
Vertebrate phototransduction represents an extremely 
well-studied example of sensory signaling at a molecular, 
biochemical, electrophysiological, and modeling level. The 
activation steps are particularly well understood and have 
been modeled quantitatively [1] in a manner that has been 
shown to accurately describe the onset of the electrical 
response of rods in many studies. The shut-off and light 
adaptation of the phototransduction cascade have also been 
modeled in several studies, but there has not yet been accep-
tance of a single comprehensive description.

Intense research interest has centered on the nature 
of the shut-off of a single activated molecule of rhodopsin 
(R*) and how this may account for the observed properties 
of the single-photon response (SPR) of rods. Ever since the 
discovery that the amplitude distribution of SPRs exhibits 
a coefficient of variation (standard deviation [SD]/mean) of 
cv ≈ 0.2 [2], far lower than the value of unity expected for 
a single stochastic event, there has been speculation about 
the underlying mechanisms. Models have been put forward 
that involve a postulated long series of unknown steps in the 
shut-off of R* [3,4] or alternatively a single stochastic shut-off 
step under feedback regulation by Ca2+ [5].

A molecular model of the SPR was formulated by 
Hamer et al. [6,7], who developed a stochastic “front end” 
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Purpose: To examine the predictions of alternative models for the stochastic shut-off of activated rhodopsin (R*) and 
their implications for the interpretation of experimentally recorded single-photon responses (SPRs) in mammalian rods.
Theory: We analyze the transitions that an activated R* molecule undergoes as a result of successive phosphorylation 
steps and arrestin binding. We consider certain simplifying cases for the relative magnitudes of the reaction rate constants 
and derive the probability distributions for the time to arrestin binding. In addition to the conventional model in which 
R* catalytic activity declines in a graded manner with successive phosphorylations, we analyze two cases in which the 
activity is assumed to occur not via multiple small steps upon each phosphorylation but via a single large step. We refer 
to these latter two cases as the binary R* shut-off and three-state R* shut-off models.
Methods: We simulate R*’s stochastic reactions numerically for the three models. In the simplifying cases for the ratio 
of rate constants in the binary and three-state models, we show that the probability distribution of the time to arrestin 
binding is accurately predicted. To simulate SPRs, we then integrate the differential equations for the downstream reac-
tions using a standard model of the rod outer segment that includes longitudinal diffusion of cGMP and Ca2+.
Results: Our simulations of SPRs in the conventional model of graded shut-off of R* conform closely to the simulations 
in a recent study. However, the gain factor required to account for the observed mean SPR amplitude is higher than can 
be accounted for from biochemical experiments. In addition, a substantial minority of the simulated SPRs exhibit features 
that have not been reported in published experiments. Our simulations of SPRs using the model of binary R* shut-off 
appear to conform closely to experimental results for wild type (WT) mouse rods, and the required gain factor conforms 
to biochemical expectations. However, for the arrestin knockout (Arr−/−) phenotype, the predictions deviated from ex-
perimental findings and led us to invoke a low-activity state that R* enters before arrestin binding. Our simulations of 
this three-state R* shut-off model are very similar to those of the binary model in the WT case but are preferred because 
they appear to accurately predict the mean SPRs for four mutant phenotypes, Arr+/−, Arr−/−, GRK1+/−, and GRK1−/−, in 
addition to the WT phenotype. When we additionally treated the formation and shut-off of activated phosphodiesterase 
(E*) as stochastic, the simulated SPRs appeared even more similar to real SPRs, and there was very little change in the 
ensemble mean and standard deviation or in the amplitude distribution.
Conclusions: We conclude that the conventional model of graded reduction in R* activity through successive phos-
phorylation steps appears to be inconsistent with experimental results. Instead, we find that two variants of a model in 
which R* activity initially remains high and then declines abruptly after several phosphorylation steps appears capable 
of providing a better description of experimentally measured SPRs.
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description of R* shut-off that fed into a deterministic 
downstream description of the remainder of the cascade. In 
conformity with the earlier biochemical findings of Gibson 
et al. [8], the stochastic description postulated that succes-
sive phosphorylation steps (mediated by rhodopsin kinase, 
encoded by GRK1) led to successive reductions in R* cata-
lytic activity; subsequently, arrestin binding completely 
terminated the activity. The downstream part of the model 
resembled other fully deterministic models of phototrans-
duction, and in particular it incorporated Ca2+ feedback (via 
guanylate cyclase-activating proteins, GCAPs) onto guanylyl 
cyclase activity. The resulting simulations provided a good 
description of the amplitude distribution and kinetics of SPRs 
[6,7]. That stochastic model has been modified and extended 
in a variety of ways in subsequent studies [9-12], some of 
which have explicitly included longitudinal diffusion of the 
cytoplasmic messengers, cGMP and Ca2+ [9,11]. In addition, 
various refinements to the deterministic downstream reac-
tions have also been proposed [13-15].

Each of these descriptions of stochastic R* activity 
[6,7,9-12] has modeled R* activity as declining in a graded 
manner with successive phosphorylation events, as suggested 
in a biochemical study [8]. However, there has been no direct 
evidence for multiple partial reductions in R* activity by 
successive phosphorylation steps. In this paper, we investi-
gate alternative possibilities.

Two troublesome issues become apparent when simula-
tions are undertaken using the model of graded shut-off in 
R* activity. First, the required catalytic activity of the phos-
phodiesterase (PDE) is approximately double the magnitude 
that has been determined through biochemical measurements. 
Second, a minority of the simulated SPRs exhibit a late 
plateau-like region that is not obviously consistent with the 
individual SPRs that one observes experimentally.

Because of these considerations, we decided to examine 
the consequences of dispensing with the assumption that 
the sequential phosphorylation steps gradually reduce R* 
activity. We discovered that when R* activity does not decline 
in this way it is possible to provide a parsimonious account 
of the properties of the SPR while avoiding the shortcomings 
alluded to above.

THEORY

In this section, we examine several models of stochastic 
shut-off of R* activity involving sequential phosphorylation 
of activated R* followed by arrestin binding. In accord with 

previous analysis, we assume that the SPR is not significantly 
affected by altered Ca2+ concentration acting via recoverin 
[6,9,11]. More generally, we assume that the rate constants 
of transition are independent of downstream events in the 
phototransduction cascade so that, importantly, we are able 
to restrict consideration to cases where the molecular transi-
tion rates depend only upon the state in which the molecule 
currently exists.

Sequential phosphorylation of equivalent residues, followed 
by arrestin binding: As in previous studies, we assume that 
all the phosphorylation sites, whether Ser or Thr, are equiva-
lent to each other. In the general case illustrated in Figure 
1A, the R* molecule passes sequentially through a series of 
states in which one extra phosphate is added at each step 
(green arrows). Because the sites are assumed equivalent, it is 
only necessary to monitor the number of phosphates attached, 
rather than keep track of which sites they have been attached 
to. Arrestin can bind to any of these states (blue arrows), 
thereby terminating R* activity.

The active states, R*·P(n), are shown in red, and the inac-
tivated states, R*·P(n)·Arr, are shown in black. The integer n 
indicates the number of phosphates attached and runs from 
zero up to the number of residues that can be phosphorylated, 
that is, n = 0 ... N, where typically N = 6, as shown explicitly in 
Figure 1B. The initial activate state, R*·P(0), represents non-
phosphorylated metarhodopsin II, which is formed rapidly 
after photoisomerization. Each state R*·P(n) may undergo 
one of two reactions: it may be phosphorylated to become 
R*·P(n+1), or it may bind arrestin to become R*·P(n)·Arr. We 
denote the rate constant at which R*·P(n) undergoes phos-
phorylation as ν(n), in green, and the rate constant at which it 
undergoes arrestin binding as μ(n), in blue. The mean rate at 
which the molecule exits state R*·P(n) is ν(n)+μ(n), while the 
probability that the exit reaction corresponds to phosphoryla-
tion rather than to arrestin binding is ν(n)/{ν(n)+μ(n)}. Because 
each of the arrestin-bound states R*·P(n)·Arr has zero ability 
to activate transducin, these states can all be ignored, and 
there is no need to indicate any reactions involving them.

Note that we have not yet needed to specify the catalytic 
activity of R*·P(n). That activity only needs to be known 
when we solve the downstream deterministic equations.

Analysis of arrestin binding times: We now examine the time 
to arrestin binding, tArr, and its probability distribution, p(tArr). 
For the arrestin binding reaction, we follow recent studies by 
assuming that some number, M, of phosphates need to have 
been attached before arrestin can bind and that subsequent 
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states bind arrestin with a fixed rate constant. This assump-
tion is based on the biochemical experiments of Vishnivetskiy 
et al. [16]. The rate constant μ(n) of arrestin binding to state 
R*·P(n) is

	
µ µ µ( ) , ... ; ( ) , ... . (n n M n n M N= = = =0 0 1 0 for   -  for             .. )1 	

For example, with M = 3, as shown in Figure 1B, the 
states with zero, one, or two phosphates cannot bind arrestin, 

whereas each of the subsequent states with three or more 
phosphates binds arrestin with the fixed rate constant μ. 
At this stage, we leave the values for the phosphorylation 
rate constants completely general and simply denote them 
as ν(0), ν(1) ... ν(N−1). Note that ν(N) = 0 because the fully 
phosphorylated state cannot be further phosphorylated. The 
parameters N and M and the required rate constants are 
described in Table 1, together with their default values.

Figure 1. Models for the progression of an R* molecule through successive states of phosphorylation and arrestin binding. Photoisomerization 
generates the fully active state R*·P(0), representing non-phosphorylated metarhodopsin II. The C-terminus is successively phosphorylated 
by rhodopsin kinase, and the number n of attached phosphate groups is indicated as R*·P(n). At each step, there is a possibility that arrestin 
can bind to create the form R*·P(n)·Arr, which is inactive. A: General case for phosphorylation and arrestin binding. The rate constants are 
unconstrained, and for state R*·P(n) the rate constants of phosphorylation and arrestin binding are denoted as ν(n) and μ(n), respectively; 
however, the single molecule can undergo only one of these two reactions. B: Arrestin binding is assumed not to occur until M = 3 phosphates 
have attached and then to occur with the same rate constant irrespective of how many phosphates have been attached. For simplicity, the 
arrestin-bound states are not shown, as they are inactive. C: The truncated linear sequence to which the scheme in panel B is equivalent 
(see Theory). D: Alternative “three-state” scheme, in which the catalytic activity of phosphorylated R* drops to a lower level after M = 3 
phosphates have attached and before arrestin binding. The rate constant of transition to this low-activity state is κ, and the subsequent rate 
constant of arrestin binding is again μ. E: The truncated linear sequence to which the scheme in panel D is equivalent.
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Amazingly, the assumption embodied in Equation (0.1) 
leads to a major simplification. Because each of the states 
with M or more phosphates inactivates by binding arrestin 
at the common rate, μ, it is irrelevant whether any additional 
phosphates are added once M have been attached. Therefore, 
we reach the astonishing prediction that the cascade can be 
truncated at any stage after state M, and yet the predicted 
kinetics of arrestin binding will be unaltered. In particular, 
the cascade can be truncated right at stage M, as illustrated 
for the case of M = 3 in Figure 1C. What this means is that the 
only phosphorylation rate constants that affect the kinetics 
of arrestin binding are those for the first M steps leading up 
to the formation of R*·P(M). This prediction came as such a 
surprise that we checked it numerically, by running simula-
tions using different numbers N of available sites for phos-
phorylation, and for each N ≥ M that we tested, we obtained 
probability distributions (not shown) that were identical, 
within the noise.

For reaction schemes of the type illustrated in Figure 
1C, the macroscopic solution for the impulse response was 
analyzed by Baylor, Hodgkin and Lamb [17]. For several 
simplifying cases of the rate constants, they derived the time 
course of state M, and in our formulation this represents the 
probability density function for the time to arrestin binding, 
tArr. From their equations we can readily obtain analytical 

solutions for the predicted probability density p(tArr) in three 
straightforward cases. The expressions that we derive have 
utility in two distinct ways. First, these equations provide us 
with multiple checks on the accuracy of the stochastic simula-
tions that we perform. Second, in our “binary R* shut-off” 
model, they provide conveniently simple analytical expres-
sions for the distribution of R* lifetimes, that can be used 
in conjunction with the deterministic set of reactions for the 
downstream phototransduction cascade to provide analytical 
expressions for the predicted distribution of SPR amplitudes.

Case 1: All rate constants equal: The simplest case occurs 
when all the non-zero rate constants are equal, in other words, 
when all the phosphorylation rate constants (at least those up 
to M−1) are the same as the common arrestin binding rate 
constant, μ, defined above in Equation (0.1), so that

	 v n n M( ) , .= =µ  for  ... -     (0.2)0 1 	

In this case of “all rate constants equal”, the probability 
density function for the time to arrestin binding, p(tArr), is 
obtained from Equation (44) in [17] as

	
p t t e

M

M t

( ) ( )
!

.Arr
Arr

Arr

       (0.3)=
−µ µ µ

	

Note that, as we discovered above, this solution is 
independent of the total number of sites, N, and instead is 

Table 1. Stochastic R* parameters.

Symbol Description Value Units
Model 1: Conventional graded R* shut-off

N Number of sites for phosphorylation 6
M Minimum phosphates for Arr binding 3

νmax Maximal rate constant of phosphorylation 80 s−1

μ Rate constant of Arr binding 20 s−1

ωP Exponential factor for phosphorylation 1
ωG Exponential factor for R* activity 1

Model 2: Binary R* shut-off 
 Case 1: All rate constants equal

N Number of sites for phosphorylation Any, ≥3
M Minimum phosphates for Arr binding 3

ν, μ Rate constants for all reactions 60 s−1

Model 3: Three-state R* shut-off 
 Case 1: All rate constants equal

N Number of sites for phosphorylation Any, ≥3
M Minimum phosphates before Arr binding 3

ν, κ, μ Rate constants for all reactions 60 s−1

ρlow Fractional R* activity in low-activity state 0.1
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a function of the minimum number of sites, M, required for 
arrestin binding. Note also that Equation (0.3) is the same 
“Poisson equation” that was derived for equal rate constants 
by Fuortes and Hodgkin [18] in their classic study of Limulus 
photoreceptor responses.

In this Poisson case, it is straightforward to integrate 
Equation (0.3) to obtain the cumulative probability density 
for arrestin binding, P(tArr), as

	

P t p t t e t
k

t
t k

k

M

( ) ( ) ( )
!

.Arr d    (0.4)
Arr

= = − −

=
∫ ∑1
0 0

µ µ

	

One can also obtain the mean time to arrestin binding 
and the coefficient of variation (cv = SD/mean) of the time to 
arrestin binding as

	 mean      (0.5)Arr( ) ( ) /t M= +1 µ 	

	 cv     (0.6)Arr( ) /t M= +1 1 	

Case 2: Common arrestin binding rate constants and common 
phosphorylation rate constants: When each of the phosphory-
lation rate constants (at least up to M−1) is common, ν, but 
different from the common non-zero arrestin binding rate 
constant, μ, we have

	 v n v n M( ) , ...= = for   -     (0.7)0 1 	

with the arrestin binding rate constants still defined by 
Equation (0.1). This case was termed “Final rate constant 
different” in [17], where the solution was given as their Equa-
tion (45). That solution may be rewritten here as

	

p t e e
t

k

M
t t

k

M
k

( )
!Arr

 ArrArr Arr=
−


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
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−
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1


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






  (0.8)

	

In this case, the mean and cv are more complicated and 
will not be presented.

Case 3: Rate constants arranged arithmetically: A third 
tractable simplification arises when the rate constants of 
phosphorylation and arrestin binding happen to be arranged 
arithmetically; that is, when

	
v n M n n M( ) ( ) ,= + − = −1 0 1µ  for  ...   (0.9) 	

with the common non-zero arrestin binding rate constant 
μ still defined by Equation (0.1). In this model, with M = 3, 
the four non-zero rate constants would be 4 μ, 3 μ, 2 μ, and μ. 
This situation was termed “Independent activation” in [17], 

where the solution was given as their Equation (37), and may 
be written as

	
p t M e et t M( ) ( ) ( ) . ( . )Arr

  Arr Arr    = + −− −1 1 0 10µ µ µ

	

In this case, one can apply integration to obtain the mean 
time to arrestin binding as

	
mean    (0.11)Arr( )t

kk

M

=
=

+

∑1 1
1

1

µ 	

which, for M = 3, reduces to mean(tArr) = 25/12 μ-1. It 
is noteworthy that both Equation (0.5) and Equation (0.11) 
conform to the expectation for a stochastic cascade that the 
mean time taken to reach a given state is equal to the sum of 
the mean dwell times for the individual transitions leading 
up to that state.

Next, we describe three models for the way in which the 
R* molecule becomes inactivated as it progresses through 
the reaction steps illustrated in Figure 1 and analyzed above.

Model 1: Conventional case of graded reductions in R* 
activity: In the conventional model of graded reductions in 
R* catalytic activity, we follow the formulation of previous 
studies by specifying the transition rate constants for state 
R*·P(n) as

	
v n v n n N v N( ) exp( ), ; ( ) .max= − = =ωP  for  ... -       (1.1)0 1 0 	

This equation indicates that the strength of the phos-
phorylation reactions declines monotonically as the number 
of attached phosphates increases, as reported in biochemical 
experiments [8]. We are not aware of any way of obtaining 
an analytical solution for the probability distributions of the 
states in this case. Together, Equations (0.1) and (1.1) contain 
three parameters (νmax, ωP, and μ) that need to be specified 
before stochastic simulation can be undertaken.

For subsequent substitution into the downstream trans-
duction cascade, we need the catalytic activity of each state, 
R*·P(n). It is convenient to express this in fractional terms, 
ρ(n), where ρ(0) = 1 for the initial state R*·P(0). As in previous 
studies, this fractional catalytic activity is presumed to 
decline exponentially with n:

	
ρ ω( ) exp( ), .n n n N= − =G  for  ...    (1.2)0 	

Here, we allow for the possibility that the steepness 
parameter, ωG, may be different from the steepness param-
eter ωP for phosphorylation in Equation (1.1); this was also 
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permitted in [9], whereas in [6] and [11] it was assumed that 
ωG = ωP.

Model 2: “Binary” R* activity: In the second model, we 
dispense with the assumption that the catalytic activity of 
R*·P(n) declines with the increasing number of attached 
phosphates, and instead we assume that the activity ρ(n) is 
constant. We refer to this as “binary” R* activity, because the 
R* remains fully active until it binds arrestin.

	 ρ( ) , .n n N= =1 0 for  ...    (2.1) 	

To determine the time course of R* activity in this model, 
we only need the time tArr until arrestin binds, and it was the 
realization of this fact that provided the main impetus for 
deriving analytical expressions for the probability distribu-
tions of tArr in the preceding section.

Of particular importance is the cumulative probability 
distribution, P(tArr), because in the binary activity model the 
activity of R* is unity until arrestin binds, whereupon it drops 
to zero. Therefore, the mean R* activity is simply the comple-
ment of P(tArr), that is,

	 R t P t* ( ) ( ).bin    (2.2)= −1 	

Therefore, for the case of “all rate constants equal”, 
Equation (0.4) gives the mean time course of R* activity as

	
R t e t

k
t

k

k

M

* ( ) ( )
!

.bin    (2.3)= −

=
∑µ µ

0 	

At very early times, this expression approximates to

	
R t

t
Mt

M
*

bin +
.  (2.4)( ) −

( )
( )

≈
→

+

0

1

1
1

µ
!

	

Therefore, in the binary R* model, the initial time course 
of R* activity does not approximate an exponential decay but 
is instead “flat-topped”, as shown in the Results section.

The expected form for the probability distribution of SPR 
amplitudes can be readily determined in the binary R* model, 
because the solution of the downstream reaction cascade 
involves only a single stochastic parameter, tArr, for which we 
know the probability distribution in certain simplifying cases. 
Therefore, if we solve the downstream cascade of reactions 
for a range of values of tArr, we can obtain any desired feature 
of the SPR as a function of tArr; for example, we can obtain 
the peak amplitude, SPRpeak, as a function SPRpeak(tArr) of tArr. 
Then, for any case where we know the probability density 
p(tArr), we can evaluate the probability density of SPRpeak as

	
p SPR p t SPR t( ) ( ) / ( / )peak Arr peak Arrd d    (2.5)=

	

In practice, the function SPRpeak(tArr) can be evaluated 
at a small number of values of tArr and then fit using a spline 
function and differentiated. This approach is illustrated 
subsequently in the Results section.

Model 3: Three-state model with low R* activity before 
arrestin binding: One drawback of the binary R* model 
turns out to be its inability to predict a sensible SPR wave-
form in the arrestin knockout phenotype (see Results). This 
occurs because in that case the R* activity never shuts off. 
To deal with this issue, we have investigated an alternative 
model in which the R* activity drops to a lower level after M 
phosphates have been attached. As illustrated in Figure 1D, 
we envisage that once M phosphates have attached, the R* 
molecule can enter a new state according to a rate constant κ. 
We further envisage that, following this change, arrestin can 
now bind, again with rate constant µ (Figure 1D). Therefore, 
instead of Equation (0.1), we have

	
κ κ κ( ) , ; ( ) , .n n M n n M N= = = =0 0 1 for  ... -  for  ...    (3.1) 	

Therefore, simply by replacing μ with κ, the analytical 
expressions that we derived above for arrestin binding time 
now apply instead to the time tlow to reach the conformation 
with low activity. We additionally need to specify the arrestin 
binding rate constant as

	
µ µ µ= =0,  initially, then  in the low activity state.   (low 33.2) 	

Finally, we need to specify the R* activity, which we 
assume drops to a low value, ρlow, and then drops to zero upon 
arrestin binding, which we formulate as

	
ρ ρ ρ ρ= = =1 0, , , initially, then  then  when Arr binds.   (low 33.3) 	

To derive the mean R* activity deterministically in this 
three-state case, it is convenient to define the following three 
variables: PF(t), the probability that the molecule remains in 
the fully activated state; PFL(t), the probability that it is either 
in the fully activated or in the low-activity state (i.e., the prob-
ability that it is not arrestin-bound); and the difference PL(t) 
= PFL(t) − PF(t), the probability that it is in the low-activity 
state. In the three-state case, PF(t) is analogous to R*bin(t), 
except with μ replaced by κ, while PFL(t) is a corresponding 
expression with the additional rate constant μ. Accordingly, 
we can express the mean R* activity in the three-state case as 
PF(t) plus a scaled-down version of PL(t) to give
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R t P t P t* ( ) ( ) ( ) ( ).tri low F low FL    (3.4)= − +1 ρ ρ 	

In the general case, with arbitrary rate constants, it is 
necessary to evaluate the terms PF(t) and PFL(t) in Equation 
(3.4) by numerical integration. However, for the simplest 
case, with all rate constants equal (ν = μ = κ), Equation (3.4) 
reduces to

	

R t e t
k

t
M

t
k M

k

M

* ( ) ( )
!

( )
( )!

.tri low

+1

   (3.5)= +
+











−

=
∑µ µ

ρ
µ

10 	

As in the case of the binary R* activity model, we 
can also predict the form of the distribution of SPR peak 
amplitudes, although in this case there is an approximation 
involved. Thus, when we obtain the relationship between 
SPR peak amplitude and the time t low to the low-activity 
state, our approximation is to take the subsequent time to 
arrestin binding as fixed at 1/μ rather than being stochastic. 
Our subsequent results show that this provides a remarkably 
accurate prediction. By analogy with Equation (2.5), the 
predicted distribution in the three-state model is

	
p SPR p t SPR t( ) ( ) / ( / ).peak low peak lowd d    (3.6)=

	

Downstream phototransduction cascade: For any of the 
models above, we can simulate the time course of R* activity, 
or, in the special cases of simple ratios of rate constants, we 
know the probability density of arrestin binding times. We 
can then solve the deterministic reactions for the down-
stream phototransduction cascade to generate the predicted 
individual SPRs. To do this, we employed a well-established 
model of phototransduction, with Ca2+-mediated feedback 
onto cyclic GMP concentration via GCAPs and guanylyl 
cyclase. We used a distributed model with longitudinal diffu-
sion of cGMP and Ca2+ within the outer segment, and as a 
check we also used a reduced set of these equations for the 
isotropic case of a well-stirred outer segment.

Photoisomerizations are deemed to occur at discrete 
spatial locations, that is, at disks, and PDE activity is likewise 
deemed to be restricted to those disks so that its activity is 
specified by an ordinary differential equation (o.d.e.). For 
both cGMP and Ca2+, a partial differential equation (p.d.e.) 
is required to describe the longitudinal diffusion. The three 
differential equations and their ancillary equations are as 
follows. Most variables include the spatial (x) coordinate as 

well as time.  The parameters in these equations are defined 
in Table 2.

	
d d    (4.1)REE x t t v R x t k E x t*( , ) / *( , ) *( , )E= − 	

	
∂ ( )

∂
= +

∂
∂

cG x t
t

x t D cG x t
x

,
( , ) ( , )

ϕcG cG    (4.2)
2

2
	

	
∂ ( )

∂
= +

∂ ( )
∂

Ca x t
t

x t D
Ca x t
x

,
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,
ϕCa Ca    (4.3)

2

2
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J t j x t j x t x

L
( ) { ( , ) ( , )}= +∫ cG ex d    (4.9)

	

The membrane currents above are expressed as current 
density per unit length of outer segment, jcG(x,t) and jex(x,t). 
However, to simplify comparison with the conventional 
lumped formulation, they have been written in the form 
L jcG(x,t), with units of current over the entire outer segment 
length, L. Consequently, when these equations are coded 
numerically, we can conveniently use the same symbols in 
both the spatial and lumped cases and then use either the 
integral Equation (4.9) in the spatial case or a simple sum in 
the lumped case.

Boundary conditions at ends: The boundary conditions at 
each end of the outer segment are of the reflective (zero flux) 
kind. They apply for both cGMP and Ca2+, and can be written 
as:

	
∂ ( )

∂
= =

∂ ( )
∂

cG x t
x

Ca x t
x

, ,
0 , at each end of the OS.   (4.10)

	

Boundary condition at location of photoisomerization: For 
these partial differential equations, Equation (4.4) above 
does not incorporate a term for light-induced PDE activity 
because the spatial extent of R* activity at each location 
where a photoisomerization has occurred is deemed to be 

Table 2. Downstream phototransduction cascade parameters.

Symbol Description Default 
value a

Model 1 
value b Units

βDark Dark rate constant of cGMP hydrolysis 3.2 4 s−1

αmax Maximal rate of cGMP synthesis by GC 120 150 µM/s
fCa Fraction of CNGC current carried by Ca2+ 0.12

KGCAP Ca2+ concentration parameter of GCAP 80 nM
mGCAP Ca2+ cooperativity of GCAP 1.5
JcG, max Maximal CNGC current for the OS 2000 pA

KcG cG concentration parameter of CNGC 20 µM
Jex, max Maximal exchange current for the OS 4.6 pA

Kex Ca2+ concentration parameter of exchanger 1100 nM

Calculated resting dark state
cGDark Dark cGMP concentration 4.12 µM
CaDark Dark Ca2+ concentration 322 nM
JDark Dark current 18.4 pA

Other kinetic parameters
νRE Rate of G*-E* activation by an R* 300 c s−1

kE Rate of G*-E* shut-off 5 c s−1

βsub Rate constant of cGMP hydrolysis by an E* 0.024 d 0.063 d s−1

BCa Buffering power of cytoplasm for Ca2+ 50
Vcyto Available cytoplasmic volume of OS 0.02 pL

Longitudinal diffusion parameters
DcG Longitudinal diffusion coefficient for cG 40 µm2/s
DCa Longitudinal diffusion coefficient for Ca2+ 2 µm2/s
L Length of outer segment 22 µm

a. All values apply to the entire outer segment; however, suction pipette experiments record only a frac-
tion of the total current. b. The default values applied in all cases, except for the three values listed under 
Model 1. c. The formation (νRE) and shut-off (kE) of E* are modeled as either deterministic or stochastic. 
d. For comparison with the values used in Gross et al. [11], note that they employed a different parameter 
for hydrolysis by E*, that they referred to as βidv, which is shown in Appendix 1 to be related to βsub by βidv 
= Ndisks βsub, where Ndisks = 710 is the number of disks in the outer segment.
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infinitesimally narrow. Therefore, at each such location we 
need to apply a boundary condition for cGMP hydrolysis. In 
the symmetric case of a single photoisomerization delivered 
at the middle of the outer segment, defined as x = x0, this is 
straightforward. Equating the flux in the positive x direction 
with the rate at which cGMP is hydrolyzed by half of the acti-
vated PDE on that disk, we obtain the boundary condition as

	
∂

∂
=

+

cG x t
x

E x t L
D

cG x t
x

( , ) *( , ) ( , ).
0

0
02

βsub

cG

   (4.11)
	

The full derivation of this equation is given in Appendix 
1, and it is identical to Equation (B 1) derived by Lamb and 
Pugh [1]. However, we note that the corresponding Equation 
(6) in Gross et al. [11] differs in having a factor of 4 in its 
denominator, but in our view that formulation was incorrect. 
Gross et al. [11] invoked a second factor of 2, on account of 
the fraction of the outer segment volume that is cytoplasmic. 
However, analysis of the equations shows that this is not 
appropriate. One way of rationalizing this is to note that the 
volume factor has already been accounted for in the defi-
nition of the effective longitudinal diffusion coefficient. In 
comparing the equations between the two studies, one also 
needs to note that they used a different parameter for the PDE 
hydrolytic efficacy that they termed βidv, which is Ndisks times 
our βsub, that is, βidv = Ndisks βsub, where Ndisks is the number of 
disks in the outer segment.

Although this analytical form of the boundary condition 
is important in estimating the hydrolytic activity underlying 
the rogue responses, it is not required for numerical simu-
lation. For numerical simulation, we instead used spatial 
elements of finite width δx, and we took the PDE activity to 
be distributed over the width of the element where the photoi-
somerization occurred. Therefore, in any element in which 
a photoisomerization occured, Equation (4.4) was replaced 
with the following modified form of the conventional lumped 
case equation:

	

ϕ α β β
δcG Dark sub    (4.12)( , ) ( , ) { *( , )} ( , ).x t x t L
x
E x t cG x t= − +

	

Ensemble variance for dim-flash responses: One can consider 
an idealized experiment, where the number of photoisomer-
izations per trial is Poisson-distributed with a mean of m, 
and where the individual SPRs have a mean time-course a(t) 
and variance time-course σ1

2(t). In this idealized case, the 
expected ensemble variance for a very long series of identical 
flashes is

	 σ σ2 2
1
2( ) { ( ) ( )}.t m a t t= +    (5.1) 	

Typically, one would expect the ratio σ1(t)/a(t) to be quite 
small (around 0.3; see Results section) so that its square 
would be around 0.1. As a result, the experimentally recorded 
variance is dominated by the Poisson contribution of the first 
term in Equation (5.1), and the “between SPR” variability 
elevates the predicted variance by only about 10%. In prac-
tice, the situation is more complicated because of the finite 
number of flashes that can be delivered, nonlinear summation 
(especially when the light stimulus is spatially restricted), 
noise, and lack of recording stability.

METHODS

All numerical computations were performed using custom 
Matlab (The MathWorks, Inc., Natick, MA) scripts, which 
are available upon request.

Numerical simulation of stochastic reactions for R*: The 
stochastic reactions for R*, described in the panels in 
Figure 1, were simulated using Gillespie’s method [19]. We 
will begin by describing the simplest cases (Figure 1A–C) 
where just two fates are possible for each state: either phos-
phorylation or arrestin binding. First, the mean transition rate 
constants μ(n) and ν(n) were assigned. Then, for each states, 
two pseudo-random numbers, r1(n) and r2(n), uniformly 
distributed between zero and unity, were used. The lifetime 
that the molecule remained in state R*·P(n) was simulated 
as −ln(r1(n))/{ν(n)+μ(n)}, and the state to which the molecule 
transitioned was simulated as phosphorylation if r2(n) < ν(n)/
{ν(n)+μ(n)} and as arrestin binding otherwise. If a finite 
flash width was required, the time of photoisomerization 
was simulated as uniformly distributed over that flash width. 
These simulations were very fast, and 106 iterations could 
be performed in ~1 s on a laptop PC. For the three-state R* 
activity model, simulation of the full version (Figure 1D) 
would have required more complicated code, so we chose 
instead to simulate only the truncated linear configuration 
(Figure 1E), and in this case 106 iterations again took only 
~1 s.

Numerical simulation of stochastic reactions for E*: For most 
of the simulations described here, the time course of SPR-
induced PDE activity, E*(t), was taken to be deterministic, as 
described by the o.d.e. Equation (4.1). In one case, however, 
we additionally simulated the generation and decay of E* as a 
stochastic variable. At the single location of the photoisomer-
ization, E* molecules were generated stochastically at a mean 
rate given by νRE times the instantaneous R* activity (ρ = 1 
or ρ = ρlow), and each generated E* was assigned a stochastic 
lifetime with a mean of kE

−1.
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Numerical integration of equations for downstream photo-
transduction cascade: The differential equations for the 
deterministic reactions of the downstream phototransduction 
cascade were integrated numerically using a Matlab o.d.e. 
solver, typically “ode15s”. For the case of longitudinal diffu-
sion in the outer segment, the method of partial discretization 
was employed [20] to represent the system as a set of spatially 
coupled o.d.e.s, with the outer segment divided into a finite 
number of spatial elements (50 in the illustrated Figures).

The parameters we chose are specified in Table 2. The 
values in the “Default” column were used for each model, 
with the exception that for Model 1 the three values in the 
column “Model 1” were used. We began by evaluating the 
dark resting state as follows. For Equations (4.1)–(4.9), we set 
all the spatial and temporal derivatives to zero and expressed 
the steady cGMP in terms of the steady Ca using Equation 
(4.4) with (4.6)–(4.8). We then determined the value of Ca 
that rendered the net influx of calcium zero by numerically 
finding the zero for the numerator of Equation (4.5). The 
resulting dark resting values are listed in Table 2. Note that 
the resting state was identical in each model because we 
constrained the ratio αmax/βDark to be the same in each case.

The numerical integration of the downstream reactions 
was orders of magnitude slower than the stochastic simula-
tions, and 105 repetitions of the spatial diffusion case typi-
cally took around 5 h on a laptop PC. In practice, as few as 
1000 repetitions were sufficient to provide extremely good 
estimates of the ensemble mean and variance of the SPR. 
However, to obtain a good histogram of the distribution of 
SPR peak amplitudes for the illustrated Figures we ran 105 
repetitions.

RESULTS

Model 1: Conventional model of R* graded shut-off: We 
began by verifying that our implementation of the stochastic 
model of graded R* shut-off in conjunction with our formula-
tion of the downstream reactions predicted SPRs with proper-
ties conforming to those recently reported by Gross et al. [11]. 
To this end, we adopted parameter values that were nearly 
identical to theirs, as listed in Table 1. One minor difference 
was that for consistency with our subsequent simulations of 
Models 2 and 3, we chose the “abrupt” arrestin-binding cut-in 
described by Equation (0.1), as used recently in [10], rather 
than the graded approximation to this relation employed by 
Gross et al. [11] in their Equation (10).

Figure 2 collects the results of our simulations for the 
graded R* shut-off model. The top pair of panels summarize 
the behavior of individual R* molecules in 106 repetitions. 
The remaining panels show SPRs predicted by integrating 

the downstream cascade reactions: the middle pair of panels 
each show a handful of SPRs, while the bottom pair plot the 
ensemble behavior for 105 simulations.

Figure 2A compares the probability distribution for 
R* integration times, p(τR*), that we obtained (blue) with 
the corresponding curve from [11] (red) that was plotted 
as the inset in their illustration 6E. The similarity is very 
close, although our simulations gave marginally fewer short 
integration times and a marginally greater number of long 
integration times. Figure 2B compares the time-course of the 
mean of the simulated R* activity for the 106 repetitions and 
shows that the traces were barely distinguishable between the 
two studies. Figure 2C plots the first 50 SPRs simulated and 
gives a flavor of the individual waveforms; Figure 2D selects 
some outlier responses and will be considered shortly. Figure 
2E plots the ensemble mean and SD for 105 SPRs integrated 
using the downstream reactions, and the traces are extremely 
similar to the corresponding curves illustrated in [11]. Figure 
2F plots the probability distribution for the peak amplitudes 
of these 105 SPRs (in blue), and the close resemblance to the 
distribution obtained in [11] (red circles) is striking.

These simulations generated the following values of 
interest, which are compared with the corresponding values 
from [11] in brackets, where available. For the dark steady-
state: cGDark, 4.1 µM (4.1 µM); CaDark, 322 nM (320 nM); 
and total outer segment current, 18.4 pA (18.7 pA). For the 
stochastic responses: R* integration time, mean 39.7 ms 
(40 ms), and cv 0.547 (0.52); cv of SPR area, 0.459; fractional 
amplitude of SPR at peak, mean 0.0420, and cv 0.332; and 
mean time-to-peak of SPR: 119 ms. Based on the closeness 
of these values and the similarity of the four comparisons in 
panels A, B, E, and F, we conclude that our SPR simulations 
conformed very closely to those of Gross et al. [11].

Despite this close similarity, we observed a disturbing 
feature of a minority of the simulated SPRs that does not 
accord with our experience of the form of real SPRs. As 
exemplified by Figure 2C,D, a minority of the simulated 
responses tended to exhibit a plateau after the initial peak. 
In Figure 2C, it is apparent that a sub-set of the first 50 simu-
lated responses exhibited a fairly flat region at around half 
the amplitude of the peak; qualitatively the same phenomenon 
was apparent in any group of 50 consecutive simulations that 
we selected (not shown). Investigation of this phenomenon 
revealed that the plateau resulted from trials that happened to 
exhibit relatively long durations in the doubly phosphorylated 
state, R*·P(2). Therefore, to better illustrate these events, we 
selected outlier responses representing 5% of the total trials 
based on two criteria, and we present these in Figure 2D. 
From the first 200 trials we selected the 10 responses that 
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had the longest times to exit from state R*·P(2), and these are 
plotted in blue. Each of these traces has the appearance of 
heading toward a fractional amplitude of ~0.042 at times of 
400–500 ms. Next, from the same set of 200 trials we selected 
the 10 responses that exhibited the longest time-to-peak, and 
these are plotted in red. Most of these red traces reach peak 
later than 300 ms at a level of roughly 0.037. We observed 

qualitatively the same kind of behavior when we selected the 
outliers from any group of 200 consecutive trials (not shown).

We suggest that this tendency for a sizable fraction of 
trials to exhibit a plateau is an inevitable feature of the graded 
shut-off model and arises (at least for the parameter values 
chosen) from trials that happened to exhibit a long dwell time 
in state R*·P(2). Although each state is broadly analogous 

Figure 2. Results of simulation 
of Model 1 (Graded R* shut-off 
model). The equations for Model 1 
were simulated numerically using 
stochastic parameters n = 6, M = 3, 
νmax = 80 s−1, μ = 20 s−1, and ωP = 
ωG = 1 (Table 1); the flash duration 
was set to 10 ms. The downstream 
parameters are given in Table 2, 
with αmax = 150 µM/s, βDark = 4 s−1, 
and βsub = 0.063 s−1. The number of 
simulations of R* activity in panels 
A and B was 106, while for the 
subsequent panels the downstream 
reactions were integrated using the 
first 50 R* simulations (C), the first 
200 R* simulations (D), or the first 
105 R* simulations (E and F). A: 
Distribution of times to Arr binding 
for the 106 simulations (blue trace). 
The red trace is the corresponding 
curve from the simulations of Gross 
et al. [11] plotted in their illustra-
tion 6E. B: Mean R*(t) time course 
for the 106 simulations (blue trace). 
The red trace is the corresponding 
curve from the simulations of 
Gross et al. [11] plotted in their 
Supplementary illustration S2C. 
C: The first 50 simulated SPRs. D: 
Sample “outlier” SPR responses, 
selected as described in the text 
from the first 200 R* simulations. 
Blue: The 10 SPRs with the longest 
times in state R*·P(2). Red: The 
10 SPRs with the longest time-to-
peak. The horizontal dotted lines at 
the right indicate the steady-state 
levels reached with very long dwell 
times in each of the states R*·P(n) . 

These levels have been numbered for n = 1 – 4, but are not numbered for 5 or 6. The level for state R*·P(0) is above the top of the vertical 
scale, at 0.114. E: Time course of the mean (blue) and SD (red) for the ensemble of 105 simulated SPRs. F: Probability distribution of the 
peak amplitudes for the 105 simulated SPRs (blue). The red circles show the corresponding histogram plotted by Gross et al. [11] for their 
simulations in their illustration 6E. 
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to every other state, there are some factors that combine to 
generate “unusual” events for the doubly phosphorylated 
state. First, the mean lifetime in this state is moderately long, 
at 1/(80 s−1 e−2) = 92 ms, so that 5% of trials are expected 
to display dwell times in this state of longer than ~270 ms. 
Second, the amplitude elicited by a long dwell time in this 
state happens to asymptote to a level close to the peak ampli-
tude of the mean SPR (see dotted horizontal lines on the right 
in Figure 2D). As a result, the inevitable events that exhibit 
long dwell times in state R*·P(2) generate responses that 
are noticeably unusual. For the other states, the effects of 
comparatively long dwell times are visually less noticeable, 
either because the mean lifetime is quite short (states n = 0 
or 1) or because the asymptotic response level for that state is 
considerably smaller than the peak (states n ≥ 3).

We think it very likely that it is the existence of a 
moderate number of SPRs exhibiting such a plateau that 
causes the rather “flat-topped” shape for the time-course 
of the ensemble standard deviation, shown by the red trace 
in Figure 2E. In addition, we think that it is the existence 
of responses such as those shown in Figure 2D that gives 
rise to the sharp peak in the amplitude histogram (between 
0.035 and 0.042) in Figure 2F. We are not aware of published 
experiments that have reported SPRs exhibiting kinetics of 
this kind, and nor have we observed responses that obviously 
resemble these events in our own recordings of dim flash 
responses. Nevertheless, we cannot completely rule out the 
possibility that SPRs with this shape do occur in real rods. 
However, our firm inclination is to suggest that this feature 
predicted by the model of graded reduction in R* activity is 
inconsistent with the properties of observed rod responses.

In addition to this issue with plateau-like events, another 
major problem was that the required amplification of the 
downstream reactions was excessively high, being greater 
than can be accounted for by the measured biochemical 
parameters. Thus, the product νRE βsub that was needed both in 
Model 1 (for νRE = 300 s−1 and βsub = 0.063 s−1) and in [11] was 
νRE βsub ≈ 19 s−2. This corresponds to an amplification constant 
for phototransduction of A = νRE βsub ncG ≈ 57 s−2, far higher 
than the values reported in experiments on mammalian rods 
(see Discussion).

For comparison with biochemical estimates, βsub is 
given by (½ kCAT/Km) / (½ πr2L BP NAv) [1], where kCAT/Km 
is the catalytic activity of the fully activated PDE dimer, 
BP is the buffering power of the cytoplasm for cGMP, NAv 
is Avogadro’s number, and r = 0.75 µm and L = 22 µm are 
the radius and length of the outer segment. The factor of 1/2 
in the numerator reflects the fact that two G* molecules are 
required to fully activate the dimeric PDE, while the factor 

of 1/2 in the denominator corresponds to the fraction of the 
envelope volume that is cytoplasmic. For amphibian rods 
at room temperature, kCAT/Km has been measured as 4.4 × 
108 M−1  s−1 [21]. Substitution of these values gives βsub = 
0.019 s−1 / BP. If the cytoplasm exhibited finite buffering 
power for cGMP (i.e., BP > 1), then the value would be lower 
than 0.019 s−1. Conversely, if the mammalian enzyme exhib-
ited higher activity at body temperature, then the value could 
be higher (see Discussion). However, taking these two factors 
into account, it is difficult to envisage that the biochemical 
measurements could correspond to a hydrolytic rate constant 
of more than ~50% above 0.019 s−1, which would set a realistic 
constraint that βsub ≤ 0.03 s−1. On this basis, the value of βsub = 
0.063 s−1 required in Model 1 again appears excessive.

An independent estimate of βsub for mouse rods was 
recently reported by Gross et al. [13], based on measurements 
of “rogue” responses representing the failure of activated R* 
to shut off. However, in our view their estimate needs to be 
halved for the following reason. As derived in Appendix 1 
and noted following Equation (4.11), their analysis incorrectly 
introduced a second factor of 2 in the denominator of their 
Equation (6). Accordingly, their analysis of rogue responses 
actually predicts a value of βsub = 0.03 s−1 in GCAPs−/− rods. 
Again, this is approximately half the value of βsub required to 
achieve responses of appropriate amplitude in Model 1.

An additional problem with the graded R* shut-off model 
is that its prediction of the arrestin-knockout phenotype is not 
very realistic. When the rate constant for arrestin binding 
was set to zero (μ = 0), the predicted mean SPR exhibited 
a tail considerably smaller than observed in experiments, 
decaying to <4% of the peak after 5 s (not shown). This 
occurred because in the graded shut-off model the activity 
of state R*·P(6) is extremely small, at e−6 ≈ 0.0025, with the 
consequence that the activity of R* is substantially quenched 
even in the absence of arrestin binding.

The combination of these problems leads us to conclude 
that the graded R* shut-off model, in the form described both 
here and in [11], does not provide a plausible description of 
the observed SPRs in mammalian rods.

Model 2: “Binary” R* activity: In light of these difficulties 
with the model of a graded decline in R* activity, we chose to 
investigate a model in which the R* activity does not decline 
in a graded manner with successive phosphorylations and 
instead remains maximal until arrestin binds. We refer to this 
situation as “binary” R* activity. Such a model has the conve-
nience that the probability distribution of R* lifetimes can be 
readily predicted in several simplifying cases, as derived in 
the Theory section. Not only does this provide a means of 
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checking the accuracy of our stochastic simulations, but it 
also allows us to predict the distribution of SPR amplitudes.

The results of our simulations for the binary R* shut-off 
model are collected in Figure 3, where the organization of 
panels is broadly similar to that in Figure 2. The top pair 
of panels summarize the simulated activity of R* molecules 
in 106 repetitions; the middle pair show a selection of SPRs; 
and the bottom pair plot the ensemble behavior for 105 
simulations.

For the stochastic shut-off parameters, we chose to set all 
the rate constants equal, both for simplicity and also so that 
we could examine whether the results were described by the 
theory developed in Equations (0.3)–(0.6) and (2.3)–(2.5); we 
used ν = μ = 60 s−1 (Table 1), and we set the flash duration 
to zero. For the downstream reactions, we used the default 
parameters in Table 2. These differ in the following respects 
from those used in the graded R* shut-off model in [11] 
and duplicated in Figure 2. First, we reduced the maximum 

Figure 3. Results of simulation 
of Model 2 (Binary model). The 
equations for Model 2 were simu-
lated numerically using M = 3 and 
ν = μ = 60 s−1 for the stochastic 
parameters (Table 1) and with 
the downstream parameters from 
Table 2; the flash duration was set 
to zero. The number of simulations 
of R* activity in panels A and B 
was 106, while for the subsequent 
panels the downstream reactions 
were integrated using the first 50 R* 
simulations (panel C) or the first 105 
R* simulations (panels E and F). A: 
Distribution of times to Arr binding 
for the 106 simulations (blue trace). 
The red trace is the theoretical 
prediction of Equation (0.3). B: 
Mean R*(t) time course for the 106 
simulations (dashed blue trace). The 
red trace is the theoretical predic-
tion obtained using Equation (2.3). 
The blue trace is drawn dashed, as 
otherwise it would have completely 
obscured the theoretical prediction. 
C: The first 50 simulated SPRs. D: 
SPRs for a set of defined times to 
arrestin binding. Rather than being 
simulated stochastically, the time to 
arrestin binding was instead set to 
5, 10, 20, 30, 45, 60, 80, 100, 130, 
200, 300, 400, 500, 600, or 800 
ms. Red circles indicate the peaks. 
These measurements were fit by a 
spline function and used to predict 
the expected distribution in panel F. 
E: Time course of the mean (blue) 
and SD (red) for the ensemble of 
105 simulated SPRs. F: Probability 

distribution of the peak amplitudes for the 105 simulated SPRs (blue). The smooth red trace plots the predicted distribution obtained using 
the approach described in the Theory section, using Equation (2.5) and the measurements of peak amplitude from panel D. 
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cyclase rate to the value used by Koch and Dell’Orco [22], αmax 
= 120 µM s−1. Next, to keep the dark resting state unchanged, 
we held the ratio αmax/βDark constant by reducing βDark in the 
same ratio to βDark = 3.2 s−1. Finally, we adjusted the magni-
tude of the PDE hydrolytic activity to generate SPRs of the 
expected amplitude, ~ 4% of the dark current. The resulting 
value of βsub = 0.024 s−1 (Table 2) turned out to be very close 
to that predicted both by biochemical measurements and by 
the analysis of “rogue” R* responses [13].

For 106 simulations of the R* stochastic reactions, Figure 
3A plots the probability distribution for arrestin binding times 
p(tArr) as the blue histogram. For comparison, the smooth 
red curve is the prediction of Equation (0.3), and the fit is 
extremely good. For M = 3 and ν = μ = 60 s−1, its peak is 
predicted to occur at 3/(60 s−1) = 50 ms, as observed. The 
mean and the cv of the arrestin binding time (and thus of 
R* activity) are predicted by Equations (0.5) and (0.6) to be 
66.67 ms and 0.5, respectively, and the values we obtained in 
the simulations were 66.66 ms and 0.4995. In Figure 3B, the 
blue curve plots the ensemble mean time course of R*(t) for 
the 106 binary R* activity events, while the dashed red trace 
plots the prediction of Equation (2.3) and is seen to completely 
overlie the blue curve for the simulations. The closeness of 
the simulated activity to the predictions gives us confidence 
that our simulation algorithm provided an accurate rendition 
of the stochastic reactions.

Figure 3C superimposes the first 50 SPRs simulated, 
and two features are apparent. First, in this case with zero 
flash duration, the traces begin rising along a common curve. 
Second, there is no hint of any plateau-like responses of the 
kind seen in Figure 2. Figure 3D plots the SPRs obtained 
for a series of specified values of tArr, ranging from 5 ms to 
800 ms, and confirms the common early rising phase. The 
red circles mark the peaks of these individual traces, with 
filled red used for tArr up to 130 ms and open symbols used 
for tArr equal to or greater than 200 ms. The magnitudes of 
these peaks are subsequently used to generate the relationship 
between SPRpeak and tArr that is required in Equation (2.5) 
for predicting the distribution of amplitudes. Note that the 
probability of tArr > 150 ms was 2.2%.

For 105 simulated SPRs, Figure 3E plots the time-course 
of the ensemble mean and SD and shows a characteristic 
feature of experimentally measured SPRs, which is that 
the ensemble SD reaches peak almost 40 ms later than the 
ensemble mean at 163 ms compared to 126 ms. Figure 3F 
plots the probability distribution for the peak amplitudes of 
the 105 SPRs as the blue histogram and compares this with 
the prediction of Equation (2.5) in red, demonstrating that 
the prediction is very accurate. The peak amplitudes of the 

individual SPRs (measured as a fraction of the dark current) 
had a mean of 0.0413, with a cv of 0.348, considerably 
reduced from the cv for arrestin binding time of 1/2.

Our interpretation of these results is as follows. First, 
the good fit of the predictions to the simulated results 
supports the view that our algorithms accurately simulated 
the stochastic reactions. Second, the binary R* activity model 
with the parameters we have chosen generates simulated 
responses that account for many of the features observed 
for mammalian rod SPR experiments. Third, the binary R* 
activity model does not exhibit the first two problems we 
noted for the graded R* activity model; that is, it does not 
generate occasional SPRs that exhibit a plateau-like late phase 
and it only requires a value for βsub that is consistent with 
predictions from biochemical measurements. We suggest that 
adoption of a realistic estimate for the gain product νRE βsub 
(of approximately 7 s−2) necessitates the use of an integration 
time for R* activity of the order of 65 ms or more to generate 
SPRs of realistic amplitude. In our view, the proposal of an R* 
integration time of 40 ms in previous work seems unrealistic 
and appears to have arisen as a consequence of assuming that 
R* activity shuts off in a graded manner.

Despite the good description of WT SPRs obtained in 
Figure 3, there is a problem with the binary R* model when 
the arrestin knockout phenotype is modeled (by setting μ 
= 0). As the R* activity then never shuts off, the simulated 
response simply rises to a maximum and remains there. This 
behavior is not illustrated but is essentially the same as shown 
subsequently for the GRK1 knockout (obtained by setting ν 
= 0). We therefore investigated an extension of the binary R* 
model in which the catalytic activity declined to a low level 
after a certain number of phosphates had been attached.

Model 3: Three-state model, with low R* activity before 
arrestin binding: To deal with the failure to account for 
the arrestin knockout phenotype, we modified the binary 
R* activity model to include a penultimate state with lower 
activity, as shown schematically in Figure 1D. In this “three-
state” model, we hypothesize that the R* catalytic activity 
remains maximal until a change is triggered by the attach-
ment of some threshold number of phosphates. When this 
change occurs, the catalytic activity drops to a low level, and 
a new conformation amenable to arrestin binding is formed. 
As indicated in Figure 1D, we assume for simplicity that the 
rate constant of entering the low-activity conformation is 
fixed (at κ) for all states with M or more phosphates so that 
the scheme simplifies to the linear sequence illustrated in 
Figure 1E. It is straightforward to simulate this linear scheme 
stochastically and likewise to obtain analytical solutions in 
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the simplifying cases of ratios of rate constants, as set out in 
the Theory section.

The results of our simulations for this three-state model 
are collected in Figure 4, where the organization of panels 
follows that in Figure 3. The top pair of panels summarize 
the simulated activity of the R* molecule in 106 repetitions; 

the middle pair show a selection of responses; and the bottom 
pair plot the ensemble behavior for SPRs in 105 simulations.

For the downstream reactions, we retained the param-
eters employed for the binary R* model. For the stochastic 
shut-off parameters, we retained M = 3, and we set the rate 
constant κ for the change to the low-activity conformation 

Figure 4. Results of simulation of 
Model 3 (Three-state model). The 
equations for Model 3 were simu-
lated numerically using M = 3 and 
ν = κ = μ = 60 s−1 for the stochastic 
parameters (Table 1) and with the 
downstream parameters from 
Table 2; the flash duration was set 
to zero. The number of simulations 
of R* activity in panels A and B 
was 106, while for the subsequent 
panels the downstream reactions 
were integrated using the first 50 
R* simulations (panel C) or the 
first 105 R* simulations (panels E 
and F). A: Distribution of times 
to the low-activity state (left) and 
to Arr binding (right) for the 106 
simulations. Blue traces are simu-
lations, and red curves are theo-
retical predictions. B: Mean R*(t) 
time-course, for the 106 simulations 
(dashed blue trace). The overlying 
dashed red trace is the prediction of 
Equation (3.5). For comparison, the 
dotted red trace shows the predicted 
response for the binary model 
using the same values of ν and μ; 
thus it plots the dashed red trace 
from Figure 3B. The similarity of 
these traces shows that inclusion 
of the low-activity state made little 
difference to the mean time-course 
of the simulated and predicted 
R*(t) responses. C: The first 50 
simulated SPRs. D: SPRs for a set 
of defined times to the low-activity 
state. Rather than being simulated 
stochastically, the interval until low 
activity was instead set to 5, 10, 20, 

30, 45, 60, 80, 100, 130, 200, 300, 400, 500, 600, or 800 ms. The subsequent delay to arrestin binding was fixed at its mean value of 1/μ. 
Red circles indicate the peaks. These measurements were fit by a spline function and used to predict the expected distribution in panel F. E: 
Time course of the mean (blue) and SD (red) for the ensemble of 105 simulated SPRs. F: Probability distribution of the peak amplitudes for 
the 105 simulated SPRs (blue). The smooth red trace plots the predicted distribution obtained using the approach described in the Theory 
section using Equation (3.6) and the measurements of peak amplitude from panel D. 
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equal to the other rate constants at κ = ν = μ = 60 s−1. To 
account for the late phase of the arrestin knockout phenotype, 
we chose the low-state activity as ρlow = 0.1; see Equation 
(3.3).

For 106 simulations of the R* stochastic reactions, 
Figure 4A plots the probability distributions for both the 
time to entering the low-activity state (tlow, blue histogram) 
and the time to arrestin binding (tArr, black histogram). For 
comparison, the smooth red curves plot the predictions of the 
Poisson expression, Equation (0.3), and in both cases the fit is 
excellent. In Figure 4B, the dashed blue curve plots the mean 
time course of R*(t) for the ensemble of 106 R* events in this 
three-state case. The overlying dashed red curve shows the 
prediction of Equation (3.5), while the dotted red curve shows 
the prediction of the binary R* activity model, Equation (2.3). 
The mean of the R* activity (simulated or predicted) barely 
differs from the prediction of the binary activity model, indi-
cating that the inclusion of the third state, with low activity 
ρlow = 0.1, causes little change in the mean R* activity in this 
WT case.

Figure 4C plots the first 50 simulated SPRs, and the 
traces are qualitatively similar to the corresponding simula-
tions in Figure 3C, with no hint of outliers exhibiting unusual 
kinetics. Figure 4D superimposes the SPRs obtained for a 
series of specified values of tlow, ranging from 5 ms to 800 ms, 
with a fixed subsequent delay to arrestin binding; see the 
Figure caption. The red circles mark the peaks of these indi-
vidual traces, with filled symbols used for tlow from 5 ms 
to 130 ms and open symbols used for tlow from 200 ms to 
800 ms. The magnitudes of these peaks were subsequently 
used to generate the relationship between SPRpeak and tlow 
that is required for predicting the probability distribution of 
amplitudes. Note that the probability of tlow > 150 ms was 
2.2%, and the probability of tArr > 150 ms was 5.6%.

For 105 simulated SPRs, Figure 4E plots the time course 
of the ensemble mean and SD. Just as was the case for the 
binary model, the ensemble SD reaches peak around 40 ms 
later than the ensemble mean, at 167 ms compared to 127 ms. 
Figure 4F plots the probability distribution for the peak ampli-
tudes of the 105 SPRs as the blue histogram and compares this 
with the prediction in red, obtained using Equation (3.6) with 
the measurements from Figure 4D. Again, the prediction is 
very accurate. With all three rate constants set to 60 s−1, the 
SPR peak amplitudes had a mean of 0.0423 and a cv of 0.339. 
We therefore conclude that the three-state model generates 
responses that are barely distinguishable from those of the 
binary activity model for these parameters applicable to WT 
mammalian rods.

Stochastic generation and decay of E*: For the simulations 
above, we have approximated the time course of PDE activity, 
E*(t), as being deterministic, according to Equation (4.1) and 
as used in recent modeling [11]. However, because of the 
modest number of E* molecules activated during the SPR, 
this approach has its limitations. For example, for a mean R* 
lifetime of τR* ≈ 70 ms and a mean rate of E* activation of 
νRE ≈ 300 s−1, the mean number of total E* subunits activated 
throughout the duration of the SPR would be nE* = τR* νRE ≈ 
21, and the number active at any instant would be smaller than 
this. We therefore now follow Hamer et al. [6] and Reingruber 
and Holcman [9], who considered stochastic activation and 
shut-off of E* in their analyses of the graded R* shut-off 
model (i.e., Model 1), and we simulate the stochastic E* case 
applied to the three-state Model 3.

Figure 5 shows the results obtained when stochastic 
activation and shut-off of E* were added to the stochastic R* 
activity for Model 3. We used the same seed for the random 
number generator and thereby ensured that the sequence of 
R*(t) trials was identical to that obtained in Figure 4. Panel 
A illustrates the simulated E*(t) time course for the first 50 
SPR trials, corresponding to the same R* events that were 
used to generate Figure 4C above, and shows substantial 
fluctuations in the number of activated E* subunits. Panel 
B plots the mean (blue) and SD (red) of E*(t) for the entire 
set of 105 trials. In addition, the dashed black trace plots the 
deterministic time course (see Equation (4.1)) predicted by 
convolving the mean R*(t) time course with an exponential 
decay, exp(−kE t), and it provides an excellent fit. Panel C 
plots the photocurrent responses for the first 50 SPR trials 
and therefore corresponds to Figure 4C but with the addition 
of stochastic generation and decay of E*. Note that at late 
time in the simulations (>400 ms), discrete levels of response 
are visible, corresponding to the presence of the last few E* 
subunits in each trial. Panel D plots the mean (blue) and SD 
(red) of the SPRs for the entire set of simulations. For the 
parameter values listed in Table 2 (and in particular for this 
value of βDark), the waveforms in panels C and D are quite 
similar to those in panels A and B, indicating that in this 
case the downstream reactions introduce relatively minor 
filtering of the E*(t) kinetics. The ensemble of SPRs had a 
mean peak amplitude of 0.0427 and a cv of 0.382. Panel E 
plots the relationship between peak SPR amplitude and the 
time to the low-activity state of R* for the sample traces 
shown previously in Figure 4D.

Figure 5F plots the probability distribution for the peak 
amplitudes of the 105 SPRs as the blue histogram. Note that 
this trace exhibits multiple minor peaks that we interpret as 
corresponding to discrete numbers of E* molecules being 
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present at around the time of the peak; the first eight such 
peaks are visually apparent with this bin width. With fewer 
than 5 × 104 trials or with broader sampling bins, multiple 
peaks like this were not readily resolvable (not shown). To 
predict an expected distribution in this more complicated 
case with stochastic E* time-course, we began with the same 
approach as in Figure 4 and plotted the predicted histogram 
from Figure 4F as the dotted red trace in Figure 5F; this curve 
had its peak at 0.0415. Next, we assumed that stochastic 

fluctuations in E* numbers would contribute variability with 
a coefficient of variation 1/√nE*. Therefore, we convolved 
the dotted histogram with a Gaussian distribution having 
an SD of 0.0415/√21 to generate the continuous red trace in 
Figure 5F. Although we cannot provide a rigorous justifica-
tion for this prediction, we note that it provides a reasonable 
description of the histogram obtained by simulation, apart 
from the absence of the multiple minor peaks. We conclude 
that the inclusion of stochastic steps for the generation and 

Figure 5. Stochastic generation and 
shut-off of E* combined with the 
three-state R* model. The three-
state model has been extended 
by simulating E* generation and 
shut-off as being stochastic, with 
the same rate constants (νRE and kE) 
as in the deterministic E* case in 
Figure 4. All other features of the 
simulation were identical to those 
in Figure 4, including the seed for 
the random number generator, so 
that the sequence of R*(t) simula-
tions was the same. A: The first 50 
simulations of E*(t). B: Mean (blue) 
and SD (red) of the E*(t) time-
course for the 105 simulations. The 
dashed black trace is the predicted 
mean E*(t) time-course, obtained 
by convolving the mean R*(t) time-
course with the deterministic E* 
impulse response, νRE exp(−kE t). C: 
The first 50 simulations of SPRs. 
D: Mean (blue) and SD (red) SPR 
time course for the 105 simula-
tions. E: Relationship between SPR 
amplitude and tlow from Figure 4D. 
Symbols plot the measured SPR 
peak amplitudes, and the curve is a 
spline fit. F: Probability distribution 
of the peak amplitudes for the 105 
simulated SPRs (blue). Minor peaks 
are visually resolvable for what we 
presume to be the first eight E*s. 
The dotted red trace is redrawn 
from the red trace in Figure 4F, 

while the continuous red trace is the convolution of the dotted trace with a Gaussian function representing variability of the number of E*s; 
see Text. 
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decay of E* leads on the one hand to SPR responses (Figure 
5C) that more nearly resemble the shape of observed dim 
flash responses but on the other hand leads to only minor 
changes in the form of the ensemble mean, SD, and amplitude 
distribution.

Simulation of responses for mutant phenotypes: To investi-
gate the wider applicability of our model, we repeated our 
simulations of the three-state R* activity case (Model 3) after 
adjusting the parameters to correspond to those expected 
for four mutations in the phototransduction cascade: Arr+/−, 
Arr−/−, GRK1+/−, and GRK1−/−. For the arrestin hemizygote, 
we halved μ and for the arrestin knockout, we set μ to zero. 
For the rhodopsin kinase hemizygote, we halved ν and for 
the rhodopsin kinase knockout, we set ν to zero. In the case 
of the three-state model, Figure 6 presents the ensemble 
mean responses for the WT case and these four mutants. As 
a check, we employed a deterministic description for R*tri(t), 
corresponding to Equations (3.4)–(3.5), as driving functions 
for numerical integration of the downstream reactions, and 
the computation time was then extremely rapid. This gener-
ated traces that were very similar (not shown), although the 
simulated responses were marginally smaller at around the 
peak of the mean SPR, presumably because of nonlinearity 
caused by greater response compression for larger SPRs than 
for smaller ones.

The ensemble mean response for the Arr+/− case (dashed 
red trace) differs only marginally from the WT response 
(black), whereas the Arr−/− response exhibits a final steady 
level of roughly half the peak amplitude of the WT SPR. The 
magnitude of this final level in the Arr−/− simulation depended 
on the choice of catalytic activity in the “low-activity” R* 
state, and a magnitude of roughly half the WT peak ampli-
tude was obtained by setting ρlow = 0.1. The GRK1+/− mean 
response is about 30% larger than the WT response, whereas 
the GRK1−/− response rises to a plateau at a little over double 
the peak amplitude of the WT SPR. In qualitative terms, 
each of these simulated mean responses bears a remark-
able similarity to the respective SPR responses reported in 
experiments on mouse rods; see, for example illustration 8 
in [23] with data from [24,25] and illustration 1 in [26], with 
data from Dr. M.E. Burns. Responses very similar to those 
recorded from GRK1−/− rods are also obtained for rods in 
which rhodopsin has a truncated C-terminus [27,28].

DISCUSSION

The combination of theoretical analysis and numerical 
simulation of the stochastic steps in three models of R* inac-
tivation leads us to several conclusions. We shall deal first 
with the inadequacy of the conventional model of graded R* 

shut-off and then consider the implications of our results from 
the simulations using our new models of abrupt shut-off of 
R* activity.

Inadequacy of graded R* shut-off model: In our view, the 
conventional model, of a sequence of graded steps in the 
reduction of R* catalytic activity as recently simulated in [11] 
and duplicated here in Model 1, fails to provide an adequate 
description of the SPRs. Although the ensemble mean and 
SD resemble those reported in the literature, there are serious 
problems with two other aspects of the predictions.

First, the graded R* shut-off model is characterized by 
a small proportion (5%–10%) of simulated SPRs that exhibit 
either a plateau-like region or a very late peak (Figure 2D). 
This result appears to be an inevitable consequence of the 
assumption of an exponential decline in both the catalytic 
activity and the rate constant of phosphorylation. These 
occasional events do not correspond to published reports of 
mammalian rod SPRs. Their occurrence appears to generate 
the rather sharp peak in the amplitude distribution histogram 
of the simulated responses (Figure 2F), a feature that again 
has not been reported in published experiments.

Second, the required “gain parameter” needs to be set to 
roughly double the value predicted from other experiments. 
This gain parameter can be represented either by the product 

Figure 6. Simulation of SPRs for mutant phenotypes using the 
three-state model. Simulated mean SPRs predicted by the three-
state model are shown. The wild-type (WT) response is the same as 
in Figure 4E and was averaged from 105 simulations. The remaining 
traces were each averaged from 104 simulations. The hemizygote 
responses (dashed traces) for Arr+/− (red) and GRK1+/− (blue) were 
obtained by halving the respective rate parameter, μ or ν, from 
the value shown in Table 1. The knockout responses (solid traces) 
for Arr−/− (red) and GRK1−/− (blue) were obtained by reducing the 
respective rate parameter, μ or ν, to zero. 
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νRE βsub or equivalently by the “amplification constant” A 
= νRE βsub ncG [1], where ncG is the cooperativity of channel 
opening by cGMP, which is widely accepted to be ncG = 3. 
To obtain a peak amplitude for the WT SPRs of ~4% of the 
dark current, the gain product needed to be set to νRE βsub ≈ 
19 s−2 both in the present work and in [11], corresponding 
to an amplification constant of A ≈ 57 s−2. We now compare 
the magnitude of this gain factor required for the graded 
R* shut-off simulations with three estimates derived from 
experiments, two using electrophysiological approaches and 
one using biochemical measurements.

Electrophysiological measurements of the amplifica-
tion constant can be obtained by fitting the rising phase of 
responses to families of flash responses [1], and reported 
values in the literature range from A = 5–23 s−2 in experi-
ments on rodent rods [29-33]. It is likely that some of the 
lower values resulted from excessive low-pass filtering [32], 
and our best guess for the true value of A in WT mouse rods is 
A ≈ 24 s−2, corresponding to νRE βsub ≈ 8 s−2. Recently, a second 
completely independent estimate for this gain parameter was 
obtained by Gross et al. [13] in their experiments on “rogue” 
SPRs in mouse GCAPs−/− rods, where they obtained a value 
that we have corrected to νRE βsub ≈ 9 s−2 (see Results section 
for Model 1). Biochemical experiments on amphibian rods 
[21] can be extrapolated (with caution) from room tempera-
ture to mammalian body temperature. For the rate of E* 
activation per R*, we anticipate an upper limit of νRE ≤ 350 s−1, 
but there are some uncertainties in estimating βsub. Although 
it is often thought that the Q10 for biochemical reactions may 
be around 2, the relevant Q10 for the PDE activity is likely 
to be smaller than this because the reaction rate is already 
quite near the limit for aqueous diffusion, and the increase 
in temperature of ~15 °C (from 22 °C to 37 °C) is unlikely to 
cause as much as a twofold increase in rate. Accordingly, we 
think that the amphibian value of kCAT/Km ≈ 4.4 × 108 M−1 s−1 
[21] will convert to a mammalian value of <8 × 108 M−1 s−1. 
Substitution into the expression for βsub (see Appendix 1, 
Equation A.10) then gives βsub <0.033 s−1 / BP, where BP ≥ 1 
is the cytoplasmic buffering power for cGMP. As a result we 
think that the biochemistry points to a realistic upper limit for 
the gain parameter of mouse rods of νRE βsub ≈ 12 s−2, provided 
that BP ≈ 1, but it would be lower than this if the cytoplasm 
exhibits any buffering power for cGMP. In summary, the 
three experimental estimates for νRE βsub are 8, 9, and <12 
s−2, and these are all considerably smaller than the value of 
19 s−2 that is required in the graded R* shut-off model to fit 
the observed SPR amplitude.

An alternative possibility that we tested, to try to avoid 
an excessive magnitude for the gain parameter in the graded 

shut-off model, was to slow the R* shut-off reactions from 
the values proposed by Gross et al. [11,13] to increase the 
mean R* lifetime. When we halved the parameters νmax and μ 
(thereby doubling the mean R* lifetime), and reduced νRE βsub 
to 12 s−2, the simulated SPRs had approximately the correct 
mean amplitude, but several other features were unusual 
and did not resemble physiological responses. The shape 
of the mean response had an unrealistic, considerably more 
“triangular” shape, with its width at half-height increased to 
~400 ms, the tail phase was too slow, the time-to-peak was 
slightly increased to 132 ms, and the outlier events became 
much more prominent, appearing to be double the duration of 
those illustrated in Figure 2D. Accordingly, we rejected the 
possibility that the use of slower R* shut-off reactions could 
avoid the need for an excessive gain parameter in the graded 
R* shut-off model.

Binary and three-state R* shut-off models: Because of 
these deficiencies in the graded R* shut-off model, we 
investigated two variants of a scenario in which R* retains 
maximal activity until at least three phosphates have attached 
(referred to here as M = 3). In the first variant, the “binary 
R* shut-off” model, the R* activity remains at unity until 
it drops abruptly to zero when arrestin binds. In the second 
variant, the “three-state R* shut-off” model, we invoked an 
additional state in which the R* catalytic activity dropped 
to a low level, ρlow, before the binding of arrestin. These two 
variants of abrupt shut-off predicted nearly identical behavior 
to each other and one that conformed closely to the behavior 
reported in the literature (Figure 3 and Figure 4) in the case 
of parameters appropriate for WT mouse rods. However, 
the binary model was not able to account for the kinetics of 
the responses recorded from the rods of Arr−/− mice, and we 
required the additional low activity state. As shown in Figure 
6, the simulated responses of the three-state model provided 
a satisfactory description of the ensemble mean SPRs simu-
lated for the rods of four genotypes of mouse: Arr+/−, Arr−/−, 
GRK1+/−, and GRK1−/−. The height of the late plateau level 
in the Arr−/− simulations provided our basis for choosing the 
low-state activity as ρlow = 0.1.

Inclusion of stochastic reactions for E* generation and decay: 
The sample simulated SPR responses for both versions of the 
abrupt R* shut-off model, illustrated in Figure 3C and Figure 
4C, exhibit a smooth time course for each response because 
all the steps other than R* formation and decay have been 
assumed to be deterministic. To approximate more closely 
to reality, we added stochastic simulation of the generation 
and decay of E* to the downstream reactions to generate the 
responses illustrated in Figure 5. With the inclusion of E* 
fluctuations, the sample SPR responses (Figure 5C) more 
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nearly resembled the shape of observed dim flash responses. 
Incorporation of this stochastic description caused only minor 
change in the form of the ensemble mean, SD, and amplitude 
distribution of the SPRs.

R* time-course and integration time: Our modeling and 
simulations provide some new perspectives on the time 
course of R* activity and on the R* “integration time”, τR*, 
defined as the area under the time course of fractional R* 
activity, averaged across the simulated trials. In particular, 
we find that to achieve a sufficiently large SPR amplitude 
(~4% of the dark current) with a realistic magnitude of the 
gain product νRE βsub ≈ 7 s−2, the R* integration time τR* needs 
to be of the order of 60–70 ms, considerably larger than the 
value of 40 ms recently reported [11,34] for WT mouse rods. 
We think that our estimate applies irrespective of the shape 
of the decline in the ensemble mean R* activity, that is, that 
the estimate τR* ≈ 60–70 ms is dependent primarily on the 
downstream model and in particular on its “gain” parameters 
rather than on the stochastic model chosen to describe R* 
activity.

Ensemble mean R* time course: In the binary and three-state 
models, the time course of the ensemble mean R* activity 
does not approximate an exponential decay but instead 
exhibits an initial flat top as illustrated in Figure 3B and 
Figure 4B, with the early time course given by 1 – k tM+1; see 
Equation (2.4). To the extent that our models are realistic in 
this regard, this predicted time course provides some note-
worthy insights.

First, there is an issue with the extraction of estimates of 
R* lifetime from “Pepperberg plot” experiments conducted 
on mutant mice with different expected rates of R* shut-off. 
In such experiments, the shift of the relationship between 
saturation time and log intensity has been used to provide 
estimates of R* lifetime [34]. However, the theoretical basis 
for that approach is predicated upon the assumption that R*’s 
mean activity declines exponentially; see [34]. Accordingly, 
we urge caution in the interpretation of these estimates of 
R* lifetime, unless one obtains clear evidence to support the 
assumption of an exponential decline in R* activity.

Another issue relates to the accuracy (or otherwise) of 
the “delayed Gaussian” prediction of the Lamb and Pugh 
[1] model for the onset phase of the rod’s response to bright 
flashes of light. That model ignored shut-off reactions and 
was therefore explicitly restricted to times shorter than 
the fastest shut-off reaction. Nevertheless, experiments on 
electroretinogram (ERG) scotopic a-wave responses in both 
human subjects and anesthetized mammals demonstrate that 
the predictions are quite accurate until at least 20–30 ms; 
see, for example illustrations 4C, D in [35]. If it were the 

case that the mean R* activity in the rods declined exponen-
tially with a time constant of 40 ms, then the activity would 
have declined to ~60% after 20 ms, and one might expect 
the recorded photocurrents to deviate substantially from the 
Gaussian approximation. In contrast, if the mean R* activity 
in rods follows a time course similar to that illustrated in 
Figure 3B or Figure 4B and remains above 98% at 20 ms, 
then one might indeed expect the recorded photocurrents to 
conform reasonably closely to the Gaussian approximation 
until at least 20 ms.

These concepts are examined in Figure 7, where fami-
lies of bright-flash responses have been predicted under five 
different assumptions concerning the shut-off reactions. 
When neither R* nor G*/PDE* shuts off, the predictions are 
shown in black, with the dashed traces giving the Gaussian 
approximation and the continuous traces giving the solution 
of the differential equations, with the R* shut-off rate constant 
kR* = 0 and with kE = 0. The green traces present the solution 
when G*/PDE* shuts off normally (kE specified in Table 2) 
but R* does not shut off (kR* = 0). Next, the red traces plot the 
predictions for the three-state model with parameters as in the 
Tables and in Figure 4. The blue traces plot the predictions 
for the case of exponential shut-off of R* with a time constant 
of kR*

−1 = 40 ms.

These calculations show that the Gaussian approxima-
tion fails to provide a perfect fit to the “no shut-off” case. 
They also show very close agreement between the green 
and red traces, for both of which G*/PDE* shuts of normally 
and where the only difference is whether R* fails to shut off 
(green) or whether it shuts off according to the three-state 
model (red). Importantly, the blue traces for an R* expo-
nential lifetime of 40 ms are seen to deviate markedly from 
the other traces beyond about 20 ms after the flash. In other 
words, the observed good fit of the Lamb and Pugh theory 
to the ensemble of responses is more difficult to account for 
if the R* activity is assumed to drop exponentially with a 
time constant as short as 40 ms than is the case where the R* 
activity is assumed to be “flat-topped”.

Finally, as far as the R* time course is concerned, the 
previously assumed rapid exponential decline in R* activity 
has always been difficult to rationalize from a teleological 
perspective. Given that it took hundreds of millions of years 
for rod phototransduction to evolve the exquisite sensitivity 
needed for single-photon detection, it seems difficult to 
envisage what advantage there could be in causing that very 
high R* activity to begin declining (on average) from the 
instant that the R* is formed. Instead, one might envisage that 
it would be advantageous to maintain that hard-won catalytic 
activity for as long as possible and then to shut it off rapidly. 
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This, in fact, is approximately what the binary and three-state 
models achieve.

Physical nature of the postulated low-activity state: To 
account for SPRs in the arrestin-knockout phenotype, we 
invoked a low-activity state that the R* molecule enters once 
several phosphates have been attached, but we did not specify 
the nature of this state. One possibility would be that once 
several phosphates have bound, the R* molecule undergoes 
a conformation change, with this altered conformation 
exhibiting not only greatly increased affinity for arrestin but 
also lowered activity toward transducin. Another possibility 
would be that once several phosphates have bound, the kinase 
(GRK1) binds more tightly than previously, making access for 
transducin more difficult. However, we emphasize that our 

simulations provide no prospect for distinguishing the precise 
nature of such a postulated low-activity state.

Comparison with biochemical estimates of R* affinity for 
transducin and for arrestin: The biochemical measurements 
of transducin affinity (and hence of assumed R* activity) 
reported by Gibson et al. [8] were obtained using macro-
scopic experiments in which the mean number of bound 
phosphates across different preparations was measured. 
Any interpretation about the probability distribution of 
rhodopsin molecules having specific numbers of attached 
phosphates is model-dependent, involving, for example, 
the rate constants of phosphorylation under the particular 
experimental conditions. In particular, one cannot assume 
that a graded relationship between measured affinity and 
mean number of bound phosphates in any way reflects a 
graded relationship between R* activity and actual numbers 
of bound phosphates. Future experiments will be needed to 
measure the catalytic activity of the molecule in its different 
phosphorylation states. As far as we can see, our postulated 
abrupt drop in R* activity is in no way inconsistent with the 
observed graded decline in biochemical affinity measured 
as a function of the mean number of phosphates. For the 
binding of arrestin, Vishnivetskiy et al. [16] measured the 
abundance of rhodopsins bearing different numbers of phos-
phates in their different samples, and they then measured 
the degree of arrestin binding to these samples. They found 
that high-affinity binding of arrestin required at least two 
bound phosphates and was maximal with three. Despite that 
finding, recent stochastic models of R* activity (including 
ours) have assumed that the binding of just two phosphates is 
insufficient to cause rapid binding of arrestin and that instead 
three are required.

Plateau-like SPRs: Plateau-like SPR events have been 
routinely observed experimentally when phosphorylation 
of R* is disrupted, as, for example, in GRK1−/− rods [25], in 
rhodopsin C-terminus mutants [27,28] and in certain cases 
of substitution of the Ser and Thr residues in the carboxy 
terminus [36,37]. In addition, they are also observed in WT 
rods in a very small proportion (~0.3%) of flash presenta-
tions, and as such they have been termed “aberrant” or 
“rogue” responses [13,38]. Typically, these aberrant SPRs 
exhibit a plateau level around 50% higher than the normal 
peak, followed by an abrupt recovery to baseline. To explain 
these experimentally observed aberrant responses in the 
conventional model of graded reduction in R* activity, it 
has been necessary to assume that phosphorylation fails to 
occur for a small minority of R* events. However, in terms 
of our three-state stochastic model, an alternative explanation 
would be that phosphorylation occurs normally but that the 

Figure 7. Predicted bright flash responses. Bright flash responses 
are predicted under five sets of conditions, indicated by the 
different colors. Black traces: No shut-off of either R* or G*/PDE*. 
The dashed black trace plots the Gaussian analytical expression 
of Lamb and Pugh [1]; the continuous black trace plots the solu-
tion of the differential equations (with kR* = 0 and kE = 0). Green 
traces: With normal shut-off of G*/PDE* but no shut-off of R*, 
achieved by setting kR* = 0 but leaving kE as in Table 2. Red traces: 
Three-state model of R* shut-off, with parameters as in the Tables 
and Figure 4. Here, the mean R* time course was calculated by 
numerical integration of the differential equations representing the 
reactions in Figure 1E. Blue traces: Exponential decay of mean R* 
activity, with a time constant kR*

−1 = 40 ms. At higher intensities, 
some traces are obscured by overlying traces, which were plotted 
in the sequence black, green, red, blue. For all traces except the 
Gaussian analytical model, the downstream reactions were inte-
grated using the lumped model versions of Equations (4.1) – (4.9), 
with the default parameters in Table 2 (except where kE was set to 
zero). In all cases, the gain factor νRE βsub was set to 7.2 s−2 (giving 
an amplification constant of A = 21.6 s−2), the flash duration was 
zero, and the flash intensities were 10, 30, 100, 300, 1000, 3000, 
and 10,000 photoisomerizations. 
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subsequent transition to the low-activity state is delayed for 
the order of seconds. It is difficult to speculate on a possible 
molecular mechanism, but it might involve either a change to 
or a degradation of a tiny fraction of the rhodopsin molecules 
or alternatively a disruption of some component with which 
R* interacts.

In conclusion, we think that our simulations rule out the 
conventional graded shut-off model as providing a realistic 
description of experimentally recorded SPRs. And while we 
emphasize that our simulations do not provide any direct 
evidence that the activity of R*·P(n) remains unattenuated 
up to n = 3, we think they demonstrate that a model of this 
kind is capable of accounting for many of the properties of 
experimentally recorded SPRs.

Our model opens up some exciting possibilities for the 
future. The analysis of additional experimental data may 
permit refinement of the model and provide improved esti-
mates of the underlying physical parameters. In particular, 
we think that such future refinements may readily account 
for the different classes of SPRs recorded by Azevedo et 
al. [37] using mice with Ser-only and Thr-only C-terminus 
mutations of rhodopsin. Furthermore, now that we have a 
deterministic expression (Equations (3.4)–(3.5)) for the mean 
R*(t) time course in the three-state shut-off model, it should 
be straightforward to extend the model to account for more 
complicated aspects of light adaptation, including modulation 
by recoverin, modulation of channel activity, and so on.

APPENDIX 1.

To access the data, click or select the words “Appendix 1.”
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