA"* and the motif AARGUUUU. Furthermore, we inferred the secondary structures
for IrRNA and srRNA in the Tipuloidea using the sequences of S. hybrida based on the pub-
lished IrRNA and strRNA secondary structures, the sepsid fly Nemopoda mamaevi Ozerov, 1997
[56]. The secondary structures of IrRNA and srRNA are similar to those in N. mamaevi and
other Dipteran species [56, 62]. The [rRNA has five structural domains (domain III absent as in
other insects) and 42 helices while the sYTRNA includes 3 domains and 25 helices (Figs 4 and 5).

Phylogeny of Tipulomorpha

The phylogenetic trees based on BI analyses of two datasets are given in Figs 6 and 7. The tree
based on dataset PCG12RNA is disordered in four main branches (Fig 6), especially in the
infraorder Culicomorpha, which was a well-supported monophyletic clade in previous studies
[26, 29, 30, 41, 63, 64]. Then, we construct another tree based on dataset 5SPCG12RNA, which
are excluded eight difficult aligned genes (Fig 7). The monophyly of infraorder Culicomorpha
is well supported, as well as the Tipulomorpha and the Bibionomorpha. The BI tree of
5PCG12RNA supports the Ptychopteromorpha is the earliest branch within the Diptera, and
Psychodidae+Tanyderidae is the sister group to the Brachycera. However, two phylogenetic
trees have very similar topologies for the branch Tipulomorpha. The monophyly of Tipulo-
morpha (Trichoceridae + Tipuloidea) is consistently supported, as is the monophyly of
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Fig 2. Start and stop codons usage in nematoceran mt genomes. a: Start codons usage of PCGs in Nematocera; b:
Stop codons usage of PCGs in Nematocera.

doi:10.1371/journal.pone.0158167.g002

Tipuloidea (Cylindrotomidae, Limoniidae, Pediciidae, and Tipulidae sensu stricto). The mono-
phyly of the family Limoniidae is not supported, with one or more of the three limoniid species
grouping sister to the clade Cylindrotomidae + Tipulidae in each analyses. All analyses support
the Tipulomorpha as having an intermediate phylogenetic position within the lower Diptera,
never sister to the remaining flies or to the derived Brachycera.

The earliest linkage of the Nematocera and the phylogenetic position of the Tipulomorpha
within the lower Diptera were controversial. Tipulomorpha has been inferred to be the earliest
lineage of the Nematocera [26-27, 30] or as the most derived branch in the Nematocera [24].
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Fig 4. Inferred secondary structure of the IrRNA gene in Symplecta hybrida. The short line indicated the inferred Watson-
Crick bonds, and the dark dots indicated GU bonds.

doi:10.1371/journal.pone.0158167.g004

Transcriptome-based phylogenetic studies, however, thought that the Culicomorpha as the
earliest branch of the Diptera with the Tipulomorpha in intermediate branch [42-43]. Our BI
tree of 5PCG12RNA supports the Ptychopteromorpha as the earliest branch of the Diptera.
This result is consistent with Oosterbroek and Courtney’s morphological findings [31]. Ber-
tone’s phylogenetic tree based on multiple nuclear genes also supports the Ptychopteromorpha
topologically as one of the earliest branch of the order [38]. For the position of the Tipulomor-
pha, all analyses in our study support it as having an intermediate phylogenetic position within
the Nematocera, never sister to the remaining flies or to the derived Brachycera.

The composition of the infraorder Tipulomorpha has long been contentious. It has been
variously defined to include both Tipuloidea and Trichoceridae or just Tipuloidea [25-30].
Our molecular data supports a more traditional conception of Tipulomorpha as containing
both Tipuloidea and Trichoceridae, consistent with Hennig’s hypothesis [26]. This relationship
has also been accepted by some other researchers [35-39]. Beckenbach’s mt genome phylog-
eny, however, failed to give a clear resolution of this question [6]. In Beckenbach’s study, one
analysis using only a set of less variable major genes (CO1, CO2, CO3, CytB, ATP6 and rRNAs)
supported the pairing of these two families, whereas inclusion of all major genes inferred a
topology that would define Tipulomorpha as only consisting of Tipuloidea.

Within the Tipuloidea, Stary (1992) considered that the Limoniidae was the sister-group to
a clade Pediciidae + (Tipulidae + Cylindrotomidae) according to 11 adult morphological char-
acters [65]. The arrangement of Pediciidae being the sister-group to the remaining Tipuloidea,
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Fig 5. Predicted secondary structure of the srRNA gene in Symplecta hybrida. The conserved domain structures are
14/20

denoted by Roman numerals. The short line indicated the inferred Watson-Crick bonds, and the dark dots indicated GU

bonds.
doi:10.1371/journal.pone.0158167.9005
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Fig 6. Phylogenetic tree of Nematocera based on mt genome data PCG12RNA. Cladogram of relationships resulting from Bl with
Bittacus pilicornis, Boreus elegans and Jellisonia amadoi as outgroups. Numbers above the branches are posterior probabilities.

doi:10.1371/journal.pone.0158167.9006

was accepted by Ribeiro (2008) on the basis of 88 morphological characters and by Petersen

et al. (2010) based on combined morphological characters and two nuclear genes. Petersen

et al. (2010) showed that Cylindrotomidae and Tipulidae were sister-group. However, their
placement within Tipuloidea was less certain [66—67]. In our study, both BI analyses support
the Pediciidae as the sister-group of the remaining Tipuloidea. The sister relationship between
Tipulidae and Cylindrotomidae is also strongly supported in both analyses. These results are
concordant with Petersen et al.’s research, which presented a new classification system recog-
nizing a two-family Tipuloidea (Tipulidae and Pediciidae) [67]. Two trees had different topolo-
gies across Limoniidae, with the Limnophilinae sister to Chioneinae + Limoniinae and the
Chioneinae sister to Limnophilinae + Limoniinae. Anyway, family Limoniidae is not supported
as a monophyletic clade and subfamily Limoniinae seems to have a closer relationship with
Cylindrotomidae + Tipulidae.

Compared with Beckenbach’s study, we come to a steady conclusion on the composition of
the infraorder Tipulomorpha. The variation of the composition the Tipulomorpha in Becken-
bach’s study might be caused by lack of data from other tipuloids, especially the family Pedicii-
dae, which was the sister of the remaining Tipuloidea, in our BI analyses, or in a clade (along
with members of the Limoniidae) that is sister to the remaining Tipuloidea. Therefore, we con-
sider that increasing the sampling comprehensiveness, especially the relatively primitive group,
can help to give us a more reasonable phylogenetic tree.

In our study, Limoniidae is not a monophyletic clade. The family Limoniidae consists of
four subfamilies proposed by Stary (1992), of which the subfamily Dactylolabinae contains
only one genus. Although we selected representatives for the remaining three subfamilies, it
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Fig 7. Phylogenetic tree of Nematocera based on mt genome data 5PCG12RNA. Cladogram of relationships resulting from Bl with
Bittacus pilicornis, Boreus elegans and Jellisonia amadoi as outgroups. Numbers above the branches are posterior probabilities.

doi:10.1371/journal.pone.0158167.g007

seems that our current taxon sampling is not extensive enough to build an initial framework of
these clades. Therefore, further detailed studies with more taxa are needed before natural fami-
lies can be confidently defined within the Tipuloidea.
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