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Abstract

 Background—Abnormalities of the hypothalamic-pituitary-thyroid (HPT) axis have been 

reported in alcoholism, however, there is no definitive agreement on the specific thyroid 

abnormalities and their underlying mechanisms in alcohol dependence (AD). The biological 

activity of thyroid hormones or the availability of T3 is regulated by the three deiodinase enzymes 

D1, D2 and D3. In the context of alcohol use, functionally significant single nucleotide 

polymorphisms (SNP’s) of these deiodinase genes may play a role in HPT dysfunction.

 Methods—The present study explored the effect of three functionally significant SNP’s (D1: 

rs2235544, D2: rs225014 and rs12885300) of deiodinase genes on drinking behavior and thyroid 

stimulating hormone (TSH) levels in alcohol dependent (N=521) and control subjects (N=228).

 Results—Rs225014 was associated with significant differences in the amount of naturalistic 

alcohol drinking assessed by the Timeline Follow-Back (TLFB). Alcohol-dependent subjects had 

significantly higher thyroid stimulating hormone levels compared to controls; however, there was 

no effect of genotype on TSH levels for either group.
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 Conclusions—These findings extend previous studies on thyroid dysfunction in alcoholism 

and provide novel, albeit preliminary, information by linking functionally significant genetic 

polymorphisms of the deiodinase enzymes with alcohol drinking behavior.
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 Introduction

Abnormalities of the hypothalamic-pituitary-thyroid (HPT) axis have been reported in 

alcoholism [for review, see: (Hermann et al., 2002)] but are difficult to interpret as they have 

often focused on different stages of the disease, e.g. early, late abstinence or active drinking. 

Therefore, it is challenging to draw final conclusions on the specific thyroid abnormalities 

and their underlying mechanisms in alcoholism. A review of 33 studies assessing thyroid 

function in alcoholism reported that one third of alcoholic patients have a blunted thyroid 

stimulating hormone (TSH) response on the thyrotrophin-releasing hormone test (TRH-stim 

test) (Hermann et al., 2002). In addition in early abstinence, there is a reduction in total T4 

as well as total and free T3 concentrations. Of note, excessive chronic alcohol use may have 

direct toxic effects to the thyroid gland. For example, Hegedus and colleagues (Hegedus et 

al., 1988) in an ultrasound study of the thyroid gland in alcohol-dependent patients, found a 

significant reduction in thyroid volume, with a dose-dependent effect of alcohol on thyroid 

fibrosis. This reduction was independent of the severity of liver damage. The reduced 

thyroid size was accompanied by reductions in T3 and free T3 levels and normal T4, free 

T4, and TSH values. In animal models of chronic alcohol exposure, these functional and 

structural abnormalities of thyroid function result in a dysregulation of feedback 

mechanisms regulating thyroid release [for review: (Hermann et al., 2002)]. Reduced thyroid 

hormone levels, chiefly T3, result in chronically elevated TRH, which causes a down 

regulation of TRH receptors in the pituitary gland and a blunted TSH response in the TRH 

stimulation test (Hermann et al., 2002). In a study that measured TRH release in acute cold 

exposure in rats that were chronically treated with alcohol, TRH mRNA in the 

paraventricular nucleus of hypothalamus was increased, demonstrating that, in chronic 

alcohol exposure, the thyroid gland can no longer adequately respond to TRH stimulation 

(Zoeller et al., 1996). In non-cirrhotic alcoholic patients, Garbutt and colleagues (Garbutt et 

al., 1992) found that suppressive doses of T3 are required to blunt TRH induced TSH 

response. The biological activity of thyroid hormone or the availability of T3 is regulated by 

the three deiodinase enzymes: D1, D2 and D3. D1 and D2 are activating enzymes, 

converting T4 to T3 by outer ring diodination, while D3 inactivates thyroid hormones by 

inner ring deiodination converting T3 to T2 and T4 to rT3 (Bianco et al., 2002). Genetic 

variation in deiodinase enzymes encoding genes influences thyroid hormone levels and 

ratios (de Jong et al., 2007; Panicker et al., 2008; Peeters et al., 2005a; Peeters et al., 2005b; 

Peeters et al., 2003). The C allele of the common single nucleotide polymorphism (SNP) of 

the Deiodinase 1 gene (DIo1; rs2235544) is associated with increased D1 function with 

resulting increase in free T3/T4 ratio and free T3 and decrease in free T4 and rT3 (Panicker 

et al., 2008). While common SNP’s of D2 and 3 have not been shown to alter peripheral 
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thyroid hormone levels, the commonly occurring Thr92Ala D2 variant (rs225014) is 

associated with a decreased rate of acute TSH-stimulated T3 release consistent with a 

decrease in intrathyroidal deiodination (Butler et al., 2010). In addition, the G variant of 

another D2 SNP, K258A/G (rs12885300), associated with increased enzymatic activity, is 

associated with a decreased rate of acute TSH-stimulated FT4 secretion with a normal T3 

release from the thyroid gland (Peltsverger et al., 2012).

In rats chronically exposed to ethanol, Baumgartner and colleagues (Baumgartner et al., 

1994) found a reduction in D2 enzyme activity in cortico-limbic brain areas. Additionally, 

during alcohol withdrawal, D2 activity was reduced in prefrontal cortex, and striatum in 

alcohol dependent vs. naïve rats (Baumgartner et al., 1994). Given that nervous system 

tissues contain relatively high ratios of T3/T4 (Baumgartner et al., 1997), examining the 

effect of these genetic variants on thyroid hormone levels, i.e., TSH in the context of alcohol 

withdrawal might further elucidate the link between the HPT axis and alcoholism. The 

withdrawal state can be a stressor which is analogous to a TSH stimulation test, where the 

effect of these deiodinase SNPs on thyroid function are apparent. In this exploratory analysis 

we also examined whether functionally significant SNP’s of these deiodinase genes might 

affect drinking behavior. Therefore, in this exploratory study, we examined, a priori, the 

effect of the common functional SNP’s for D1 and D2 enzymes: D1; rs2235544, D2; 

rs225014; rs12885300 on alcohol drinking behavior and on serum TSH levels in alcohol-

dependent vs. non-dependent subjects. As summarized above, the selection of these SNPs 

was based on the fact that these SNPs seem to be functional and influence thyroid hormone 

levels during provocative tests.

 Materials and Methods

 Participants and Assessments

809 individuals (521 patients with alcohol dependence [AD], 288 controls subjects without 

AD) participated in IRB-approved screening protocols for treatment-seeking alcoholic 

patients and control subjects at the National Institute on Alcohol Abuse and Alcoholism 

(NIAAA). Subjects were recruited by advertisement and community outreach; data were 

collected over approximately the last 10 years. Exclusion criteria for the control subjects 

were alcohol dependence and any clinically significant medical illness or major psychiatric 

disorders such as Bipolar, Major Depressive or psychotic disorders. The exclusion criteria 

for the AD patients included clinically neuro-psychiatric disorders such as psychosis or 

dementia. The control population was not required to be abstinent from alcohol; rather, they 

were not alcohol dependent and in good health. All participants provided written consent 

before participating. Assessments upon intake included a medical history and physical 

examination, the Structured Clinical Interview for DSM-IV Disorders (SCID, DSM-IV) to 

diagnose AD and any other psychiatric diagnoses, and the alcohol Time-Line Follow Back 

(TLFB) to assess current drinking patterns over the last ninety days with the following: 

heavy drinking days, average number of drinks per drinking day, number of drinking days, 

days of abstinence, total number of drinks and calculated average number of drinks in past 

30 days. For control subjects, serum TSH levels were measured during the one-day 

screening outpatient visit. For AD subjects, who were admitted to the inpatient unit for 
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approximately four weeks, TSH levels were measured in early abstinence, i.e., one day 

following admission, therefore most of the AD patients were in early withdrawal at the time 

of the TSH draw. The average length of abstinence for the AD group was 2.4± 3.7 days and 

4.1 ± 7.0 days for the control group. For AD and control subject characteristics, genotype 

frequencies and drinking behavior, see Table 1.

 Genotyping

Genotyping was conducted at the NIAAA Laboratory of Neurogenetics. Genomic DNA was 

extracted from whole blood using standard protocols. DNA samples were genotyped using 

the Illumina OmniExpress BeadChip (Illumina Inc, San Diego, CA) for all participants. The 

number of homozygotes for the minor A allele for rs12885300 was very small, consequently 

the AA and AG subjects were combined for analysis (see Table 1 for genotype frequencies).

 Data Analysis

Group differences in baseline characteristics between AD subjects and controls were 

determined using chi-square for categorical measures and independent t-tests for continuous 

measures. Differences in baseline characteristics between gene groups were determined 

using chi-square and analysis of variance (ANOVA). Baseline characteristics that were 

found significantly different between the two groups were included in the analyses as 

covariates. Hardy-Weinberg equilibrium was determined for the full sample using chi-

square. In addition, the presence/absence of a current diagnosis of major depressive disorder 

(MDD) was used as a covariate given that thyroid axis abnormalities often occur in the 

context of MDD (Tichomirowa et al., 2005).

ANCOVA was used to analyze the effects of genotype, diagnosis and their interaction on 

TLFB-related drinking measures and TSH levels in a 3 x 2 ANCOVA model [genotype (3 

levels) x group(2 levels)]. Ancestry informative marker scores were added to the ANCOVA 

to control for population stratification.

Since TSH levels particularly in the AD group could be affected by length of abstinence, the 

relationship between days of abstinence and TSH level was determined separately for AD 

and control groups first using simple linear regression. In addition, ANCOVA was used to 

test for significant gene group differences in the correlation between TSH levels and days of 

abstinence, as determined by an interaction between genotype and days of abstinence.

 Results

 Subject baseline characteristics

AD and control subjects differed significantly by age, gender, race, current diagnosis of 

major depressive disorder (MDD) and body mass index (BMI) (p’s < .05; Table 1). 

Specifically, AD subjects were older (average age = 42 years) and had a greater BMI 

(average = 26.6 kg/m2) as well as significantly more MDD compared to controls; 

furthermore, there were lower percentages of females and of Caucasians in the AD group. 

Therefore, MDD diagnosis, age, gender, and BMI were also included in the analyses of both 
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groups as covariates. Ancestry informative marker scores were added to the ANCOVA to 

control for population stratification.

Comparison of the different genotype groups for each polymorphism of interest yielded 

significant differences in race attribution, both in the sample as a whole and in the AD 

sample (Table 2). There were no significant differences in genotype frequencies for the three 

SNP’s between the AD and control groups (Table 1). Each of the 3 SNP’s was found to be in 

Hardy-Weinberg equilibrium: rs2235544, p=0.10, rs225014, p=0.43, rs12885300, p=0.17. 

No subject exhibited evidence of clinical thyroid disease.

 Drinking behavior

For the TLFB-related drinking measures, there was a significant main effect of rs225014 on 

heavy drinking days (i.e., ≥4 standard drinks per day for women and ≥5 drinks per day for 

men) in the AD patients [F(2, 688) = 3.82, p = 0.02; Fig. 1]. Post-hoc tests (Tukey tests) 

showed a significant difference between the AG and GG genotype in the AD patients only. 

Also in the AD patients, there was a main effect of the same SNP on number of drinking 

days [F(2,688)=4.59, p=0.01; Fig. 2]. No post-hoc tests were significant. There was no effect 

of this SNP in the control group. The effect size (Cohen’s d) for the difference between 

heavy drinking days was small (d = 0.32). There was no significant effect of either 

rs2235544 or rs12885300 in the AD or control groups.

 TSH Levels

There was a significant main effect of diagnosis (AD vs. controls) on TSH levels (F[1, 759] 

= 13.67, p = 0.0002, Fig 3), but no main effect of genotype. There was also no significant 

genotype x diagnosis interaction for TSH levels. The effect size (Cohen’s d for the AD vs 

Control differences in TSH levels was small (d = 0.17).

Days of abstinence did not affect TSH levels in either group. There was no interaction 

between gene group and days of abstinence for TSH levels. Omitting subjects with a 

diagnosis of MDD in analyses of drinking behavior and TSH did not change the results.

 Discussion

We report here that a functionally significant D2 SNP (rs225014) is associated with drinking 

behavior in a sample of AD individuals, but not in controls. AD subjects with the variant 

genotype (GG), which is associated with reduced D2 enzymatic activity, resulting in less 

conversion of T4 to T3, reported significantly greater number of heavy drinking days. This 

finding extends previous studies on thyroid dysfunction in alcoholism by linking a 

functionally significant genetic polymorphism of the D2 enzyme with drinking behavior.

D2 catalyzes the intracellular conversion of T4 to T3 in several human tissues including 

brown fat, brain, pituitary, thyroid and skeletal muscle. T3 provides important regulatory 

signals for the control of motivated behaviors including appetite, satiety and reproductive 

function as well as the TRH/TSH feedback mechanism (Bianco et al., 2002; Fekete and 

Lechan, 2007; Fliers et al., 2006; Lechan and Fekete, 2005; Peeters et al., 2005a). In D2 
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knockout mice, TSH levels are two times higher compared to wild type (Bianco and Kim, 

2006).

The D2 rs 225014 SNP is a common missense variant of the gene in which a threonine 

becomes an alanine at codon 92 (D2Thr92Ala; A92G) and is associated with decreased D2 

enzyme velocity (Canani et al., 2005; Mentuccia et al., 2002). The rs 225014 variant also has 

been associated with delayed T3 secretion in a TRH stimulation test (Butler et al., 2010). In 

the setting of AD, where T3 feedback on hypothalamus and pituitary is deficient (Hermann 

et al., 2002), this genetic variant may act to amplify the dysregulated T3 feedback 

mechanisms that exist in AD. While in active drinking alcohol-dependent subjects, free T3 

levels have been positively correlated with alcohol craving (Aoun et al., 2015; Leggio et al., 

2008), it is known that thyroid abnormalities normalize for the most part with sustained 

abstinence and return with relapse. Presumably, exposure to alcohol entrains a cascade of 

HPT axis dysfunction but it is unclear how the latter modulates drinking behavior. The 

results of this study suggest that in the context of AD, genetic variation in D2 activity may 

impact drinking behavior, perhaps by worsening subclinical thyroid dysfunction.

Overall, TSH levels were significantly higher in AD patients compared to controls. 

Elevation of TSH may reflect a response, in early abstinence, when reduction in T3 and T4 

is most pronounced (Hermann et al., 2002). In studies to date, an effect of genetic variants of 

deiodinase enzymes has not been observed on peripheral thyroid hormone levels, rather the 

effect on the HPT axis has been shown in provocative tests such as the TRH stimulation test 

(Butler et al., 2010; Peltsverger et al., 2012). In this study, while we hypothesized that early 

withdrawal, analogous to a TRH stimulation test, might render gene group differences in 

TSH levels apparent, we found no effect of genotype on levels of TSH for the AD group or 

for controls. The genetic variants studied here have been shown to affect outcome on this 

provocative test in control populations only. Therefore, future studies will need to investigate 

the effect of these genetic variants on the TRH stimulation test in AD subjects. Finally, it is 

worth noting that, the heterozygous gene group demonstrated the lowest drinking levels with 

no difference between homozygous gene groups. Small gene group sizes of the homozygous 

gene groups relative to the heterozygous group could be one reason for this result. In 

addition, a heterozygous effect has been noted in other studies of genetic polymorphisms in 

psychiatric populations(Gosso et al., 2008; Gratacos et al., 2007; Lee et al., 2002; Pooley et 

al., 2004; Retz et al., 2003).

Study strengths include the a priori approach of this analysis and that this is the first study 

investigating the effect of functionally significant SNP’s of deiodinase genes on alcohol 

drinking in an AD population. Limitations of the study include the lack of data from a TRH 

stimulation test to provide evidence of dynamic changes in thyroid function as hypothesized 

above. The non-dependent group had a mean alcohol consumption of 3.7 drinks per day, 

therefore, it is difficult to infer how consumption is affected by genotype in this group. 

Grouping the data into low/light drinkers (i.e., less than 2 drinks/day), yielded only 39 

subjects which is too small to compare gene groups. Therefore, future studies are needed to 

investigate if the genetic variants here analyzed may also play a role in alcohol use in low/

light drinkers. Also, this was an exploratory study, analyzing several parameters of drinking 

behavior, therefore, the results were not corrected for multiple comparisons; follow-up 
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replication studies will be needed. Our approach is consistent with Bender and Lang (Bender 

and Lange, 2001) who suggested that exploratory analyses be done without multiplicity 

adjustment and that such results from these analyses be clearly labeled as exploratory and 

confirmed in follow up confirmatory studies.

In conclusion, the results of this a priori hypothesis-driven analysis link a functionally 

significant genetic variant of the deiodinase enzyme that controls T3 synthesis to drinking 

behavior. Further directions such as haplotype analyses and pathway analyses may elucidate 

other genetic influences over thyroid function that may account for the differences seen here 

in the D2 SNP, rs225014. These findings are very preliminary but nonetheless warrant 

further investigation as they may lead to a better understanding of the role that HTP axis 

plays in influencing motivated behaviors such as alcohol drinking.
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Figure 1. 
Effect of genotype (rs 225014) on heavy drinking days in alcohol dependent subjects, Mean 

(SEM).
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Figure 2. 
Effect of genotype (rs2235544) on average drinks per drinking day in control subjects, Mean 

(SEM).
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Figure 3. 
Thyroid Stimulating Hormone (TSH) levels in alcohol dependent patients and controls, 

Mean (SEM).
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Table 1

Patient Characteristics

Alcohol Dependent (n = 521) Controls (n = 288) Test for Group Differences

Demographics

Age 42.1 (9.9) 31.3 (10.9) t = 13.9, p < 0.0001

Female 159 (30.5%) 111 (38.5%) χ2 = 5.4, p = 0.02

Caucasian1 308 (59.1%) 186 (64.6%) χ2 = 59.9, p = 0.007

Body Mass Index 26.6 (5.5) 25.9 (4.9) t = 2.03, p = 0.04

Genotype

rs22355442 AA: 110 (21.2%) AA: 60 (20.8%) χ2 = 0.2, p = 0.92

AC: 244 (46.9%) AC: 132 (45.8%)

CC: 166 (31.9%) CC: 96 (33.3%)

rs225015 AA: 181 (34.7%) AA: 104 (36.1%) χ2 = 0.4, p = 0.84

AG: 245 (47.0%) AG: 136 (47.2%)

GG: 95 (18.2%) GG: 48 (16.7%)

rs128853003 AA/AG: 219 (42.4%) AA/AG: 138 (47.9%) χ2 = 2.3, p = 0.13

GG: 298 (57.6%) GG: 150 (52.1%)

Alcohol Use (90 days)

Total Drinks 1062.4 (721.0) 158.5 (180.1) t = 26.6, p < 0.0001

Number of Drinking Days 70.9 (22.0) 36.1 (24.7) t = 17.7, p < 0.0001

Number of Non-Drinking Days 18.8 (21.9) 53.5 (24.8) t = −17.6, p < 0.0001

Average Drinks/day 14.5 (8.0) 3.7 (2.5) t = 27.6, p < 0.0001

Heavy Drinking Days 65.6 (25.6) 14.5 (20.3) t = 28.3, p < 0.0001

Number of Days Abstinent before TSH level 2.4 (3.7) 4.1 (7.0) T = −3.27, p = 0.001

Major Depression

Current Diagnosis 57 (10.9%) 3 (1.1%) χ2 = 25.5, p < 0.0001

1
A majority of the remaining subjects were Black/African American.

2
Missing genotype data for 1 subject

3
Missing genotype data for 4 subjects. AG and AA subjects were combined due to the small number of AA homozygotes
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