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Abstract

Constraint-based reconstruction and analysis (COBRA) modeling results can be difficult to 

interpret given the large numbers of reactions in genome-scale models. While paths in metabolic 

networks can be found, existing methods are not easily combined with constraint-based 

approaches. To address this limitation, two tools (MapMaker and PathTracer) were developed to 

find paths (including cycles) between metabolites, where each step transfers carbon from reactant 

to product. MapMaker predicts carbon transfer maps (CTMs) between metabolites using only 

information on molecular formulae and reaction stoichiometry, effectively determining which 

reactants and products share carbon atoms. MapMaker correctly assigned CTMs for over 97% of 

the 2,251 reactions in an Escherichia coli metabolic model (iJO1366). Using CTMs as inputs, 

PathTracer finds paths between two metabolites. PathTracer was applied to iJO1366 to investigate 

the importance of using CTMs and COBRA constraints when enumerating paths, to find active 

and high flux paths in flux balance analysis (FBA) solutions, to identify paths for putrescine 

utilization, and to elucidate a potential CO2 fixation pathway in E. coli. These results illustrate 

how MapMaker and PathTracer can be used in combination with constraint-based models to 

identify feasible, active, and high flux paths between metabolites.
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 1 INTRODUCTION

Genome-scale constraint-based metabolic models are powerful tools that predict metabolic 

fluxes and cellular phenotypes [1], and guide metabolic engineering strategies [2]. While 

constraint-based reconstruction and analysis (COBRA) methods are useful [3], interpreting 
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their results can be difficult since there are typically hundreds of active fluxes in a solution. 

The large number of non-zero fluxes makes it difficult to follow where the fluxes are going 

in the network, since COBRA solutions (which are vectors of flux values) lack details on the 

metabolic connections between the fluxes. Projecting flux distributions onto metabolic 

pathway maps can be helpful; however, pathway maps are either generic (with extra or 

missing reactions compared to a model) or are model-specific and time-consuming to 

construct. Even if pathway maps exist, it can still be difficult to track carbon flux across 

them since reactions used to connect two distant metabolites might be shown on different 

maps. Without a map, one needs to manually look up an active reaction, find its products, 

and then see what active reactions consume these products to find the next reaction in a path. 

Thus, general systematic methods are needed to help easily interpret COBRA results. One 

possible approach is to identify relevant metabolic pathways through which carbon travels.

Prior research has been done to find paths in metabolic networks. Many web-based services 

can enumerate paths between two metabolites [4-7]; however, the calculations and networks 

are pre-defined preventing users from making reaction network modifications (e.g., adding/

removing/changing reactions) or performing additional tasks (e.g., incorporating flux data or 

mass-balance constraints). Alternatively, graph-based algorithms can be run on user-

specified networks to find paths [8-13]; however, these graph-based methods cannot check 

whether a path can be mass balanced [14] and cannot be directly integrated with existing 

COBRA methods. Optimization-based methods can also find paths or cycles in metabolic 

networks. Linear programming and integer programming methods have been used to find 

shortest paths or cycles in metabolic networks [15, 16], but these methods did not include 

mass balance constraints and were not integrated with COBRA models. Another limitation 

is that in many graph- and optimization-based path analyses, all reactants of a reaction are 

mapped to all products irrespective of whether atoms (e.g., carbon) are shared between 

metabolites. As a result, the identified paths might not be biochemically meaningful (e.g., 

mapping glucose to ADP to pyruvate yields a two step path between glucose and pyruvate). 

While removing highly connected metabolites (e.g., NAD(P)H and ATP) from the networks 

prevents some incorrect paths from being found [12], other incorrect paths may still exist 

and correct paths may be eliminated (e.g., conversion of NADH to NADPH).

To overcome these limitations, Pey and colleagues developed mixed integer linear 

programming (MILP) approaches that use carbon or carbon atom mappings between 

metabolites to identify mass-balanced paths [14, 17]. These MILP approaches (and most 

other approaches) prevent revisiting nodes or edges, and as a consequence, internal cycles 

are prevented or ignored. While this may be sensible when finding paths between a carbon 

source and secreted product, discovering cycles and their contribution to metabolism can be 

critical to understanding metabolic and cellular behaviors. Additionally, the focus of 

previous efforts has been to find shortest paths between metabolites in a network. Even 

though these shortest paths may be mass-balanced, they still might not be actively used in 

COBRA solutions.

We sought to develop methods that could help interpret COBRA results by identifying mass-

balanced paths that are actively used in COBRA solutions based on carbon mappings 

between metabolites. Two methods were developed to predict carbon transfer between 
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reactant and products by metabolic reactions, and to identify paths actively used in genome-

scale flux distributions. As described here, this approach which can be directly or 

sequentially combined with flux balance analysis (FBA, a popular constraint-based 

modeling approach [1]) or related techniques. This new approach relies on two new tools, 

MapMaker and PathTracer, which:

1. Predict carbon transfer between reactants and products: Given reactions and 

metabolite molecular formula, MapMaker determines all elemental transfers, 

where each elemental transfer is the number of element atoms in a given 

reactant that is transferred to given product by a particular reaction. Once a set 

of elemental transfers for a reaction are found, the carbon transfers are used to 

create mappings between reactants and products. These carbon transfer maps 

(CTMs) define the edges (or arcs) that can be traversed to generate paths.

2. Enumerate paths between two metabolites: A second algorithm, PathTracer, 

uses MapMaker’s carbon transfer maps for all (or a subset) of reactions, to 

solve a network flow problem [18]. Given the set of edges as an input, 

PathTracer finds the shortest, active, most active, or all possible path(s) 

between two metabolites.

Together, MapMaker and PathTracer can enumerate all possible mass-balanced paths 

between two metabolites, track carbon flow in a FBA predicted flux distribution, and find 

metabolite cycles. This allows one to evaluate a genome-scale flux distribution with 

hundreds of active reactions, and quickly identify how one metabolite is being converted 

into another. This is useful for finding out which path(s) are being used to make or consume 

a metabolite (e.g., how pyruvate is made from glucose), which may combine or deviate from 

canonical biochemical pathways. These two algorithms were applied to the most recent 

Escherichia coli genome-scale metabolic model [19]. PathTracer and FBA were combined to 

discover feasible pathways (i.e., pathways that can satisfy COBRA constraints) to convert 

putrescine into glutamate (a biomass component) and a new CO2 fixation pathway in E. coli. 
This work shows how an integrated approach can dramatically reduce the paths between 

metabolites to those that are feasible, active, or most active in constraint-based model 

predictions.

 2 MATERIALS AND METHODS

MapMaker and PathTracer were developed to identify paths between metabolites and to help 

interpret FBA [1] results. MapMaker uses molecular formulae for a reaction’s reactants and 

products to predict elemental transfers and CTMs, the latter of which indicate whether a 

reactant and product share carbon. From MapMaker CTMs (or other metabolite maps), 

PathTracer enumerates paths between two metabolites or the same metabolite (i.e., cycles).

 2.1 MapMaker

MapMaker identifies elemental transfers between reactants and products, from which CTMs 

are extracted. These CTMs indicate which reactants provide carbon to which products when 

a reaction occurs. These CTMs differ from atom mapping and bond element matrices, since 

CTMs do not have any information about which carbon atoms are mapped to each other in a 
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reactant-product pair. Instead, CTMs only indicate that at least one carbon atom is shared by 

the pair, but the CTMs do not indicate the location of that carbon atom in the reactant/

product molecules. MapMaker is a heuristic approach that finds a set of elemental transfers 

that reduces the transfer of atoms in a reactant to multiple products. MapMaker identifies 

elemental transfers by minimizing the number of overall transfers (which indicate if a 

reactant transfers any element to a product), minimizing the number of elemental transfers 

(which indicate how many different types of elements are transferred between a reactant and 

product), and maximizing the overall transfer scores associated with each reactant (where 

the overall transfer scores are based on the numbers and types of elements transferred 

between a reactant and product).

To determine elemental transfers, MapMaker maximizes the following objective (Eq. 1) for 

each reaction (j) individually:

(1)

where mrp and qrp are the highest and second highest overall transfer scores based on the 

types of elements and numbers of each element transferred from a reactant (r) to a product 

(p). R and P are the sets of reactants and products, respectively, that are involved in reaction, 

j. γerp is a binary variable that has a value of 1 if an element, e, has been transferred from r to 

p. Ωrp is a binary variable that has a value of 1 if an overall transfer occurs (i.e. whether any 

elements have been transferred) between r and p. E is the set of all elements in a molecular 

formula (e.g., C, N, P, S, O) except hydrogen (H).

MapMaker’s elemental transfers must conserve all elements except for hydrogen (Eq. 2 and 

3).

(2)

(3)

where the elemental transfer, δerp, is a non-negative variable representing the number of 

atoms of element, e, that are transferred from r to p. Sij is the stoichiometric coefficient for 

metabolite (i) in reaction (j), a minus sign is used in Eq. 3 because the stoichiometric 

coefficients for reactants (Srj) are negative. MFie is a parameter derived from the molecular 

formula indicating the number of atoms of element, e, contained in metabolite, i. The 

metabolite (i) can be a reactant (r) or product (p).
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MapMaker uses two types of binary penalty variables, γ and Ω, in the objective function (Eq. 

1), and Eq. 4 and 5 ensure that γerp and Ωrp are 1 if elements are transferred (i.e., δerp > 0) 

from r to p:

(4)

(5)

An overall transfer describes the numbers of all elements that are transferred between a 

reactant (r) and product (p). MapMaker gives each overall transfer a score based on the 

number of atoms transferred (δerp) and the weighting factor we for each element type. For a 

group of elements represented as ‘R’ in the molecular formula wR was set to 40; while the 

weighting for N, O and P (wN, wO, wP) was set to 0.4 and the weighting for all other 

elements (except H) was 1. These weights were chosen so it should be easier to transfer a N, 

O or P atom to another compound than a C atom. The highest and second highest (if one 

exists) overall transfer scores associated with a given reactant are defined as mrp and qrp, 

respectively. The mrp and qrp variables are constrained by Eq. 6 to 13.

(6)

(7)

(8)

(9)

(10)

(11)
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(12)

Here, xrp and yrp are binary indicator variables used to select the highest and second highest 

scoring overall transfer from reactant, r. Eq. 6 and Eq. 9 set upper bounds for the overall 

transfer scores based on the number of each type of element transferred to a product (δerp) 

and the weight for each element (we). Eqs. 7, 8, 10, 11 and 12 ensure that only one highest 

(mrp) and second highest (qrp) overall transfer score for each reactant can contribute (i.e. 

being non-zero) to the objective function (Eq. 1). The parameter Zr represents the largest 

score that could be achieved by transferring all elements from a given reactant, r, and is 

determined by Eq. 13.

(13)

Eq. 6 to 12 ensure at most one mrp and at most one qrp, can be non-zero for a given reactant, 

r, participating in reaction, j. Consequently, each reactant’s highest priority overall transfer 

score (mrp) is scaled the most in MapMaker’s objective function (Eq. 1). For reactants’ with 

multiple overall transfers, the second priority overall transfer scores (qrp) are also included 

in the objective, but are scaled by a smaller amount. Since the weighting for transferring 

carbon atoms is higher than N, O, P, and S atoms, and the highest overall transfer score (mrp) 

contributes more towards the overall objective function (Eq. 1), then MapMaker prefers 

solutions where carbon from a reactant is transferred to fewer products. Overall transfer 

scores for any additional overall transfers are not included in the objective function. 

MapMaker solutions for some reactions are sensitive to the parameter values used in Eq. 1 

(e.g., weighting the third term by 50 instead of 1 introduces ~6 additional erroneous carbon 

transfer maps). The parameter values chosen resulted in more accurate carbon transfer maps 

(CTMs) for the reactions in iJO1366. MapMaker was implemented in GAMS (General 

Algebraic Modeling Systems) and solved using CPLEX (Intel Core i7 920 @ 2.67 GHz with 

12 GB of memory running on Windows 10), with runtimes of around 0.02 seconds per 

reaction analyzed.

 2.2 General Reaction-Based Maps and MapMaker CTMs

The CTMs correspond to reactants (r) and products (p) where γCrp=1. To investigate the 

sensitivity of PathTracer to other mappings (or connections) between metabolites, general 

reaction-based maps were used, such that each reactant is mapped to all products of a given 

reaction regardless of whether a carbon transfer has occurred. The CTMs generated by 

MapMaker are a subset of these reaction-based maps. In some cases the general reaction-

based maps were further refined by removing highly connected metabolites (e.g., ATP and 

NADH) using Eq. 23. Unless indicated otherwise, PathTracer was run using MapMaker 

CTMs.
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 2.3 PathTracer Algorithm

From the metabolite maps (either reaction-based or MapMaker CTMs), a network flow 

problem can be formulated to (1) enumerate all possible paths from a starting metabolite 

(StartNode) to an ending metabolite (EndNode), or (2) determine the shortest or most active 

path between two metabolites utilized by an FBA solution (see section 2.4). PathTracer uses 

an objective function (Eq. 14 or Eq. 26) to select a path that satisfies required constraints 

(Eq. 16 to 21, ensuring flow into a metabolite node equals flow out of a node), and optional 

constraints (Eq. 22 to 30, limiting the number of times a metabolite node or reaction can be 

used in a path). To find the shortest path(s), the following objective function is used:

(14)

where D is an ordered set of depths from 1 to ∣D∣ (in this work, ∣D∣ was set to 30), and Sinkd 

are binary variables used to remove flow (if value is 1) from the ending metabolite node at 

different depths, d. In Eq. 14, the first term was weighted more than the second so that 

PathTracer finds a path instead of not returning a path. If a path is found, the first term has a 

value of 10 · ∣D∣ and the second term has a value equal to the path length. As long as the 

weighting on the first term is greater than ∣D∣, then PathTracer will return a path even it is 

long. This objective function was used instead of forcing PathTracer to find a path (by 

setting  and minimizing  instead of Eq. 14) so that the 

PathTracer MILP was always feasible.

A network is created whose nodes (indicated as n or i) are connected by edges based on 

metabolite maps. Sink and source edges are added to the starting and ending metabolite, 

respectively. Flow is conserved across each node at different depths (d) using constraints 

(Eq. 15 to 20):

(15)

(16)

(17)

Tervo and Reed Page 7

Biotechnol J. Author manuscript; available in PMC 2017 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(18)

(19)

(20)

Map is the set of all mappings from reactants to products via reactions (j). Note, that Map 
can include all reactions, reactions found by flux variability analysis (FVA [20]) that satisfy 

COBRA constraints, or a subset of reactions which are predicted by FBA or pFBA to be 

active (see section 2.4 for more details). The order of the Map subindices correspond to 

reactant, reaction, and product in the forward direction of the reaction. For, example, Mapnji 

indicates that node n is mapped in the forward direction of reaction j to node i, and Mapijn 

indicates that node i is mapped in the forward direction of j to node n. d is the depth (i.e., the 

distance traversed from the starting metabolite to metabolite n). Binary variables a and arev 

indicate flow (if value is 1) between metabolite nodes in the forward or backward direction 

of a reaction, respectively. The arev variables only exist for reversible reactions. The order of 

the a and arev subindices correspond to reactant, reaction, product, and depth. For example, 

anjid =1 indicates flow from node n by reaction j to node i at depth d and  indicates 

flow from node i using reaction j (in the backward direction) to node n at depth d. Source is 

a binary variable associated with the starting metabolite, which takes a value of 1 if a path is 

found from this starting metabolite to the ending metabolite.

In addition to the required constraints (Eq. 15 to 20), the following optional constraints can 

prevent a reaction(s) from being used in a path (Eq. 21), prevent all reactions (defined as set 

J) from being used more than once (Eq. 22), prevent a node(s) from being included in a path 

(Eq. 23) or prevent all nodes from being used more than once to avoid internal loops (Eq. 24 

and 25). In this work, the eliminated set of nodes included: CO2, ACP and CoA (for the 

putrescine to glutamate analyses); ACP and CoA (for the CO2 fixation simulations); and H, 

H2O, NAD, NADH, NADP, NADPH, ATP, ADP, AMP, CoA and ACP (when using general 

reaction-based maps instead of MapMaker CTMs). Integer cuts can also be used to find 

alternative MapMaker and PathTracer solutions and these cut constraints are described in the 

Supporting Information.
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(21)

(22)

(23)

(24)

(25)

 2.4 Integrating FBA (or pFBA) and PathTracer

PathTracer can find paths used in FBA [1], pFBA [21], or FVA [20, 22] solutions by only 

allowing CTMs of active (i.e., non-zero) fluxes to be used, thereby reducing the number of 

possible paths. For example, a one-step pFBA solution (see Eq. S1 to S5 in Supporting 

Information) can be found that maximizes biomass (or metabolite production) and 

minimizes the total absolute flux through the network. The pFBA or FBA solution is used to 

reduce the set of maps (Map) considered by PathTracer. PathTracer can then find the shortest 

active path (using Eq. 14 to 20) or the most active path (using Eq. 26 and 15 to 20) in the 

pFBA/FBA solution, which also satisfies optional constraints imposed (Eq. 21 to 25). To 

find the most active path, a new objective function (Eq. 26) is used that scales the flow 

variables by the inverse of their associated pFBA/FBA predicted non-zero fluxes (vj).

(26)

Here λ is a large parameter that helps the objective function favor finding a path over 

minimizing the some of scaled flow variables, and λ equal to 104 was used in this work. 
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Note that in Eq. 26 the fluxes are parameters instead of variables, since the FBA or pFBA 

problem is solved first. The first term of Eq. 26 encourages PathTracer to find a path (in this 

case Σ Sinkd is 1). The second and third terms of Eq. 26 bias the selection of which edges 

are active by the inverse of the flux values, so that edges associated with high fluxes are 

penalized less in the objective. The large λ value ensures that finding a path is favored over 

returning a no path solution (to avoid using edges associated with reactions with low flux). 

For models with smaller fluxes than iJO1366, λ may need to be increased (which would be 

evident if no paths were returned by PathTracer), or instead PathTracer can be run with an 

additional constraint ( ) so that the first term can be removed from the 

objective function (Eq. 26).

This first approach is useful to find which paths are actively being used in a FBA or pFBA 

solution. However, other flux distributions exist, and it is often desirable to identify any or 

all paths between two metabolites (not just a path in a single FBA or pFBA solution). To 

ensure PathTracer proposes a feasible path (i.e., satisfies steady-state mass balance, enzyme 

capacity, and reversibility constraints), the COBRA constraints (Eq. 27 to 32) can be directly 

included in PathTracer.

(27)

(28)

(29)

(30)

(31)

(32)
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Here, Inonbio is the set of all non-biomass metabolites and Ibio is the set of metabolites in the 

Biomass reaction. Non-negative fluxes through individual sinks ( ) for biomass 

components were used instead of the biomass reaction in mass balances (Eq. 28) to reduce 

solver issues associated with poorly-scaled models. The binary variables, Forwardj and 

Reversej, indicate whether a path uses the reaction in the forward or reverse direction, 

respectively. The upper and lower limits for each flux (vj) are  and , 

respectively. Eq. 29 to 32 ensure that if a reaction is used in a path then the flux is greater 

than φ (if the reaction is used in the path in the forward direction) or less than φ (if the 

reaction is used in the reverse direction). Thus, φ is the minimum flux a reaction needs to 

carry to be allowed in a path. φ was set between 10−2 and 10−3 (depending on how ill-

conditioned the equations were) so that only higher flux paths were found. This approach 

was used to find feasible paths between glucose and all other metabolites. As with 

MapMaker, PathTracer was implemented in GAMS and solved using CPLEX. When FBA 

was run as a separate initial problem, it took PathTracer about 1 second to find a path using 

active fluxes from the FBA solution. When PathTracer and FBA/pFBA were integrated into 

a single MILP the runtime was around 13 seconds (Intel Core i7 920 @ 2.67 GHz with 12 

GB of memory running on Windows 10). In either case, PathTracer was able to find paths 

within a reasonable timeframe.

 3 RESULTS

Two algorithms were developed to predict what elements are transferred from reactants to 

products in biochemical reactions (MapMaker), and to identify paths between two 

metabolites where all reaction steps transfer carbon atoms between substrates and products 

(PathTracer). MapMaker identified which reactants and products share carbon atoms in a 

genome-scale metabolic network of E. coli [19]. This carbon mapping information was used 

by PathTracer to investigate shortest path lengths, to elucidate a CO2 fixation pathway, and 

to identify high flux paths in a genome-scale E. coli model.

 3.1 MapMaker: Predicting Elemental Transfers of Reactions

The process of generating a carbon transfer map (CTM) for a given reaction is summarized 

in Figure 1. As depicted (Figure 1A), MapMaker distributes all non-hydrogen elements in 

the reactants of a given reaction to products. All reactions analyzed by MapMaker must be 

elementally-balanced (except for hydrogen). There are numerous ways to distribute elements 

from multiple reactants to multiple products; consequently, MapMaker is predicated on the 

principle of Occam’s Razor or maximum parsimony (i.e., the simplest explanation is 

preferred). Maximum parsimony approaches have been used to refine metabolic and 

regulatory models [23-25], predict intracellular fluxes [21, 26], and identify metabolic 

engineering targets [2, 27]. Based on this principle, MapMaker finds all elemental transfers 

for a given reaction by distributing reactant elements to the fewest number of products. To 

accomplish this, a multi-component objective function (Figure 1B) is used which:

1. Minimizes the Number of Overall Transfers: Here an overall transfer is a 

culmination of all the elemental transfers (e.g., carbon, nitrogen, phosphorous, 

and oxygen) between a reactant and its product. If no elements are transferred 
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between two metabolites then there is no overall transfer. The number of 

elements (e.g., two versus one carbon atom) and element types (e.g., carbon 

and nitrogen elements) transferred from a reactant to a product is not 

considered in this part of the multicomponent objective function.

2. Minimizes the Number of Elemental Transfers: Here the number of element 

types transferred between reactants and products for a given reaction is 

considered. Again, the number of each type of element transferred does not 

impact this part of the objective function. Instead, the number of elemental 

transfers increases when a new type of element is transferred between two 

compounds.

3. Maximizes the Scaled Scores for the Overall Transfers: Each overall transfer 

between a reactant and product is given a score based on the number and type 

of elements transferred. The highest and second highest scores for each 

reactant are then scaled in the multicomponent objective function, and 

collectively contribute the most to its overall value. By maximizing the scaled 

overall transfer scores, the algorithm tries to assign as many reactant elements 

as possible to a single product.

The subset of optimal elemental transfers that involve carbon atoms are used to create CTMs 

from reactants to products, which serve as inputs for the PathTracer algorithm. MapMaker’s 

elemental transfers do not contain detail about which carbon atom in a reactant becomes 

which carbon atom in a product. As a result the CTMs only specify that at least one carbon 

atom is shared between two metabolites, and not which carbon atoms in the two metabolites 

these correspond to.

MapMaker was applied to all the reactions (except the biomass reaction) in the E. coli 
iJO1366 metabolic network [19], resulting in elemental transfers for 2,251 reactions. The 

resulting CTMs derived from the carbon transfers were checked for accuracy. Reactions 

were categorized based on how reactants’ carbon atoms were separated and/or combined by 

a reaction (e.g., a condensation reaction has two CTMs between two reactants and a single 

product), resulting in 8 reaction categories (Figure 2A). When assigning reactions to a 

category, CTMs for energy and redox carriers (e.g., ATP, GTP, and NAD(P)H) were ignored, 

unless they were the only reactants; however, reactions involving energy/redox carriers were 

then placed in a separate subcategory. Energy/redox carriers were not identified before 

running MapMaker, but were instead used to distinguish between subcategories in the 

classification scheme. The number of reactions and accuracy of CTMs in each category (and 

subcategory) are detailed in Table S1.

The first three categories involve reactions with single carbon containing reactants or 

products, including reactions: with only one reactant and one product with carbon atoms 

(category 1); where two carbon containing reactants combine into a single product (category 

2); where a single carbon compound decomposes into two products (category 3). If no 

energy/redox carriers are involved in the reactions, then the CTMs for reactions in these 

three categories are guaranteed to be correct (i.e., no alternative carbon transfer map solution 

exists). Approximately 83% of the iJO1366 reactions fall into the first three categories 
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(Figure 2B), and the MapMaker CTMs were 100% accurate, irrespective of whether energy/

redox carriers were involved in the reactions (which were not guaranteed to be correct). The 

remaining four categories (categories 4 to 7), which comprise ~13% of iJO1366 reactions, 

involve mapping multiple carbon containing reactants to multiple carbon containing 

products (the remaining ~4% of reactions do not involve any organic compounds, category 

8). A majority of reactions in categories 4 to 7 transfer a functional group (e.g., amine, CO2, 

CoA or ACP). Overall, only 66 reactions (~3%) of reactions had incorrect MapMaker CTMs 

(Figure 2C) and these mostly involved reactions (1) where a functional group (e.g., CoA) 

was present in two reactants and a separate product, or (2) where reactants and products had 

similar chemical compositions (see Table S2).

 3.2 PathTracer: Tracing Carbon through Metabolic Networks

PathTracer uses CTMs to determine paths involving carbon flow between a starting and 

ending metabolite. PathTracer was first applied to a toy metabolic system to enumerate all 

paths from metabolite A to metabolite G (Figure 3A). This was accomplished by creating a 

network of metabolite nodes at a given depth (d) away from the starting node, where the 

movement across an edge from one node to another increases the depth by one. Each node 

(n) is connected to other nodes (i) by edges (corresponding to CTMs) between reactions’ 

reactants (r) and products (p). Most of connections were generated from MapMaker CTMs, 

but other metabolite maps can be used, including other MapMaker element transfers (e.g., 

nitrogen transfers) or mappings between all reactants and products (i.e., general reaction-

based maps that have been used previously [12, 16, 28]). A source edge is added to the 

starting metabolite node at the first depth (d=1) and flow is allowed through this source edge 

into the network (Figure 3B). Sink edges are also added to the nodes corresponding to the 

ending metabolite for each depth greater than one (d>1). A path can be found between two 

metabolites by conserving flow across each node (i.e., flow in and out of given node must be 

equal). The shortest path involves flow through the shallowest (i.e., smallest d) sink edge 

(Figure 3C). To enumerate other possible paths (Figure 3C), integer cuts can be added to 

eliminate prior shortest paths. The following sections show how PathTracer can help analyze 

FBA results and reveal interesting network behaviors in genome-scale metabolic networks.

 3.3 Paths in a Genome-Scale Metabolic Network

PathTracer was first used to find paths from glucose to every other metabolite in the iJO1366 

network. To evaluate the impact of CTMs and mass balances on paths, PathTracer was run 

using general reaction-based maps (where all reactants were connected to all reactants in a 

reaction) or CTMs, and with or without COBRA constraints (including steady-state mass 

balance, enzyme capacity, and reversibility constraints). Imposing COBRA constraints on 

reaction-based maps dramatically reduced the percent of metabolites with paths from 

glucose, from 71% to 60% (Figure 4A). Thus, existing approaches that do not consider 

COBRA constraints will propose paths involving metabolites that cannot be consumed or 

produced by the network (Figure 4A). Using CTMs to connect metabolites further reduced 

the set of reachable metabolites from glucose to 55%, suggesting that 5% of metabolites 

may only be connected to glucose via non-carbon atoms (e.g., nitrogen, oxygen, and 

phosphorous). Using CTMs also increased the average minimum path length between 

glucose and all reachable metabolites from ~6 reactions to ~10 reactions (Figure 4B). The 
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shortest paths for glycolytic intermediates differed significantly depending on whether 

reaction-based maps versus CTMs were used with COBRA constraints (Figure 4C). Even 

with highly connected metabolites removed (e.g., ATP), the reaction-based maps resulted in 

a two-step path from extracellular glucose (glc-D[e]) to intracellular pyruvate (pyr): glc-D[e] 

to glc-D[p] to pyr. This is because the PTS glucose transport reaction (glc-D[p] + pep → g6p 

+ pyr) connects glc-D[p] to pyr in reaction-based maps even though no carbon is exchanged 

between glucose and pyruvate. Given these results, all subsequent PathTracer analyses used 

CTMs with COBRA constraints or FBA results to generate feasible paths that satisfy mass 

balances, reversibility, and enzyme capacity constraints.

Another algorithm, FOCAL, was previously developed to identify conditions where a 

chosen reaction would be essential for growth [16]. The NAD-dependent succinate-

semialdehyde dehydrogenase reaction (SSALx) was predicted, by an older E. coli model 

(iJR904 [29]), to be essential for a ΔgabD mutant grown aerobically with putrescine as sole 

carbon source. Compared to iJR904, iJO1366 includes more reactions to convert putrescine 

into biomass so SSALx is not predicted to be essential in these conditions for ΔgabD (which 

lacks the NADP-dependent succinate-semialdehyde dehydrogenase, SSALy). Paths between 

putrescine and biomass were calculated using PathTracer to see how biomass is produced 

from putrescine in iJO1366. Since PathTracer found that glutamate was the closest biomass 

component to putrescine (i.e., glutamate had the shortest path with 8 reactions), glutamate 

was used as the ending metabolite for all subsequent PathTracer analyses.

PathTracer generated all feasible paths (with d<30) from putrescine to glutamate, and the 15 

shortest paths are shown in (Figure S1). Since PathTracer does not use carbon fates (i.e., 

which reactant carbon atom goes to which product carbon atom), one path involving gamma 

glutamyl putrescine synthase (GGPTRCS) was incorrect because no carbon atoms go from 

putrescine to glutamate. All correct paths which did not use SSALx instead used either 

SSALy or spermidine synthase (SPMS). Thus, SSALy and SPMS would both need to be 

eliminated to make SSALx essential for growth. The essentiality conditions (removing 

SSALy and SPMS) can also be found using a bilevel MILP that destroys all paths between 

two metabolites, eliminating the need to enumerate and inspect all paths (see Supporting 

Information for details). While PathTracer found no paths involving carbon flow between 

putrescine and glutamate after SSALx, SSALy, SPMS and GGPTRCS were removed, FBA 

still predicted growth for this quadruple knockout mutant. The only other carbon available in 

the FBA simulations was CO2, and in the absence of these four reactions iJO1366 used 

putrescine as an energy and electron source to fix CO2.

PathTracer was subsequently used to evaluate what paths were being used in the iJO1366 

model to enable CO2 fixation, as well as what network changes had occurred between 

iJR904 and iJO1366 to allow for this new predicted phenotype. All feasible paths (which 

satisfy COBRA constraints) between CO2 and glutamate were found using PathTracer and 

only four reactions involved in these paths utilize CO2 — carbamate kinase, carbonic 

anhydrase, pyruvate oxidoreductase, and phosphoenolpyruvate carboxylase (PPC). Of these 

four reactions, only PPC was required to produce glutamate from CO2 (as determined by 

FBA) implying the CO2 fixation pathway involved oxaloacetate (the product of PPC). pFBA 

was used to predict the set of reactions used to produce glutamate from CO2 and putrescine 
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(and other minimal medium nutrients), after deleting GGPTRCS, SPMS, SSALx and SSALy 

(to prevent putrescine utilization as a carbon source) and deleting the three non-essential 

CO2 consuming reactions (carbamate kinase, carbonic anhydrase, and pyruvate 

oxidoreductase). PathTracer was re-run using only reactions in this pFBA solution to 

discover paths between CO2 and glutamate involving oxaloacetate cycles. Ten oxaloacetate 

cycles were found, of which two of them, if combined, produced succinate from glycine and 

two molecules of CO2 (see Figure 5). Another PathTracer search on this pFBA reaction set 

found a path from succinate to glycine that also produced acetyl-CoA (Figure 5B). 

Combined, these three paths resulted in the net generation of acetyl-CoA from ATP, NADPH 

and CO2. The ATP and NAD(P)H needed to run this CO2 fixation pathway were produced 

by the degradation of putrescine into 4-aminobutanoate. The acetyl-CoA produced can then 

be used to make biomass components, including glutamate. While this multi-step approach 

found linear and cyclic paths involved in CO2 fixation, a modification to PathTracer can also 

determine in one step a complete set of paths necessary to convert CO2 to glutamate (see 

Supporting Information, Figure S2, and Tables S3-S12 for details).

While putrescine was used to provide the necessary ATP and NAD(P)H for CO2 fixation, 

any source of NAD(P)H and ATP could be used. A total of 9 ATP equivalents and 5 

NAD(P)H molecules were required to convert two CO2 into acetyl-CoA (with 1 ubiquinone 

being reduced). This CO2 fixation pathway uses more steps and is less efficient energetically 

than five of the six known CO2 fixation pathways. For example, the dicarboxylate/4-

hydroxybutyrate pathway requires 5 ATP equivalents to convert two CO2 into acetyl-CoA 

[30]. Of the reaction set used by pFBA, only 13 reactions were new or modified in iJO1366 

compared to iJR904 (excluding outer membrane transport reactions). Just making the 

glycine hydroxymethyltransferase (GHMT2) reaction reversible in the iJR904 model 

allowed iJR904 to fix CO2. The most recent estimate for the standard change in Gibbs free 

energy for the GHMT2 reaction (ΔR G′0) was 0.05 ± 3.65 kcal/mol [31], indicating this 

reaction is likely reversible. However, E. coli is not known to fix CO2 physiologically. One 

reason for this could be due to transcriptional regulation. In the first OAA cycle and glycine 

recycle (Figure 5B), threonine is an intermediate that is synthesized and then degraded. 

However, threonine biosynthesis and threonine degradation enzymes are not typically 

expressed under the same conditions [32, 33]. Additionally, the second OAA cycle uses 

enzymes involved in propionate degradation that are induced during growth on propionate 

[34]. For the CO2 fixation path to function, the regulatory network would need to be 

configured to allow the necessary enzymes to be expressed simultaneously. Compared to 

other CO2 fixation paths, this potential path is not the most energetically efficient and 

requires significantly more enzymatic steps to complete. As a result, other pathways might 

be better to incorporate into E. coli to enable CO2 fixation.

 3.4 Finding High Flux Paths

When analyzing FBA or pFBA results, one may be interested in finding the most active path 

(i.e., the one with the highest flux) used to produce a particular metabolite. By using FBA 

results to reduce the set of reactions considered by PathTracer, all possible active paths 

between two metabolites can be enumerated. However, some of these paths may not 

contribute significant flux between two metabolites. To find the most active path, a modified 
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PathTracer objective function can be used (see Methods) where each individual edge is 

weighted by the inverse of its FBA predicted flux value. The differences between the 

shortest and flux-weighted paths can be significant. For example, two paths between glucose 

and ethanol were found using only active reactions in a pFBA solution by (1) minimizing 

pathlength or (2) minimizing a flux-weighted objective function (Table 1). The two paths 

found were significantly different, with the shortest active path using the Entner-Dourdoroff 

(EDD and EDA) and pyruvate oxidoreductase (POR5) reactions and the flux-weighted path 

using glycolysis and pyruvate dehydrogenase (PDH). Consequently, while both approaches 

find feasible and metabolically active paths, the flux-weighted path captures the more 

dominant metabolic behavior. These high flux paths are useful for knowing which path 

contributes the most towards metabolite or precursor production, which can be useful when 

determining whether network modifications are likely to have large or small impacts on flux 

re-arrangements or whether these are paths are consistent with measured ‘omics’ datasets.

 4 DISCUSSION

This work developed a heuristic approach to predict CTMs between metabolites using 

stoichiometric and molecular formulae information for metabolites participating in a 

reaction. The approach was highly accurate, with over 97% of reactions in iJO1366 having 

the correct CTMs. Incorrect CTMs were associated with substitutions or higher complexity 

reactions (Categories 5-7), indicating the CTMs for reactions of these types (~12% of the 

reactions in iJO1366) should be validated. MapMaker solutions are sensitive to the 

parameters used and it is possible further optimization of these parameters or introduction of 

additional considerations could reduce the error rate. Software exists that identifies 

functional groups from molecular structures [35], and MapMaker errors could potentially be 

reduced by taking functional groups into account. MapMaker allows for the rapid and 

automated identification of metabolites in a reaction that share at least one carbon atom; 

however, it does not predict the fates (or locations) of individual carbon atoms in substrates 

and reactants (e.g., the 2nd carbon in the reactant becomes the 1st carbon in the product).

We show that the MapMaker CTMs and COBRA constraints have a significant impact on 

the number of metabolites with paths from glucose and the shortest paths found using 

PathTracer. Pey et al. made similar observations for a different E. coli network using a 

related MILP approach [14]. Since PathTracer does not follow individual carbon atoms it 

sometimes connects metabolites via paths where carbon is not shared between a starting and 

ending metabolite. Such an incorrect path was found between putrescine and glutamate, 

where the carbon in glutamate should come entirely from α-ketoglutarate. The incorrect path 

generates an intermediate that contains carbon from both putrescine and α-ketoglutarate and 

since PathTracer does not trace the fate of individual carbon atoms it connects this 

intermediate to glutamate. Recently, Pey et al. have proposed an approach that uses carbon 

fate information to track individual carbon atoms through metabolic reactions [17]. This 

approach correctly finds paths where the starting and ending metabolite (and all 

intermediates) share carbon atom(s); however, the approach requires carbon atom reaction 

transitions for all reactions. Future, work could combine Pey et al.’s approach [17] for 

tracking carbon atoms with constraint-based models to better track the flow of carbon atoms 

through FBA or pFBA solutions.
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While both algorithms proposed by Pey et al. impose mass-balanced constraints [14, 17], 

they require that any reaction used in a path must be carry a flux greater than 1 and still 

result in a mass-balanced flux distribution. However, for many FBA solutions most of the 

fluxes are less than 1 mmol/gDW/h. For example, ~86% of the active fluxes are less than 1 

mmol/gDW/h in a pFBA solution for iJO1366 under glucose minimal media aerobic 

conditions. Paths using these low-flux reactions would not be found if enzyme capacity and 

reversibility constraints were directly imposed in previous MILP path finding algorithms 

[14, 17]. Using FBA or pFBA as an initial step allows for low-flux paths to be found, and 

also reduces the paths to only those that are used in FBA or pFBA solutions. Additionally, 

many existing approaches prevent metabolic cycles from being found, but these cycles can 

be important in deciphering genome-scale modeling results. For example, the pathway 

involved in CO2 fixation requires using the oxaloacetate node and PPC reaction twice. 

Approaches that can enumerate metabolite cycles are thus useful for interpreting metabolic 

network behaviors.

Previous research efforts have focused mostly on finding the shortest paths between 

metabolites. However, the shortest path might not be used in a FBA or pFBA flux prediction. 

Even if all feasible paths were enumerated, it would be difficult to determine which ones 

were used in a particular flux distribution. Instead, by using FBA, pFBA, or FVA as an 

initial step, the metabolic modeling results can be used to ensure PathTracer paths (1) satisfy 

all COBRA constraints (not just mass balances), (2) are active in predicted flux distributions, 

and/or (3) are the most active paths. For example, the shortest feasible path from glucose to 

ethanol would use the Entner-Doudoroff pathway to make pyruvate (Figure 4C) and then 

convert pyruvate into ethanol. However, this is not the highest flux path in a mutant designed 

for ethanol production, where glycolysis is predicted to carry more flux than the Entner-

Doudoroff pathway (Table 1). Weighting reaction steps used in paths by the inverse of their 

flux values helps to identify the highest flux paths between two metabolites. Together, the 

approaches developed here provide scalable and model-specific tools to help analyze 

metabolic networks and interpret genome-scale modeling results. These tools allow users to 

identify from the hundreds of active metabolic fluxes, what carbon-based metabolic routes 

are predicted by FBA (or other COBRA methods) to carry out chemical transformations of 

interest. Such tools would be useful for debugging models (e.g., answering how growth is 

predicted to occur under conditions where it should not be), identifying common metabolic 

precursors to commercial chemicals (Zhang, Tervo, and Reed, under review), and better 

characterizing metabolic behaviors and/or predictions (e.g., what canonical or non-canonical 

pathways are being used).

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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 Abbreviations

CTM carbon transfer map

COBRA constraint-based reconstruction and analysis

FBA flux balance analysis

MILP mixed integer linear program

pFBA parsimonius flux balance analysis

FVA flux variability analysis

glc-D glucose

pyr pyruvate

pep phosphoenolpyruvate

g6p glucose-6-phosphate

CoA coenzyme A

SSALx NAD-dependent succinate-semialdehyde dehydrogenase

SSALy NADP-dependent succinate-semialdehyde dehydrogenase

SPMS spermidine synthase

PPC phosphoenolpyruvate carboxylase

GGPTRCS gamma glutamyl putrescine synthase

OAA oxaloacetate
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Figure 1. Overview of MapMaker Algorithm
(A) The MapMaker algorithm predicts elemental transfers for a given reaction that conserve 

elements, except for H. The reaction representing glucose transport is shown as an example. 

The abbreviations correspond to glucose (glc), phosphoenolpyruvate (pep), glucose-6-

phosphate (g6p), and pyruvate (pyr). Each arc (blue or green) connecting two metabolites 

represents an overall transfer (indicating that elements are transferred from reactant to 

product). The numbers in parentheses above the overall transfer arcs are the numbers of each 

type of element that are being transferred. For example, a (2,2,3,1) indicates 2 carbon, 2 

nitrogen, 3 oxygen, and 1 phosphorous atoms are being transferred from the reactant to that 

product. The number below the overall transfer arcs are the corresponding overall transfer 

scores. MapMaker uses a multi-component objective function that considers number of 

overall transfers, number of elemental transfers (the number of non-zero entries in the 

parentheses), and scaled overall transfer scores (B). Yellow boxes indicate MapMaker’s 

preferred option given two hypothetical scenarios.
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Figure 2. Reaction Categories and their Carbon Transfer Map Accuracies
CTMs generated from MapMaker were used to assign reactions to one of 8 categories (see 

text for details). Each number in brackets is the number of unique reactants that are mapped 

(via CTMs) to a given product. For example, [2,1] indicates carbons in the first product 

come from two reactants and carbons in the second product come from one reactant. Energy 

and redox carriers were initially ignored when categorizing reactions. Panels B and C show 

the number of reactions in each category and percent of reactions with correct and incorrect 

CTMs, respectively.
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Figure 3. Illustrative Example for Generating Paths
(Panel A) PathTracer was applied to a toy network to find all reaction paths from metabolite 

A to G. (Panel B and C) One source edge (green arrow) was added to the starting 

metabolite’s first depth node. Sink edges (blue arrows) were added to the ending 

metabolite’s nodes with depths greater than one. (Panel B) The flow inputs and outputs of a 

given node (n) at depth (d) are based on source edges, sink edges, connections to other 

nodes (i) based on metabolite maps (e.g., CTMs). PathTracer balanced flow around each 

node to determine the shortest reaction path from the source edge to a sink edge (Panel C). 

Here the red path indicates the shortest possible path between A and G, while the purple 

path indicates an alternate solution that was found with integer cuts.
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Figure 4. Effect of COBRA constraints and CTMs on Shortest Paths
Shortest paths between glucose and all other metabolites were calculated using either: 

general reaction-based maps without COBRA constraints, general reaction-based maps with 

COBRA constraints, or CTMs with COBRA constraints. The COBRA constraints were for 

aerobic glucose minimal media conditions. General reaction-based maps connected all 

reactants to all products; however, some highly connected metabolites were eliminated (see 

methods for details). (A) The percent of metabolites with or without paths from glucose. (B) 

Histogram of shortest paths lengths for metabolites with paths from glucose. (C) Shortest 

paths between extracellular glucose and different central metabolic intermediates found 

using CTMs with COBRA constraints. The numbers reported next to each metabolite 

indicate the shortest path lengths found using CTMs with COBRA constraints (left) and 

reaction-based maps with COBRA constraints (right, in parentheses). Boxes highlight where 

the two calculated path lengths differ. The different colored path length numbers match the 
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colored arrows used in the path. For example, the shortest path to pyruvate using CTMs 

(with path length of 6, shown in blue) uses reactions shown in blue.
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Figure 5. CO2 Fixation Pathway in iJO1366
(A) An overview of the oxaloacetate (OAA) cycles and glycine recycling paths (along with 

their overall reactions) that when combined allow conversion of two molecules of CO2 into 

acetyl-CoA. (B). Detailed steps in the OAA cycles and glycine recycling pathway. 

Abbreviations of tetrahydrofolate derived metabolites (10fthf, methf, mlthf) are consistent 

with those used in iJO1366.
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Table 1

Paths between glucose and ethanol used in an pFBA solution for a mutanta strain grown under glucose 

anaerobic conditions.

Shortest Active Path Flux-Weighted Path

Map Fromb Map Tob Rxnb pFBA
Fluxc Map Fromb Map Tob Rxnb pFBA

Fluxc

glc-D[e] glc-D[p] GLCtex 10 glc-D[e] glc-D[p] GLCtex 10

glc-D[p] g6p GLCptspp 10 glc-D[p] g6p GLCptspp 10

g6p 6pgl G6PDH2r 1.9 g6p f6p PGI 8.1

6pgl 6pglc PGL 1.9 f6p fdp PFK 7.7

6pgc 2ddg6p EDD 1.9 fdp g3p FBA 7.7

2ddg6p pyr EDA 1.9 g3p 13dpg GAPD 17.5

pyr accoa POR5 0.3 13dpg 3pg PGK −17.5

accoa acald ACALD −17.4 3pg 2pg PGM −17.2

acald etoh ALCD2x −17.7 2pg pep ENO 17.2

etoh etoh[p] ETOHtrpp −17.7 pep pyr PYK 6.6

etoh[p] etoh[e] ETOHtex −17.7 pyr accoa PDH 17.8

accoa acald ACALD −17.4

acald etoh ALCD2x −17.7

etoh etoh[p] ETOHtrpp −17.7

etoh[p] etoh[e] ETOHtex −17.7

a
The mutant had the following reactions deleted: ATPS4rpp, DHAPT, D-LACt2pp, GLYCLTt2rpp, L-LACt2rpp.

b
Metabolite and reaction abbreviations match those used in iJO1366.

c
Fluxes are reported in units of mmol/gDW/h.
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