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Abstract

Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by infiltration of 

eosinophils, T helper cells and mast cells. The role of mast cells in AD is not completely 

understood. To define the effects of mast cells on skin biology, we observed that mast cells 

regulate the homeostatic expression of Epidermal Differentiation Complex (EDC) and other skin 

genes. Decreased EDC gene expression in mice that genetically lack mast cells (KitW-sh/W-sh mice) 

is associated with increased uptake of protein antigens painted on the skin by dendritic cells, 

compared to similarly treated wild-type mice, suggesting a protective role for mast cells in 

exposure to nominal environmental allergens. To test this further, we crossed KitW-sh/W-sh mice 

with Stat6VT transgenic mice that develop spontaneous AD-like disease that is dependent on Th2 

cytokines and associated with high serum concentrations of IgE. We observed that Stat6VT x 

KitW-sh/W-sh mice developed more frequent and more severe allergic skin inflammation than 

Stat6VT transgenic mice that had mast cells. Together, these studies suggest that mast cells 

regulate epidermal barrier function and have a potential protective role in the development of AD-

like disease.
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 INTRODUCTION

Atopic dermatitis (AD) is a chronic inflammatory skin disease (Schmitt et al., 2013) that 

affects 1–3% among adults and up to 15–20% of children worldwide (Asher et al., 2006). 

The incidence of AD has increased by 2- to 3- fold over the past several decades, especially 

in industrialized countries. The pathogenesis of AD is multifactorial and likely results from 

complex interactions between environmental and genetic factors, barrier defects and immune 

dysregulation resulting in epidermal hyperplasia and increased penetration of allergens and 

microbial pathogens (Gittler et al., 2012; Guttman-Yassky et al., 2011; Moniaga et al., 
2010). Recent studies have implicated a strong association between a defect in the skin 

barrier and the pathogenesis of AD (Irvine et al., 2011). The defect is caused by genetic loss-

of-function mutations in the FLG gene encoding filaggrin, a key protein for formation of the 

skin barrier. These mutations are found in a substantial proportion of AD patients (Palmer et 
al., 2006; Sandilands et al., 2007). Parallel mutations in the mouse Flg cause the phenotype 

observed in flaky tail mutant mice (Fallon et al., 2009).

Multiple cell types are involved in the development of AD, including antigen presenting 

cells, T cells and polymorphonuclear leukocytes (Boguniewicz and Leung, 2011; Leung and 

Guttman-Yassky, 2014; Sehra et al., 2008b). Mast cells mediate many functions in the skin 

including pathogen sensing and the release of antimicrobial peptides that contribute to host 

defense (Di Nardo et al., 2007; Kumar and Sharma, 2010; Tete et al., 2012; Wang et al., 
2012). In skin inflammation, mast cells can have distinct effects depending on the type of 

inflammation. Two studies have demonstrated that mast cells have a protective effect in 

sensitization models of allergic contact dermatitis through secretion of cytokines that include 

IL-10 and IL-2 (Grimbaldeston et al., 2007; Hershko et al., 2011). However, several reports 

suggest that mast cells promote inflammation in models of induced allergic skin 

inflammation where there is clearly an activation of Th2-mediated immune responses. In a 

model of ovalbumin-induced skin inflammation using W/Wv mice, mast cells regulated 

cytokine mRNA in the skin, and serum IgE concentrations, although pathology was not 

clearly different (Alenius et al., 2002). In a subsequent model, mast cells were required for 

skin inflammation following epicutaneous sensitization with house dust mite extract and 

staphylococcal enterotoxin B, demonstrated using both the KitW-sh/W-sh model and the Cpa3-

Cre (Cre-Master) model (Ando et al., 2013). Similarly, mast cells were required for Japanese 

Cedar Pollen-induced skin inflammation, demonstrated using the W/Wv model (Oiwa et al., 
2008). Together, these reports suggest context-dependent roles for mast cells in skin 

inflammation. The mechanisms of mast cell-dependent inflammatory regulation are not 

entirely clear.

Although many AD models require overexpression of genes in the skin or experimental 

exposure of irritants to the skin, we developed a model of AD that primes a Th2 response 

and leads to the spontaneous development of allergic skin inflammation. These mice, termed 

Stat6VT transgenic mice, have T cell-specific expression of a constitutively active Stat6 

protein derived by mutating V-547 and T-548 to alanine (Bruns et al., 2003; Daniel et al., 
2000). Transgenic mice have increased Th2 cell development, increased serum IgE 

concentrations, and develop spontaneous allergic inflammation in tissues around the eye, in 

the lung, and in the skin (Sehra et al., 2008a; Sehra et al., 2010; Turner et al., 2014). The 
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skin of Stat6VT mice has slower recovery from injuries including treatment with retinoic 

acid, detergent and vitamin D analogs (DaSilva et al., 2012; Sehra et al., 2010; Turner et al., 
2013), and is more susceptible to infection (Howell et al., 2011). This correlates with 

diminished expression of epidermal differentiation complex (EDC) genes and decreased 

barrier function (Sehra et al., 2010).

Although mast cells have a putative role in skin pathogenesis, their role in homeostatic 

control of skin barrier function is not clear. Moreover, the function of mast cells during the 

development of spontaneous AD-like disease has not been examined. In this report we 

demonstrate that mast cells promote EDC gene expression and have a protective role in a 

model of AD dependent on increased Th2 immune responses.

 RESULTS

 Absence of mast cells results in decreased expression of EDC genes

To determine the contribution of mast cells to skin barrier integrity, we examined the 

expression of EDC genes in mice genetically deficient in mast cells. To this end, we 

characterized the expression of the EDC genes Flg, Flg2, Ivl and Lor in mast cell deficient 

Kit W-sh/W-sh and WT mice. Our results demonstrated a significant decrease in the 

expression of epidermal barrier genes in the absence of mast cells (Fig. 1, A). We observed a 

similar decrease in the Klk7, although in contrast, Krt14 was not significantly changed and 

Krt10 was increased (Fig. 1, A), suggesting that it is the later stages of keratinocyte 

differentiation that are affected. Further, mast cell reconstitution of Kit W-sh/W-sh mice with 

WT mast cells after 6 weeks resulted in a significantly increased expression of Flg, Lor and 

Klk7 (Fig 1, A) but not Ivl or Flg2. The increased gene expression following mast cell 

transfer was not due to EDC gene expression in cultured mast cells, and the number of tissue 

mast cells after reconstitution was not significantly different than in WT mice (data not 

shown). To further demonstrate this effect, we tested expression of pro-filaggrin and 

involucrin in protein extracts from the skin of Kit W-sh/W-sh and WT mice. Consistent with 

the gene expression analysis, protein levels of pro-fillagrin and involucrin were decreased 

(Fig. 1, B–C). Moreover, decreased EDC gene expression correlated with increased 

transepidermal water loss (Fig. 1, E).

To investigate whether decreased EDC gene expression is unique to mast cell deficiency 

resulting from Kit deficiency, we assessed the expression of the EDC genes in a Kit-

independent mast cell deficient mouse model using Cpa3-Cre mice that have the Cre gene 

encoded by the Cpa3 locus (Feyerabend et al., 2011). Our results demonstrate an impaired 

expression of skin barrier genes Flg2, Ivl and Lor in Cpa3-Cre transgenic mice (Fig 1, D) 

consistent with the observations in Kit W-sh/W-sh mice. However, we did not observe any 

effect on the expression of Flg.

Having shown that mast cell reconstitution in Kit W-sh/W-sh mice restored the expression of 

skin barrier genes Flg and Lor, we tested the effect of adding mast cell supernatants on the 

skin of WT mice to determine if secreted products from mast cells altered EDC gene 

expression. Incubation of mouse ear tissue with mast cell supernatants resulted in 

significantly increased expression of Flg and Lor but no significant increase in Ivl in 
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comparison to mouse ears incubated with media alone (Fig 2, A). These data indicate that 

mediators released from mast cells have an important role in regulating skin barrier integrity. 

Moreover, the pattern of induction in EDC gene expression in the tissue explant assay 

parallels the restricted induction of EDC genes in transplanted Kit W-sh/W-sh mice.

We then tested whether mast cells were also required for this response. We performed the 

same experiment, comparing tissue from Kit W-sh/W-sh and WT mice and observed that 

although Flg was increased in WT tissue, the mast cell supernatant did not induce Flg in the 

tissue from Kit W-sh/W-sh mice (Fig. 2, B), suggesting that mast cells were required for this in 

vitro tissue response. To further define the mechanism of this ex vivo response, we examined 

potential mediators and based on publications that histamine can regulate EDC genes 

(Gschwandtner et al., 2013), we compared the ability of supernatants from WT or histadine 

decarboxylase-deficient mast cells, the latter that do not produce histamine, to mediate the 

effect. We observed that although supernatants from WT mast cells increased Flg 
expression, supernatants from Hdc−/− mast cells did not (Fig. 2, C). Moreover, histamine 

added directly to the culture increased Flg expression (Fig. 2, C). Together, these results 

suggest that mast cells promote gene expression in keratinocytes and that histamine is at 

least one mediator of the response.

 Decreased barrier function in the absence of mast cells

To determine if the decreased expression of epidermal barrier genes in mast cell-deficient 

mice had functional consequences, we tested the ability of the protein antigen to cross the 

skin and be taken up by dendritic cells. We have previously used this assay and shown that 

allergen uptake is inversely correlated to EDC gene expression (Sehra et al., 2010). Twenty-

four hours after painting the shaved backs of WT and Kit W-sh/W-sh mice with Alexa647-

labeled OVA, the dendritic cells in the draining lymph nodes were examined for the uptake 

of labeled OVA. Significantly increased percentages of Alexa647+ CD11c+ cells were 

observed in Kit W-sh/W-sh mice than in WT mice (Fig 3, A and B). These results demonstrate 

that in the absence of mast cells there is increased protein translocation across the skin 

barrier.

 Increased numbers of mast cells in Stat6VT mice

Constitutively active Stat6 transgenic mice are prone to the development of spontaneous 

allergic skin inflammation with increased infiltration of eosinophils and lymphocytes. In 

order to determine if mast cells are present and increased in the skin of Stat6VT mice, 

compared to wild type mice, we analyzed the toluidine blue stained sections of ear tissue 

from each strain. As shown in Fig 4A–B, we observed a 2-fold increase in the numbers of 

mast cells in skin from Stat6VT mice, compared to WT skin. Interestingly, increased mast 

cells were only observed in the skin and not in the lung or peri-ocular mucosal tissues from 

Stat6VT transgenic mice (data not shown). Increased mast cells correlate with increased 

IL-9 secretion from Stat6VT transgenic T cells (Fig. 4, C). Thus, the Stat6VT model of 

allergic skin inflammation is characterized by increased mast cell accumulation in the skin.
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 Increased incidence and severity of allergic skin inflammation in Stat6VT x Kit W-sh/W-sh 

transgenic mice

Based on the ability of mast cells to alter EDC gene expression and barrier function, and the 

increased numbers of mast cells in the skin of Stat6VT mice, we next wanted to define the 

function of mast cells in this model of allergic skin inflammation. In order to determine if 

mast cells have a protective or pathogenic role in AD, we mated Stat6VT mice to Kit
W-sh/W-sh mice to generate mast cell-deficient Stat6VT mice. We monitored WT, Stat6VT, 

Stat6VT x Kit +/W-sh and Stat6VT x Kit W-sh/W-sh for the incidence and severity of disease. 

Our data demonstrate that while 30% of Stat6VT mice develop severe disease (Fig 5, A), the 

percentage of mice that develop severe disease on the mast cell-deficient background was 

considerably higher, even in heterozygous mice (80% for Stat6VT x Kit W-sh/W-sh mice and 

50% for Stat6VT x Kit +/W-sh). Further, Stat6VT x Kit W-sh/W-sh mice developed severe AD 

lesions at 5–6 months, earlier than Stat6VT mice that developed severe disease at 6–7 

months, indicating an earlier onset of severe disease in Stat6VT x Kit W-sh/W-sh (Fig 5B).

Next, we compared the percent of mice that required euthanasia or died due to severe AD 

lesions using Kaplan-Meier morbidity analysis. We observed a significantly higher 

percentage of Stat6VT and Stat6VT x KitW-sh/W-sh mice requiring euthanasia due to severe 

disease as compared to WT mice (Fig 5, C), but the difference between Stat6VT and 

Stat6VT x KitW-sh/W-sh mice was not significant. Overall, our results indicate that mast cell-

deficiency exacerbated the development of AD in Stat6VT mice.

To further characterize the histopathology associated with increased disease in the absence 

of mast cells, we performed histological analysis of ear skin tissue from WT, Stat6VT and 

Stat6VT x KitW-sh/W-sh mice aged 4–7 months. Thickening of the dermis and epidermis with 

cellular infiltration of eosinophils, lymphocytes and mast cells was observed in Stat6VT 

mice. Stat6VT x KitW-sh/W-sh mice demonstrated a marked increase in the thickening of the 

dermis and epidermis and a dramatic increase in the inflammatory cell infiltrate 

predominated by eosinophils and lymphocytes compared to Stat6VT or WT mice (Fig 6, A). 

To quantitate the differences in pathology we scored inflammation and dermal thickness, and 

observed the expected increased score in Stat6VT samples, compared to WT samples. These 

scores were further increased in Stat6VT x Kit W-sh/W-sh mice (Fig 6, B & C). Increased 

inflammation was not due to cumulative effects of the STAT6VT transgene and the Kit 

mutation on EDC gene expression (Fig. 6, D).

To determine if the type of inflammation was altered in the skin of Stat6VT mice versus 

Stat6VT x KitW-sh/W-sh mice, we performed qPCR for genes associated with specific cell 

lineages. Although not all comparisons were statistically different, changes in gene 

expression were consistent with a trend towards increased macrophage infiltration (Mertk) 

and decreased eosinophils (Rnase2), neutrophils (Mpo) and T cells (Cd3) (Fig. 6, E). 

Although the qPCR analysis does not distinguish between altered cell numbers in the tissue 

and altered gene expression with cells in the tissue, the decrease in eosinophils was 

confirmed by quantitation of cells in histological analysis (Fig. 6, F&G). Increased Mertk 
expression was associated with significantly increased expression of Nos2 but not Arg, 

suggesting increased M1 macrophages in the tissue (Fig. 6, E). Together, these data indicate 
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that mast cell-deficiency in Stat6VT mice leads to worse disease with altered tissue 

pathology.

 DISCUSSION

Mast cells are multi-functional cells that participate in innate immune responses and are 

effectors for adaptive responses, particularly in mediating immediate hypersensitivity 

responses. Yet, it is still not clear what role mast cells play in the development of allergic 

skin inflammation. In this report we have identified a function for mast cells in regulating 

the homeostatic expression of EDC genes. In mast cell-deficient mice there is diminished 

expression of multiple EDC genes, and evidence of increased barrier permeability to protein 

antigens. This correlated with increased incidence and severity of allergic skin inflammation 

in mice that lacked mast cells. Together, these data support a role for mast cells as promoting 

skin homeostasis.

We observed decreased expression of epidermal barrier genes in two strains of mast cell-

deficient mice. Interestingly, transplantation of bone marrow-derived mast cells only 

compensated for expression of a subset of these genes. This is possibly explained by the 

observations that there are distinct populations of mast cells and that transplant of BMMC 

does not effectively reconstitute all populations (Cyphert et al., 2011). Although this was 

demonstrated in the lung, it is possible that this is a common limitation of the BMMC 

transplant procedure. A differing ability of different subtypes of mast cells to regulate EDC 

genes would fit with the inability of the transplanted BMMC to increase expression of Flg2 
or Ivl above levels observed in mast cell-deficient mice, while there was recovery of 

expression of the other EDC genes. Another interesting point from this analysis was that Flg 
expression was reduced in the Kit W-sh/W-sh mice but not in the Cpa3-Cre mice. Although the 

exact mechanism for this difference is unknown, it could be linked to differences in the 

genetic background of the mice. Flg and Cpa3 are only 73 Mb apart on mouse chromosome 

3, and if the Flg gene in the 129 genetic background DNA were less responsive to cytokines, 

and were retained in the backcrossed mice, it might explain the differential responsiveness.

The mechanism of mast cell-dependent regulation of EDC gene expression is still not 

entirely clear. The low number of mast cells in the skin, as well as the ability of mast cell 

supernatants in our assays to regulate EDC gene expression, suggests that the mechanism is 

not cell contact-dependent. Our data suggest that histamine is at least one mediator that 

could be impacting gene expression. However, our results are different from a recent report 

suggesting that histamine decreases barrier function in keratinocyte cultures (Gschwandtner 

et al., 2013). The experimental systems were different, with Gschwandtner et al examining 

human skin equivalents, and our study using mouse ex vivo tissue culture. In the latter, many 

more cell types are present in the explant, including mast cells themselves that our data 

suggests are important for the effects observed in this report. Thus, there may be conflicting 

effects of histamine on various cell types in the skin. Moreover, histamine may just be one 

mediator among many and the direct effects of histamine on keratinocytes are likely only 

one component of the tissue milieu.
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The Kit W-sh/W-sh mice obviously have defects in immune responses other than mast cell 

deficiency. Thus in our experiments, it is possible that non-mast cell effects might be 

impacting some of the assays. For example, in the allergen uptake experiment, Kit signaling 

can have direct and indirect effects on dendritic cell function. One report (Otsuka et al., 
2011) found that mast cells could impact DC migration. Yet in our study, we did not observe 

significant differences in CD11c+ MHC II-hi cells in the draining lymph node, arguing 

against this being a major factor. Another report (Reuter et al., 2010) found decreased uptake 

of labeled OVA by DC from mast cell-deficient mice, but this was performed in a 

sensitization model where effects were potentially IgE-mediated, and a mechanism that is 

likely not relevant for our short term assay. Finally, a report examining dendritic cell-T cell 

interactions found that Kit signaling in dendritic cells affected T helper cell polarization, and 

this was caused by altered cytokine production, and not by other functional defects 

(Krishnamoorthy et al., 2008). Ultimately, the strongest support for our conclusions comes 

from the parallel usage of the Cpa3Cre mice that have mast cell-deficiency through a Kit-

independent mutation.

The skin inflammation in the Stat6VT x KitW-sh/W-sh mice was more severe than in Stat6VT 

transgenic mice by several measures in this study including visual scoring of lesions and 

histological examination. We also determined through histological examination and gene 

expression analysis that the type of inflammation is altered in the absence of mast cells. Our 

observations suggest that in the absence of mast cells, M1 macrophages are increased in the 

tissue concomitant with a trend towards decreased infiltration of eosinophils and T cells. The 

basis for this skewing is not clear. It is possible that the increased barrier permeability, that 

we have shown is associated with mast cell-deficiency, results in greater environmental 

exposure and responses. As the environmental agent that triggers the development of allergic 

skin inflammation in the Stat6VT mouse model has not been defined, how barrier function 

changes that exposure is difficult to determine.

Our results showing a protective role of mast cells in a spontaneous model of AD differ from 

previously published results using inducible models of AD where mast cells were required 

for pathology (Ando et al., 2013; Oiwa et al., 2008). There are many potential reasons for 

these differences including that inducible models utilize skin irritation (shaving, extensive 

tape stripping) or adjuvants (alum, staphylococcal enterotoxin B) to catalyze the 

epicutaneous immune response (Alenius et al., 2002; Ando et al., 2014; Oiwa et al., 2008). 

Our model also takes advantage of an immune response that is hyper-polarized to the Th2 

phenotype, coincident with high concentrations of serum IgE (Bruns et al., 2003). In this 

respect, the Stat6VT model might be more related to immune responses in patients with 

extrinsic AD, characterized by correlations between Th2 indicators and IgE concentrations 

with SCORAD (Gittler et al., 2013; Suarez-Farinas et al., 2013). Many of the inducible 

models of AD, in the absence of Th2 responses, will still generate skin inflammation, 

characterized by immune responses directed by other Th subsets, perhaps likening them to 

intrinsic AD (Czarnowicki et al., 2014; Sehra et al., 2008b). These results suggest that the 

role of mast cells in regulating skin inflammation might be dependent on the type of T 

helper response that is directing the allergen/irritant-specific immune response.
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Our report highlights a unique role for mast cells in regulating EDC gene expression and 

epidermal barrier function. In a model of spontaneous AD initiated by increased Th2 

activity, the absence of mast cells results in more severe AD-like disease. This suggests that 

mast cells can play an important role in regulating AD susceptibility and severity. It will be 

important to extend the observations on mast cell-keratinocyte interactions from our report 

to other systems and in patient populations to determine if the mast cell-keratinocyte axis 

might be targeted for therapeutic benefit.

 METHODS

 Generation of Stat6VT and Stat6VT x Kit W-sh/W-sh transgenic mice

The generation of Stat6VT transgenic mice was previously described (Bruns et al., 2003). 

Transgene-positive founders (CD2: Stat6VT [78] line), where the human Stat6 gene with 

V547 and T548 mutated to alanine is under transcriptional control of the CD2 locus control 

region, were backcrossed to C57BL/6 mice (Harlan Breeders, Indianapolis, IN). For 

adoptive transfer experiments, C57BL/6 KitW-sh/W-sh were obtained from Jackson 

Laboratory (Bar Harbor, ME). Hdc−/− mice were provided by Drs. Hiroshi Ohtsu (Tohoku 

University) and Paul Bryce (Northwestern University) (Ohtsu et al., 2001; Swartzendruber et 
al., 2012). To obtain Stat6VT mice on a mast cell deficient background, Stat6VT mice were 

mated to KitW-sh/W-sh. Skin samples from Cpa3Cre (Feyerabend et al., 2011) and control 

mice were graciously provided by Drs. Thorsten Feyerabend and Hans-Reimer Rodewald. 

All mice were maintained in specific pathogen-free conditions, and experiments were 

approved by the Indiana University Institutional Animal Care and Use Committee.

 Preparation and Adoptive Transfer of Mast Cells

The preparation of bone marrow derived mast cells was done as previously described 

(Kalesnikoff and Galli, 2011). The purity of MCs was >90% based on toluidine blue staining 

and surface expression of CD117 and FcεRI. For adoptive transfer of mast cells in 

KitW-sh/W-sh mice, wild type (WT) mast cells were obtained after a 4–5 week culture of bone 

marrow cells in medium containing 20 ng/ml recombinant mouse IL-3 (Peprotech). For MC-

reconstitution studies, bone marrow derived mast cells were adoptively transferred via 

subcutaneous injection of 106 cells into eight sites in the shaved dorsal skin of 6–8 wk Kit
W-sh/W-sh mice. After 6 weeks, skin was collected for analysis of EDC gene expression.

 Analysis of gene and protein expression

For real-time PCR measurements, involved or uninvolved skin was homogenized in a tissue 

lyser (Qiagen, Valencia, CA), and RNA isolated with the RNeasy fibrous tissue kit (Qiagen) 

was used to synthesize cDNA with the First-Strand Cloned AMV kit (Invitrogen, Rockville, 

MD). Message levels of barrier function genes were determined by Taqman assay (Applied 

Biosystems, Foster City, CA). Cycle number of the samples was normalized to the 

expression of β2- microglobulin. T cell stimulation and ELISA for IL-9 were performed as 

described (Chang et al., 2010; Sehra et al., 2008a). Immunoblot for EDC genes was 

performed as described (Sehra et al., 2010).
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 Epicutaneous sensitization and skin dendritic cell migration to draining lymph nodes

WT and Kit W-sh/W-sh were epicutaneously sensitized with OVA-Alexa Fluor 647 

(Invitrogen, Carlsbad, CA). Briefly, the back skin of anesthetized mice was shaven and 

gently tape stripped three times to remove external lipids before painting with 500 μg OVA-

Alexa Fluor 647 dissolved in PBS. Twenty-four hours later, mice were sacrificed and 

draining lymph nodes were harvested. Cells were first incubated with anti-CD16/CD32 mAb 

(2.4G2; BD Biosciences, San Jose, CA) and stained with FITC anti-mouse MHC class II 

(MHC-II) and PE anti-mouse CD11c (BD Biosciences). The proportion of OVA-Alexa Flour 

647+ cells was quantified as described previously (Sehra et al., 2010).

 In vitro treatment of skin with mast cell supernatants

Ear skin from WT mice was divided in quarters but incubated intact for 24h with mast cell 

supernatants or control media before expression of epidermal barrier genes from the treated 

skin was determined using Taqman assay. Mast cell supernatants were generated by culture 

of bone marrow derived mast cells as described above for 24 hours in the absence of any 

stimulation. Stimulation of mast cells in culture with antigen/IgE did not alter the results of 

the incubation.

 Histological examination of skin sections

Skin tissues were fixed in neutral buffered Formalin. Paraffin-embedded tissue sections were 

stained with hematoxylin and eosin (H & E), or toluidine blue to evaluate the infiltration of 

inflammatory cells and mast cells, respectively, by light microscopy. The numbers of mast 

cells were quantified in toluidine blue stained sections by counting in 10 high power fields. 

The numbers of eosinophils were quantified in H&E stained sections by counting 4 high 

power fields and averaging among samples from separate mice.

 Quantification of skin pathology

Mice were monitored for the onset and development of mild or severe AD lesions between 

3–13 months. The percentage of mice that develop no disease, mild (blepharitis and/or small 

lesions with erythema) or severe disease (more than one lesion with skin showing signs of 

erythema and scaling) was determined.

Histological slides were scored in a blinded fashion with light microscopy and a semi-

quantitative scoring scale: 0, no inflammation; 1, minimal inflammation of dermal or 

epidermal layers; 3, extensive inflammation in dermal and epidermal layers. Dermal 

thickness was scored in a similar manner.

TEWL was performed as previously described (DaSilva et al., 2012).

 Statistical analyses

Kaplan-Meier morbidity estimates were used to evaluate the mice that required euthanasia or 

those that died due to severe lesions and analysis performed with GraphPad Prism 6. For 

other experiments, data were expressed as means of 3 independent experiments and analyzed 

with the Student t-test or Chi-square test. A p value of less than 0.05 was considered 

statistically significant.
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BMMC bone marrow-derived mast cells

EDC epidermal differentiation complex

References

Alenius H, Laouini D, Woodward A, Mizoguchi E, Bhan AK, Castigli E, et al. Mast cells regulate 
IFN-gamma expression in the skin and circulating IgE levels in allergen-induced skin inflammation. 
J Allergy Clin Immunol. 2002; 109:106–13. [PubMed: 11799374] 

Ando T, Matsumoto K, Namiranian S, Yamashita H, Glatthorn H, Kimura M, et al. Mast cells are 
required for full expression of allergen/SEB-induced skin inflammation. J Invest Dermatol. 2013; 
133:2695–705. [PubMed: 23752044] 

Ando T, Xiao W, Gao P, Namiranian S, Matsumoto K, Tomimori Y, et al. Critical role for mast cell 
Stat5 activity in skin inflammation. Cell Rep. 2014; 6:366–76. [PubMed: 24412367] 

Asher MI, Montefort S, Bjorksten B, Lai CK, Strachan DP, Weiland SK, et al. Worldwide time trends 
in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: 
ISAAC Phases One and Three repeat multicountry cross-sectional surveys. Lancet. 2006; 368:733–
43. [PubMed: 16935684] 

Boguniewicz M, Leung DY. Atopic dermatitis: a disease of altered skin barrier and immune 
dysregulation. Immunol Rev. 2011; 242:233–46. [PubMed: 21682749] 

Bruns HA, Schindler U, Kaplan MH. Expression of a constitutively active Stat6 in vivo alters 
lymphocyte homeostasis with distinct effects in T and B cells. J Immunol. 2003; 170:3478–87. 
[PubMed: 12646608] 

Chang HC, Sehra S, Goswami R, Yao W, Yu Q, Stritesky GL, et al. The transcription factor PU. 1 is 
required for the development of IL-9-producing T cells and allergic inflammation. Nat Immunol. 
2010; 11:527–34. [PubMed: 20431622] 

Cyphert JM, Kovarova M, Koller BH. Unique populations of lung mast cells are required for antigen-
mediated bronchoconstriction. Clin Exp Allergy. 2011; 41:260–9. [PubMed: 20718780] 

Czarnowicki T, Krueger JG, Guttman-Yassky E. Skin barrier and immune dysregulation in atopic 
dermatitis: an evolving story with important clinical implications. J Allergy Clin Immunol Pract. 
2014; 2:371–9. quiz 80–1. [PubMed: 25017523] 

Daniel C, Salvekar A, Schindler U. A gain-of-function mutation in STAT6. J Biol Chem. 2000; 
275:14255–9. [PubMed: 10747856] 

DaSilva SC, Sahu RP, Konger RL, Perkins SM, Kaplan MH, Travers JB. Increased skin barrier 
disruption by sodium lauryl sulfate in mice expressing a constitutively active STAT6 in T cells. 
Arch Dermatol Res. 2012; 304:65–71. [PubMed: 21959772] 

Di Nardo A, Braff MH, Taylor KR, Na C, Granstein RD, McInturff JE, et al. Cathelicidin 
antimicrobial peptides block dendritic cell TLR4 activation and allergic contact sensitization. J 
Immunol. 2007; 178:1829–34. [PubMed: 17237433] 

Fallon PG, Sasaki T, Sandilands A, Campbell LE, Saunders SP, Mangan NE, et al. A homozygous 
frameshift mutation in the mouse Flg gene facilitates enhanced percutaneous allergen priming. Nat 
Genet. 2009; 41:602–8. [PubMed: 19349982] 

Sehra et al. Page 10

J Invest Dermatol. Author manuscript; available in PMC 2017 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Feyerabend TB, Weiser A, Tietz A, Stassen M, Harris N, Kopf M, et al. Cre-mediated cell ablation 
contests mast cell contribution in models of antibody- and T cell-mediated autoimmunity. 
Immunity. 2011; 35:832–44. [PubMed: 22101159] 

Gittler JK, Krueger JG, Guttman-Yassky E. Atopic dermatitis results in intrinsic barrier and immune 
abnormalities: implications for contact dermatitis. J Allergy Clin Immunol. 2013; 131:300–13. 
[PubMed: 22939651] 

Gittler JK, Shemer A, Suarez-Farinas M, Fuentes-Duculan J, Gulewicz KJ, Wang CQ, et al. 
Progressive activation of T(H)2/T(H)22 cytokines and selective epidermal proteins characterizes 
acute and chronic atopic dermatitis. J Allergy Clin Immunol. 2012; 130:1344–54. [PubMed: 
22951056] 

Grimbaldeston MA, Nakae S, Kalesnikoff J, Tsai M, Galli SJ. Mast cell-derived interleukin 10 limits 
skin pathology in contact dermatitis and chronic irradiation with ultraviolet B. Nat Immunol. 2007; 
8:1095–104. [PubMed: 17767162] 

Gschwandtner M, Mildner M, Mlitz V, Gruber F, Eckhart L, Werfel T, et al. Histamine suppresses 
epidermal keratinocyte differentiation and impairs skin barrier function in a human skin model. 
Allergy. 2013; 68:37–47. [PubMed: 23157658] 

Guttman-Yassky E, Nograles KE, Krueger JG. Contrasting pathogenesis of atopic dermatitis and 
psoriasis--part II: immune cell subsets and therapeutic concepts. J Allergy Clin Immunol. 2011; 
127:1420–32. [PubMed: 21419481] 

Hershko AY, Suzuki R, Charles N, Alvarez-Errico D, Sargent JL, Laurence A, et al. Mast cell 
interleukin-2 production contributes to suppression of chronic allergic dermatitis. Immunity. 2011; 
35:562–71. [PubMed: 21982597] 

Howell MD, Gao P, Kim BE, Lesley LJ, Streib JE, Taylor PA, et al. The signal transducer and activator 
of transcription 6 gene (STAT6) increases the propensity of patients with atopic dermatitis toward 
disseminated viral skin infections. J Allergy Clin Immunol. 2011; 128:1006–14. [PubMed: 
21762972] 

Irvine AD, McLean WH, Leung DY. Filaggrin mutations associated with skin and allergic diseases. N 
Engl J Med. 2011; 365:1315–27. [PubMed: 21991953] 

Kalesnikoff J, Galli SJ. Antiinflammatory and immunosuppressive functions of mast cells. Methods 
Mol Biol. 2011; 677:207–20. [PubMed: 20941613] 

Krishnamoorthy N, Oriss TB, Paglia M, Fei M, Yarlagadda M, Vanhaesebroeck B, et al. Activation of 
c-Kit in dendritic cells regulates T helper cell differentiation and allergic asthma. Nat Med. 2008; 
14:565–73. [PubMed: 18454155] 

Kumar V, Sharma A. Mast cells: emerging sentinel innate immune cells with diverse role in immunity. 
Mol Immunol. 2010; 48:14–25. [PubMed: 20678798] 

Leung DY, Guttman-Yassky E. Deciphering the complexities of atopic dermatitis: shifting paradigms 
in treatment approaches. J Allergy Clin Immunol. 2014; 134:769–79. [PubMed: 25282559] 

Moniaga CS, Egawa G, Kawasaki H, Hara-Chikuma M, Honda T, Tanizaki H, et al. Flaky tail mouse 
denotes human atopic dermatitis in the steady state and by topical application with 
Dermatophagoides pteronyssinus extract. Am J Pathol. 2010; 176:2385–93. [PubMed: 20304960] 

Ohtsu H, Tanaka S, Terui T, Hori Y, Makabe-Kobayashi Y, Pejler G, et al. Mice lacking histidine 
decarboxylase exhibit abnormal mast cells. FEBS Lett. 2001; 502:53–6. [PubMed: 11478947] 

Oiwa M, Satoh T, Watanabe M, Niwa H, Hirai H, Nakamura M, et al. CRTH2-dependent, STAT6-
independent induction of cedar pollen dermatitis. Clin Exp Allergy. 2008; 38:1357–66. [PubMed: 
18477017] 

Otsuka A, Kubo M, Honda T, Egawa G, Nakajima S, Tanizaki H, et al. Requirement of interaction 
between mast cells and skin dendritic cells to establish contact hypersensitivity. PLoS One. 2011; 
6:e25538. [PubMed: 21980488] 

Palmer CN, Irvine AD, Terron-Kwiatkowski A, Zhao Y, Liao H, Lee SP, et al. Common loss-of-
function variants of the epidermal barrier protein filaggrin are a major predisposing factor for 
atopic dermatitis. Nat Genet. 2006; 38:441–6. [PubMed: 16550169] 

Reuter S, Dehzad N, Martin H, Heinz A, Castor T, Sudowe S, et al. Mast cells induce migration of 
dendritic cells in a murine model of acute allergic airway disease. Int Arch Allergy Immunol. 
2010; 151:214–22. [PubMed: 19786802] 

Sehra et al. Page 11

J Invest Dermatol. Author manuscript; available in PMC 2017 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Sandilands A, Terron-Kwiatkowski A, Hull PR, O’Regan GM, Clayton TH, Watson RM, et al. 
Comprehensive analysis of the gene encoding filaggrin uncovers prevalent and rare mutations in 
ichthyosis vulgaris and atopic eczema. Nat Genet. 2007; 39:650–4. [PubMed: 17417636] 

Schmitt J, Langan S, Deckert S, Svensson A, von Kobyletzki L, Thomas K, et al. Assessment of 
clinical signs of atopic dermatitis: a systematic review and recommendation. J Allergy Clin 
Immunol. 2013; 132:1337–47. [PubMed: 24035157] 

Sehra S, Bruns HA, Ahyi AN, Nguyen ET, Schmidt NW, Michels EG, et al. IL-4 is a critical 
determinant in the generation of allergic inflammation initiated by a constitutively active Stat6. J 
Immunol. 2008a; 180:3551–9. [PubMed: 18292582] 

Sehra S, Tuana FM, Holbreich M, Mousdicas N, Tepper RS, Chang CH, et al. Scratching the surface: 
towards understanding the pathogenesis of atopic dermatitis. Crit Rev Immunol. 2008b; 28:15–43. 
[PubMed: 18298382] 

Sehra S, Yao Y, Howell MD, Nguyen ET, Kansas GS, Leung DY, et al. IL-4 regulates skin homeostasis 
and the predisposition toward allergic skin inflammation. J Immunol. 2010; 184:3186–90. 
[PubMed: 20147633] 

Suarez-Farinas M, Dhingra N, Gittler J, Shemer A, Cardinale I, de Guzman Strong C, et al. Intrinsic 
atopic dermatitis shows similar TH2 and higher TH17 immune activation compared with extrinsic 
atopic dermatitis. J Allergy Clin Immunol. 2013; 132:361–70. [PubMed: 23777851] 

Swartzendruber JA, Byrne AJ, Bryce PJ. Cutting edge: histamine is required for IL-4-driven 
eosinophilic allergic responses. J Immunol. 2012; 188:536–40. [PubMed: 22156496] 

Tete S, Tripodi D, Rosati M, Conti F, Maccauro G, Saggini A, et al. Role of mast cells in innate and 
adaptive immunity. J Biol Regul Homeost Agents. 2012; 26:193–201. [PubMed: 22824746] 

Turner MJ, DaSilva-Arnold S, Luo N, Hu X, West CC, Sun L, et al. STAT6-mediated keratitis and 
blepharitis: a novel murine model of ocular atopic dermatitis. Invest Ophthalmol Vis Sci. 2014; 
55:3803–8. [PubMed: 24845637] 

Turner MJ, Dasilva-Arnold SC, Yi Q, Mehrotra P, Kaplan MH, Travers JB. Topical application of a 
vitamin D analogue exacerbates atopic dermatitis and induces the atopic dermatitis-like phenotype 
in Stat6VT mice. Pediatr Dermatol. 2013; 30:574–8. [PubMed: 23889122] 

Wang Z, Lai Y, Bernard JJ, Macleod DT, Cogen AL, Moss B, et al. Skin mast cells protect mice 
against vaccinia virus by triggering mast cell receptor S1PR2 and releasing antimicrobial peptides. 
J Immunol. 2012; 188:345–57. [PubMed: 22140255] 

Sehra et al. Page 12

J Invest Dermatol. Author manuscript; available in PMC 2017 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Expression of EDC genes in Mast cell-deficient mice. A, RNA was isolated from the ear 

skin of WT and Kit W-sh/W-sh mice. Expression of the indicated genes was determined by 

quantitative PCR analysis of skin RNA. In mast cell reconstitution experiments, bone 

marrow derived mast cells were adoptively transferred via subcutaneous injection of 106 

cells in the shaved dorsal skin of KitW-sh/W-sh mice. After 6 weeks, skin was collected for 

analysis of EDC gene expression. B, Transepidermal water loss (TEWL) of shaved skin 

from WT and KitW-sh/W-sh mice. C, RNA was isolated from the ear skin of WT and Cpa3-
Cre mutant mice. D, Immunoblot analysis of ear tissue from WT and KitW-sh/W-sh mice for 

the indicated proteins. E, Densitometry of immunoblot analysis in (D). Quantitative PCR 

analysis was performed for gene expression from skin tissues. Data shown represent the 

mean ± SEM of 3 to 7 mice per group. *p < 0.05.
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Figure 2. 
Increased EDC gene expression in WT skin tissue treated with in vitro derived mast cell 

supernatants. Ear tissues from WT mice were incubated in the presence of mast cell 

supernatants or mast cell media for 24h. A, Expression of EDC genes in RNA isolated from 

ear tissue was determined by qPCR analysis. B, Flg expression was assessed in tissue from 

WT or KitW-sh/W-sh mice incubated in mast cell supernatants as above. C, Flg expression was 

assessed in tissue from WT mice incubated in mast cell supernatants from WT or Hdc−/− 

mast cells, or with histamine, as indicated. Data are shown for 3–5 mice per group and 

representative of 2–4 experiments that yielded similar results. *p < 0.05.
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Figure 3. 
Mast cell deficiency decreases skin barrier function. The shaved backs of WT and Kit
W-sh/W-sh mice were treated with OVA-Alexa 647 for 24h. Uptake of OVA was assessed by 

measuring the percentage of DCs (CD11c+ MHC-IIhi) that stained positive for Alexa 647 

fluorescence. Dot plots (A) are representative from 2 independent experiments with similar 

results. Bar graph (B) represents the mean ± SEM of the percent positive cells. 

*Significantly different from WT, p < 0.05.
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Figure 4. 
Increased mast cell numbers in skin from Stat6VT mice. A, Mast cell numbers were 

evaluated in skin tissue sections stained with toluidine blue. Scale bar indicates 0.4 mm for 

the top panels and 0.07 mm for the bottom panels. An arrow pointing towards a mast cell is 

shown. B, Graph represents the mean ± SEM of 5–7 mice per group. C, CD4+ T cells from 

WT and Stat6VT transgenic mice were stimulated with anti-CD3 and supernatants were 

tested for IL-9 concentration using ELISA. *p < 0.05.
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Figure 5. 
Increased incidence and higher mortality in Stat6VT x Kit +/W-sh and Stat6VT x Kit
W-sh/W-sh mice. A, Percent of mice that develop no disease, mild disease or severe disease in 

mice of the indicated genotypes. Data were analyzed by Chi-square test ** p < 0.0001, 

n=13–24. B, The average age of development of severe disease in months is indicated in 

mice of the respective genotypes. Data are the mean ± SEM of 22–24 mice per group and 

were analyzed with student’s t-test. * p < 0.05 C, Morbidity curves of the indicated 

genotypes by Kaplan-Meier analysis, n=8–10/group.
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Figure 6. 
Histological examination of mast cell-deficient Stat6VT transgenic mice. A, Histological 

analysis of ear tissue from WT, Stat6VT, and Stat6VT x Kit W-sh/W-sh mice. Samples were 

fixed and stained with H & E. Bar represents 0.4 mm. B, The inflammation in these sections 

was blindly scored for several pathophysiological parameters using a semi-quantitative scale 

of 0–3. All values are presented as the mean ± SEM. **p < 0.01, n=10–12 per group. C, The 

dermal thickness scores were also evaluated using a semi-quantitative scale of 0–3. **p < 

0.01, n=10–12 per group. D, Expression of EDC genes in skin from mice of the indicated 

genotypes and analyzed as in Fig. 1. E, Expression of inflammatory genes in skin from mice 

of the indicated genotypes and analyzed as in Fig. 1. F, Quantitation of eosinophils from 

tissues shown in (G). G. High power photomicrographs of inflamed tissue from mice of the 

indicated genotypes. Eosinophils are indicated by arrows. Bars represent 0.04 mm.
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