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Abstract

Disease or injury to articular cartilage results in loss of extracellular matrix components which can 

lead to the development of osteoarthritis (OA). To better understand the process of disease 

development, there is a need for evaluation of changes in cartilage composition without the 

requirement of extensive sample preparation. Near infrared (NIR) spectroscopy is a chemical 

investigative technique based on molecular vibrations that is increasingly used as an assessment 

tool for studying cartilage composition. However, the assignment of specific molecular vibrations 

to absorbance bands in the NIR spectrum of cartilage, which arise from overtones and 

combinations of primary absorbances in the mid infrared (MIR) spectral region, has been 

challenging. In contrast, MIR spectroscopic assessment of cartilage is well-established, with many 

studies validating the assignment of specific bands present in MIR spectra to specific molecular 

vibrations. In the current study, NIR imaging spectroscopic data were obtained for compositional 

analysis of tissues that served as an in vitro model of OA. MIR spectroscopic data obtained from 

the identical tissue regions were used as the gold-standard for collagen and proteoglycan (PG) 

content. MIR spectroscopy in transmittance mode typically requires a much shorter pathlength 

through the sample (≤10 microns thick) compared to NIR spectroscopy (millimeters). Thus, this 

study first addressed the linearity of small absorbance bands in the MIR region with increasing 

tissue thickness, suitable for obtaining a signal in both the MIR and NIR regions. It was found that 

the linearity of specific, small MIR absorbance bands attributable to the collagen and PG 

components of cartilage (at 1336 and 856 cm−1, respectively) are maintained through a thickness 

of 60 μm, which was also suitable for NIR data collection. MIR and NIR spectral data were then 

collected from 60 μm thick samples of cartilage degraded with chondroitinase ABC as a model of 

OA. Partial least squares (PLS) regression using NIR spectra as input predicted the MIR-

determined compositional parameters of PG/collagen within 6% of actual values. These results 

indicate that NIR spectral data can be used to assess molecular changes that occur with cartilage 

degradation, and further, the data provide a foundation for future clinical studies where NIR fiber 

optic probes can be used to assess the progression of cartilage degradation.
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 1. Introduction

The function of articular cartilage is to provide a near frictionless, load bearing surface for 

smooth articulation of joints [1]. Cartilage matrix, comprised primarily of type II collagen 

and proteoglycans (PGs), is prone to degeneration due to age, disease and or trauma, and the 

degeneration of matrix leads to the development of a painful condition called osteoarthritis 

(OA). Current clinical practice for identification of cartilage degeneration and severity of 

OA involves identification of symptoms related to OA progression, including pain and loss 

of motion. Subsequently, plain radiographs, and at times arthroscopic investigations, are 

used to confirm the diagnosis [2]. However, these techniques only offer a macroscopic or 

external view of the articular surface and are not useful in assessing cartilage molecular 

composition [3,4]. To monitor the progression of disease, advanced imaging techniques such 

as computer tomography (CT), ultrasound and magnetic resonance imaging (MRI) are used, 

but these techniques offer low specificity and sensitivity to macromolecular changes in 

cartilage degeneration [5–11]. Histological and biochemical assessment of biopsies offer 

insights into changing tissue composition during OA, but are not typically performed 

clinically [12,13]. In vitro studies have used mechanical testing as a tool for assessing OA 

progression, and studies have shown correlations with biochemical and histological findings 

[14]. However, mechanical testing only provides bulk properties of tissue and, as in the case 

of histological and biochemical assessments, involves destruction of samples. Thus, there is 

a pressing need for a technique that can reliably assess changes in the molecular 

composition of articular cartilage during OA progression with improved specificity and 

sensitivity to macromolecular content. Previous studies have shown that the degradation of 

proteoglycan is a hallmark of OA and cartilage degeneration [15,16]. Naturally, there is a 

turnover of PG in cartilage tissue, but in early stages of OA, PG degradation rate exceeds the 

regeneration of the molecules, causing tissue degradation. There is a significant inter-

individual variation in changes in PG content in early stages of OA [16]. However, it is 

likely that clinical evaluation of changes in composition within joint tissue from an 

individual patient could identify early disease.
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Fourier transform infrared imaging spectroscopy (FT-IRIS) has been used extensively to 

evaluate the composition of native and degraded cartilage, including semi-quantitative 

changes in collagen and PG concentration [17–23]. As each molecule has a unique 

absorption profile across the infrared spectral range, quantification of specific molecules is 

possible using the Beer–Lambert law, which relates the concentration of a chemical 

substance in a sample to the amount of infrared radiation absorbed [24]. Although there is an 

abundance of literature on the use of FT-IRIS in the mid infrared (MIR) range for cartilage 

assessment, there are far fewer studies that utilize the NIR spectral region, primarily due to 

the fact that the NIR spectral characteristics of tissues are not as distinct as those observed in 

the MIR region. The assignment of specific molecular vibrations to absorbance bands in the 

NIR spectrum of cartilage, which arise from overtones and combinations of primary 

absorbances in the MIR spectral region, has been challenging, and many absorbances 

attributable to matrix components are not unique to either collagen or PG [25]. However, the 

depth of penetration of NIR radiation is greater than MIR radiation (on the order of 

millimeters to centimeters, compared to microns) which potentially makes it more useful for 

investigations of intact tissue involving regions deeper than the superficial zone of cartilage 

[26–28]. Another advantage of studies in the NIR spectral range is that little to no sample 

preparation is required. This is in contrast to the use of FT-IRIS in the MIR range, which 

requires extensive sample preparation, typically embedding and thin sectioning of tissues.

NIR spectra of cartilage are dominated by water absorbances at 5200 cm−1 (bound and free 

water) [29,30], with smaller absorbances from matrix peaks present in the spectral range of 

interest between 4000 and 6000 cm−1 [25,30]. Changes in these absorbance bands have been 

shown to occur with tissue degradation [26,31], which can be very heterogeneous. To date, 

NIR evaluation of cartilage has been performed primarily with fiber optic probes on tissues 

with thicknesses in the millimeter range, with few studies directly comparing spectral data to 

gold standard biochemical measurements [25,32,33]. In contrast to NIR fiber optic data, 

collection of NIR spectral imaging data provides the opportunity to obtain NIR spectra from 

tissues at high spatial resolution, and enables direct correlation of those spectra with 

compositional information from MIR spectral data from the same tissues. In the current 

study, we obtained NIR spectral imaging data from an in vitro model of OA. Concomitantly, 

we also collected MIR spectral imaging data from the same locations, and used those data as 

the gold standard for molecular composition. Here, MIR data provides a faster and more 

quantitative tool to validate NIR measurements compared to traditional gold standard 

methods of biochemical or histological evaluations. Collection of MIR spectral data in 

transmittance mode typically requires a much shorter path length through the sample (≤10 

microns thick) compared to NIR spectroscopy (mms). Thus, we first addressed the linearity 

of small absorbance bands in the MIR region with increasing tissue thickness to identify a 

suitable thickness for simultaneously obtaining a signal in the MIR and NIR regions. The 

optimal thickness was then used for sequential collection of mid and near infrared spectral 

imaging data. This study provides data that can serve as a foundation for eventual in vivo 

NIR spectroscopic fiber optic applications for monitoring cartilage tissue compositional 

changes for clinical applications.
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 2. Methods

 2.1. Cartilage tissue preparation

Juvenile bovine knee joints (Research 87, Boylston, MA) and nasal snouts (Green Village 

Packing, Green Village, NJ) were obtained within 24 h of slaughter. Bovine nasal cartilage 

(BNC) and bovine articular cartilage (BAC) plugs (both hyaline cartilage) were harvested 

using a 5 mm biopsy punch (Ted Pella, Redding, CA) from nasal septa, and from femoral-

patellar grooves and medial condyles, respectively. The plugs were immersed in a 1 × 

phosphate buffered saline (PBS) solution containing a cocktail of protease inhibitors (Sigma 

Aldrich, St. Louis, MO) and stored at −20 °C. BNC plugs were thawed at room temperature, 

rinsed twice in 1 × PBS, embedded in OCT compound (Sakura Finetek, Torrance, CA) and 

flash frozen. The BNC plugs were utilized for thickness studies, due to their greater 

homogeneity of matrix composition compared to articular cartilage. They were embedded 

such that three fourths of the length of the plug was left free standing, thereby ensuring 

stability of the base for grasping the tissue in the cryostat while ensuring that the cut tissue 

sections were free of OCT. Serial sections of nasal cartilage at thicknesses of 10, 20, 40, 60 

and 80 μm were obtained using a HM 525 cryotome (Thermo Scientific, Dreieich, 

Germany). The cryosections were deposited on low-e slides (Kevley Technologies, 

Chesterland, OH) and silicon (Si) wafers (Fuzere Manufacturing Co., Sunnyvale, CA). The 

cryosections were air dried for 2 h prior to being imaged using FT-IRIS.

 2.2. Enzymatic degradation of articular cartilage (in vitro model of OA)

BAC plugs were allowed to thaw at room temperature before being rinsed twice in PBS 

(Invitrogen Life Technologies, Gaithersburg, MD). The plugs were subjected to an enzyme 

treatment procedure to degrade PGs, which produces tissue matrix changes that model OA 

[34]. Tissue from a control group (n = 7 plugs) were incubated in buffer solution (0.05 M 

Tris–HCl, 0.06 M sodium acetate, 2 mM PMSF, 2 mM EDTA, 5 mM benzamidine HCl and 

10 mM N-ethylmaleimide (Sigma Aldrich, St. Louis, MO), pH 8.0) and tissue from the 

treatment group (n = 8 plugs) were incubated in buffer solution containing 0.125 units of 

chondroitinase ABC per mL for 24 h at 25 °C with gentle agitation. The enzymatic 

degradation was stopped by washing the plugs in PBS for 15 min twice. Five plugs from the 

enzymatic degradation group and 4 control group plugs were immersed in PBS containing 

protease inhibitors for mechanical testing. The remaining plugs (n = 3) from each group 

were embedded in OCT (Tissue-Tek, Sakura Finetek, Torrance, CA) and flash frozen. The 

plugs were embedded in OCT such that three fourth of the plug was left free standing, and 

the tissues cryosectioned at 60 μm thickness onto Si wafers for spectral imaging, and at 20 

μm thickness onto electrostatically charged plus slides (Fisher Scientific, Fair Lawn, NJ) for 

histology. Similar to the BNC samples, these tissues were only partially embedded in the 

OCT to facilitate grasping the sample for sectioning, and there was not any OCT in the 

actual thin tissue sections. The cryosections on Si wafers were air dried for 2 h prior to being 

used for FT-IRIS.

 2.3. Infrared spectral imaging data collection

The tissues on Si wafers were imaged in transmittance mode and the tissues on low-e slides 

were imaged in transflectance mode (two common infrared data collection modes) on a 
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Spotlight 400 imaging spectrometer system with a Cassegrain condenser and objective 

(Perkin Elmer, Waltham, MA). The radiation was focused onto the surface of the tissue for 

data collection. Three sections per sample thickness were imaged in the spectral range of 

4000–780 cm−1 at 8 cm−1 spectral resolution, 25 μm spatial resolution and 8 co-added scans 

per pixel. Immediately after MIR spectral data acquisition for each section was complete, 

NIR spectral data were collected from a region of the tissue section. Only a portion of the 

tissue was imaged in the NIR due to increased data collection time, as a result of increased 

co-added scans required to obtain a reasonable signal to noise ratio. For NIR spectral 

images, a spectral range of 6000–4000 cm−1 was used at 8 cm−1 spectral resolution, 25 μm 

spatial resolution and 32 co-added scans per pixel. Background spectra were collected at 8 

cm−1 spectral resolution, 25 μm spatial resolution and 15 co-added scans for the MIR region 

and 8 cm−1 spectral resolution, 25 μm spatial resolution and 60 co-added scans for the NIR 

region. The sample images were ratioed to the background spectra for the MIR and NIR 

regions, respectively. Total spectral image acquisition time was approximately 10 min for the 

MIR spectral range, and 40 min for the NIR spectral range.

 2.4. Histological staining of articular cartilage

Alcian blue staining was used to visualize PG depletion in articular cartilage cryosections 

[35]. Stained sections were imaged on an inverted light microscope (Olympus, Center 

Valley, PA) with a 4× objective.

 2.5. Mechanical testing of articular cartilage

Mechanical testing of the control and degraded articular cartilage samples was performed to 

validate the damage to cartilage matrix due to enzymatic degradation. Uniaxial compression 

tests were performed on an Instron mechanical testing machine (Instron Mini 55, Instron, 

Norwood, MA) to assess equilibrium and dynamic compressive moduli, respectively. 

Samples were pre-loaded to 2 N at a rate of 1 mm/min and allowed to relax for 5 min before 

testing began. For equilibrium modulus, serial stress relaxation analysis was performed at 

compressive strains of 5, 10, 12.5 and 15% (time per step: 1 min for loading, 9 min for stress 

relaxation). The linear relationship of equilibrium stresses at each strain step determines 

equilibrium stiffness. Subsequently, the loading rate dependent dynamic modulus, calculated 

as the ratio of stress amplitude per strain amplitude, was interpreted from a 1% peak–peak 

compressive strain oscillation (mean 15%) applied at several frequencies.

Matlab's (Mathworks Inc, Natick, MA) curve fitting toolbox was used to determine (1) the 

equilibrium stress from each stress relaxation segment through a stretched exponential decay 

model [36] equilibrium modulus as a first order polynomial as a function of equilibrium 

stress at each strain step, and (3) oscillatory stress and strain amplitudes from Fourier 

transforms to calculate dynamic moduli.

 2.6. Mid and near infrared spectral data processing

MIR and NIR spectral data were analyzed using Isys 5.0 software (Malvern Instruments, 

Worcestershire, UK). Univariate data analysis of second derivative peak heights and 

integrated areas of the MIR 1336 and 856 cm−1 absorbances were used to semi-

quantitatively assess the amount of collagen and proteoglycan present in the samples, 
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respectively, and the linearity of the MIR data with increasing tissue thickness. Pre-

processing the spectra using second derivatives helped reveal the smaller matrix peaks that 

were not easily visible in the raw spectra due to the dominance of the water absorbances. An 

average mean value of all image pixels is reported for all samples groups. The area under the 

small absorbance peak near 1336 cm−1, that arises from the CH2 side chain vibrations, 

correlates to collagen present in cartilage [37]. Similarly, the area under the small 

absorbance peak at 856 cm−1 that arises due to C–O–S stretching linearly increases with 

aggrecan content [17]. The second derivative peak heights were multiplied by negative one 

to make the peaks positive. Regions in the spectral images from the control and 

enzymatically degraded cartilage that displayed a wide range of values in the collagen and 

PG absorbances were chosen and the corresponding NIR and MIR spectra extracted for 

analysis using Unscrambler X statistical software (CAMO Software, Oslo, Norway). The 

scattering effect in NIR images due to different particle sizes was minimized by applying an 

extended multiplicative scatter correction to the raw spectral data [38]. The scatter corrected 

spectra were then area normalized and converted to second derivative spectra using a 

Savitzky Golay differentiation window of 164 cm−1 and 3rd order polynomial. An algorithm 

was applied to the NIR spectra to filter noisy pixels (outliers) based on ± 2 standard 

deviations from the mean spectrum of each sample. A total of 672 spectra from the control 

group and 613 spectra from the chondroitinase ABC-treated group were analyzed. The 

second derivative peak heights at 5200 cm−1 were assessed to reflect the relative amount of 

water in the tissues [30]. As the tissues had been air dried for 2 h prior to imaging, and then 

exposed to the atmosphere for an additional 50 min while data were collected, the majority 

of the free water had evaporated from the sample, and only bound water remained [30].

Partial least square (PLS) regression, a multivariate variable reduction method, was used to 

predict the MIR parameters from the NIR scatter-corrected second derivative spectral data 

[39]. PLS models were validated using cross validation that included spectra from combined 

control and chondroitinase groups (n = 922 spectra). A random column of spectra (4 spectra 

per column) were kept out of the calibration model for each iteration of the cross validation. 

An independent test set comprising of a total of 363 spectra from both control and treatment 

groups was used to test the performance of the model. The quality of the prediction model 

was evaluated based on the root mean square error of prediction (RMSEP) and the R2 of 

actual vs. predicted values.

 3. Results and discussion

 3.1. Linearity of MIR parameters with increasing thickness

As sample thickness (pathlength) increases, the MIR absorbances with a high absorptivity 

coefficient can approach saturation. To address this issue in thicker tissue sections, we 

hypothesized that the intensity of absorbance bands with smaller absorptivity coefficients, 

such as those at 1336 and 856 cm−1, corresponding to collagen and PG respectively, would 

remain linear with increasing tissue thickness. In transflectance mode, there was a general 
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increase in integrated peak areas and second derivative peak heights of both the 1336 and 

856 cm−1 absorbances from 10 to 60 microns, although large standard deviations were 

present across multiple sections from the same sample (Fig. 1).

Interestingly, in transflectance, the peak areas and peak heights decreased with tissue 

thickness greater than 60 μm, suggesting a breakdown of linearity in Beer–Lambert's law 

[24]. A contributor to this is likely the effect of radiation going through a “double pass” 

through the sample in transflectance mode [40]. In contrast, the peak areas and peak heights 

from MIR data of samples imaged on silicon wafers in transmittance exhibit increased 

absorbance with increasing thickness for the full range of thickness investigated through 100 

μm (Fig. 1). Although the standard deviations at each thickness from multiple sections are 

low initially, the values are generally higher when section thickness is greater than 60 μm.

The peak areas and peak heights obtained from tissues on Si wafers in transmittance mode 

exhibit a more uniform trend with increasing sample thickness as compared to transflectance 

data from low-e slides. Nonetheless, the change in absorbance is not exactly linear. As BNC 

is not a completely homogeneous mixture, this non-linearity might be due to changes in 

concentrations of collagen and PG with increasing thickness. Increased scattering with 

thicker tissue sections leads to non-linear changes in absorbance, which might also 

contribute to the observed non-linearity. The process of microsectioning using a cryotome 

also can result in small deviations in sample thickness with increasing thickness. Together, 

these data supported the use of transmittance sampling in the thickness range of 20–60 μm, 

which demonstrated increases in absorbances and peak heights.

 3.2. Optimization of sample thickness for MIR and NIR data acquisition in transmittance

The ratio of changes in peak areas of the 1336 and 856 cm−1 absorbances with increasing 

sample thickness were similar to those obtained with peak height ratios, supporting the use 

of either analysis (Table 1). Nonetheless, it is interesting to note that although thickness 

increased three-fold from 20 to 60 microns, the absorbances and peak heights only increased 

~ two-fold. This likely indicates a loss of radiation due to scattering.

To select the appropriate thickness for NIR spectral imaging, sample thicknesses of 20, 40, 

60 and 80 μm were imaged and the signal to noise ratios (SNR) were evaluated (Table 2). 

The NIR SNR from the 60 μm tissue sections was 2 times greater than the SNR of the 40 μm 

sections with better peak resolution (data not shown). The 60 μm sections had lower SNR 

than 80 μm sections, but the resolution of the peak absorbances were comparable to that at 

80 μm. Since use of 60 μm thick slices would result in a smaller amount of tissue being 

consumed for cryosectioning compared to 80 μm thick slices, a 60 μm sample thickness was 

chosen for further analysis, and for comparison of second derivative peak heights at 1336 

and 856 cm−1 obtained from tissue sections imaged on Si wafers in transmittance mode. 

Data from samples sectioned at 60 μm are used to show the compositional and spectral 

changes in the figures.

 3.3. Histological and mechanical evaluation of enzymatically degraded articular cartilage

Many studies have employed enzymatic cartilage degradation, including the use of 

chondroitinases, to simulate osteoarthritic conditions in vitro [14,41–47]. Chondroitinases, a 
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family of endoglycosidases that act on glycoproteins, specifically proteoglycans, have been 

extensively used in articular cartilage studies to degrade proteoglycans [48–53]. In this study 

we treated articular cartilage plugs with chondroitinase ABC to leach PGs and create regions 

of low PG content in tissue. Histological staining with alcian blue, which stains 

mucopolysaccharides, showed depletion of PGs from the superficial surface and edges of the 

treated samples (Fig. 2). The surface of the enzyme treated samples also showed severe 

fibrillation due to loss of structural integrity. Some minor fibrillations, attributed to cutting 

artifacts, were also present on the control surface. In previous studies where cartilage 

enzymatic degradation was used to model OA, the decrease in PG content with enzymatic 

degradation ranged from 50% [41] to between 5 and 18% [46,47]. Although the specific 

amount of degradation was not quantified here, the histological images show depleted PG 

through approximately 20% of the tissue, which is in the range of other studies.

Mechanical testing revealed a significant decrease in mechanical properties of the 

enzymatically-degraded cartilage plugs compared to controls (Fig. 3). The chondroitinase 

ABC treated samples exhibited significantly lower equilibrium stiffness values, as well as 

dynamic stiffness values, at 1 and 0.1 Hz. Compressive equilibrium and dynamic stiffness of 

a viscoelastic material explain the mechanical behavior of a material under extended periods 

of loading and repeated loading, respectively. The loading forces used in the mechanical 

testing are analogous to standing for a period of time in the case of equilibrium loading, or 

motion at various rates in the case of dynamic loading. The lower values of equilibrium and 

dynamic stiffness in enzyme treated samples can be attributed to significant leaching of the 

PGs from the surfaces. Proteoglycans are negatively charged and entrap water in the 

collagen mesh network, enabling the cartilage to resist compressive forces. Loss of PGs 

results in loss of bound water from the cartilage matrix, decreasing the ability of cartilage 

matrix to effectively counter the loading force. Taken together, the histological and 

mechanical testing results suggest that there was a significant difference in the composition 

and function of enzymatically degraded vs. control cartilage, and confirms that a clinical 

level of degradation exists in these samples.

 3.4. Mid and near infrared spectral imaging analysis of degraded articular cartilage

As expected from the contrast in the histology images, MIR spectra of control and enzyme 

treated samples show differences in the proteoglycan content, in particular in the superficial 

zone (Fig. 4A). The overall contour of the MIR spectra from the deep zone is similar for 

control and chondroitinase-treated samples (4B). The NIR spectral contours are also similar, 

but with slight differences in baseline offsets (Fig. 4C, D). The distribution of PG (856 cm−1 

second derivative peak heights) in the control samples increased through the middle and 

deep zone (Fig. 5), in accordance with literature reports of matrix distribution in articular 

cartilage [1], and in agreement with the alcian blue histology for PG (Fig. 2). The 

distribution of collagen (1336 cm−1) followed the opposite trend, with higher content in the 

superficial zone and middle zone compared to the deep zone of cartilage (Fig. 5).

Compared to control samples, the chondroitinase ABC treated samples showed a marked 

decrease in the peak height values of 856 cm−1 (PG content), especially in the superficial 

zone (Fig. 5). This PG depletion pattern is due to the fact that the enzyme solution diffuses 
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into the sample from the outer edges. The NIR imaging spectra displayed broad matrix 

peaks or shoulders at 4060, 4390, 4600 and 4890, and a water peak at 5200 cm−1 (Fig. 4C 

and D). Regional differences in water content were evident between control and 

chondroitinase ABC treated samples, primarily in the superficial zone (Fig. 5). As expected, 

the water distribution generally follows the PG distribution in the MIR and NIR spectral 

images [54].

 3.5. Validation of NIR spectral imaging data with MIR spectral imaging data– PLS 
analysis

Multivariate analyses (e.g. PLS s) are powerful techniques for investigation of spectral data 

when overlapping absorbances are present, or if absorbances cannot be assigned to specific 

components, as is often the case for NIR spectral data. Although the water absorbances in 

cartilage have been assigned, many of the absorbances attributable to matrix components are 

not unique to either collagen or PG, and so cannot be utilized as a surrogate for 

concentration. However, based on the MIR-determined peak heights, we can predict the 

relative amounts of collagen and PG, as well as the ratio of collagen to PG, from NIR 

spectra using the entire 4000–6000 cm−1 spectral range and PLS modeling (Table 3). The 

best prediction was for the ratio of PG/collagen, with a percent error of 6%, while the 

prediction errors for either component separately was ~10%. The best prediction error 

presented in this work was in the same range, but slightly improved, as previously reported 

for our PLS models from other studies, where articular cartilage composition was predicted 

based on mixtures of pure components of collagen and chondroitin sulfate [25], and 

engineered cartilage composition was predicted based on biochemical evaluations [55]. In 

the current data set, spectra from control and enzymatically degraded tissues were used both 

to create the model and for the independent prediction set. This reflects the most 

physiologically relevant case, where tissues being investigated would likely have some 

regions that are “normal”, and some regions that are degraded or otherwise diseased. In PLS 

multivariate analysis, original data (infrared spectra in this study) are reduced based on a 

new coordinate system with orthogonal components (factors) that are able to explain the 

maximum amount of variation among samples. Loading vectors reflect these factors, and 

can be correlated to different regions of the original dataset. PLS loading vectors in the 

current study were evaluated for all three models presented in Table 3 to see whether there 

are specific regions of the infrared spectra that best explain the differences among samples, 

and underlie the correlation between the MIR and NIR spectral data. Loading vectors 

associated with Factors 1 and 2 were able to explain at least 63% of variation in the models 

(ranging from 63% to 87%), where Factor 1 has large contributions at 4300 cm−1 and 4600 

cm−1, regions that are correlated to matrix components proteoglycan and collagen, and 

Factor 2 is dominated by the water peak at 5200 cm−1 (Fig. 6). Notwithstanding these 

encouraging results, it is likely that the error in the PLS model predictions could be 

minimized by using separate training and prediction sets from a wider range of tissue 

composition, or alternatively by the use of non-linear regression techniques, which were not 

investigated in this study.

In summary, the minimum tissue thickness required for acquisition of MIR and NIR spectral 

data from the same sample were established. By analyzing the MIR spectral imaging data of 
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BNC tissues of varying thickness, the linear range of small absorbances peaks attributable to 

collagen and PG was demonstrated. MIR spectroscopy faces a penetration depth limitation 

in clinical applications. However, MIR measurements of cartilage matrix components are 

well defined from previous studies, and provide a robust tool for validation of NIR 

measurements. Thus, NIR imaging spectroscopy analysis was validated using MIR spectral 

data in this study to provide a foundation for eventual clinical applications using a fiber optic 

probe modality of NIR spectroscopy during arthroscopic procedures, as have recently been 

described. Future fiber optic studies will have several challenges not addressed in the current 

study, including evaluation of tissues in a physiological environment where the water content 

is much greater, and understanding the natural variability of cartilage composition due to 

age, gender, and anatomic location. Nevertheless, the results of the current study are 

encouraging, and support further NIR spectral studies of pathologic cartilage changes 

[26,56–58].
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HIGHLIGHTS

• Near infrared (NIR) and mid infrared (MIR) spectral imaging were used to 

assess articular cartilage composition from the identical tissue region.

• An optimal thickness was determined for obtaining NIR and MIR spectral 

data simultaneously from the same tissue.

• NIR spectra in 4000–6000 cm−1 range were used to build a PLS model to 

predict MIR-derived cartilage compositional parameters within 6% of 

actual values.

• Results support use of NIR spectroscopy for assessment of cartilage 

composition.
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Fig. 1. 
Average peak areas (A,B) and peak heights (C,D) of MIR parameters at 1336 cm−1 and 856 

cm−1 with varying sample thicknesses and data collection modes (transflectance and 

transmittance).
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Fig. 2. 
Representative light microscopy images of alcian blue stained control (left) and 

chondroitinase ABC treated (right) articular cartilage samples. The arrow indicates the 

superficial zone. As the fluid diffuses into the sample from the outer edges, digestion 

removes the proteoglycan from the superficial zone to the greatest extent. (For interpretation 

of the references to color in this figure legend, the reader is referred to the web version of 

this article.)
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Fig. 3. 
Mechanical properties of enzymatically treated articular cartilage samples of control (N = 4) 

and chondroitinase ABC digested (N = 5) sample groups. *, #, † indicate significant 

differences between groups with p < 0.05.
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Fig. 4. 
Average MIR (A,B) and NIR (C,D) spectra from the superficial and deep zones of control 

and chondroitinase ABC-treated samples. Arrows indicate peaks of interest, for MIR 

(collagen, 1336 cm−1, and PG, 856 cm−1) and NIR (water, 5200 cm−1 and matrix peaks, 

4060, 4390, 4600 and 4890 cm−1). PG depletion is evident in the chondroitinase ABC-

treated superficial zone MIR spectra compared to control. Imaging spectroscopy was done in 

transmittance mode from tissues sectioned on Si wafer substrates.
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Fig. 5. 
Representative 2nd derivative peak height spectral images based on the MIR collagen 

(assessed at 1336 cm−1) and PG absorbance (assessed at 856 cm−1), and NIR water content 

(assessed at 5200 cm−1). Component distribution is shown in control and chondroitinase-

treated ABC treated samples. The arrow indicates the superficial zone. Imaging 

spectroscopy was done in transmittance mode from tissues sectioned on Si wafer substrates.
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Fig. 6. 
Loading vectors associated with Factors 1 (A) and 2 (B) explained 27% and 36% of the 

variation in the model, respectively, where Factor 1 has a greater contribution from the 

matrix peaks, and Factor 2 is dominated by the water peak at 5200 cm−1.
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Table 1

Average ratio of MIR parameter values obtained from 60 to 20 micron thick tissues imaged in transmittance 

on silicon wafers (N = 6).

MIR data Parameters Parameter ratio ± SD (value at 60 μm/value at 20 μm)

1336 cm−1 peak area 2.03 ± 0.200

1336 cm−1 second derivative peak height 1.98 ± 0.200

856 cm−1 peak area 2.25 ± 0.116

856 cm−1 second derivative peak height 2.23 ± 0.131
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Table 2

Signal-to-noise (SNR) ratios of near infrared spectral images collected in transmittance at varying thicknesses 

(N = 3 images per thickness, 1000 pixels each image).

Sample thickness Average SNR Standard deviation

20 μm 400 ±136

40 μm 700 ±148

60 μm 1400 ±211

80 μm 2200 ±301
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Table 3

PLS models used for predicting MIR parameters from NIR scatter-corrected, second derivative spectral data. 

Models were created based on a training set of 488 spectra from two control samples and 434 spectra of two 

enzymatically-digested samples. Prediction was conducted on a test set of 184 spectra of one control sample 

and 179 spectra of one enzymatically-digested sample.

Peak height or peak height ratio RMSEP Range (peak height or ratio) RMSEP (percent of 
range)

R-squared (prediction vs. 
Experiment)

1336 cm−1 3.6 × 10−4 5.3 × 10−4 – 4.5 × 10−4 9% 0.55

856 cm−1 3.1 × 10−4 9.7 × 10−5 – 2.8 × 10−3 11% 0.54

856/1336 cm−1 2.2 × 10−1 3.6 × 10−2 – 3.4 6% 0.46
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