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ABSTRACT
....................................................................................................................................................

Objective Adverse drug events (ADEs) are undesired harmful effects resulting from use of a medication, and occur in 30% of hospitalized patients.
The authors have developed a data-mining method for systematic, automated detection of ADEs from electronic medical records.
Materials and Methods This method uses the text from 9.5 million clinical notes, along with prior knowledge of drug usages and known ADEs, as
inputs. These inputs are further processed into statistics used by a discriminative classifier which outputs the probability that a given drug–disorder
pair represents a valid ADE association. Putative ADEs identified by the classifier are further filtered for positive support in 2 independent, comple-
mentary data sources. The authors evaluate this method by assessing support for the predictions in other curated data sources, including a manu-
ally curated, time-indexed reference standard of label change events.
Results This method uses a classifier that achieves an area under the curve of 0.94 on a held out test set. The classifier is used on 2 362 950 pos-
sible drug–disorder pairs comprised of 1602 unique drugs and 1475 unique disorders for which we had data, resulting in 240 high-confidence,
well-supported drug-AE associations. Eighty-seven of them (36%) are supported in at least one of the resources that have information that was
not available to the classifier.
Conclusion This method demonstrates the feasibility of systematic post-marketing surveillance for ADEs using electronic medical records, a key
component of the learning healthcare system.

....................................................................................................................................................
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BACKGROUND AND SIGNIFICANCE
Adverse drug events (ADEs) are undesired harmful effects result-
ing from use of a medication. It is estimated that ADEs occur in 30%
of hospital stays, causing 2 million injuries, hospitalizations, and
deaths each year in the United States at a cost of $75 billion.1–3

Preapproval clinical trials are the first line of defense for
identifying ADEs but they are limited both in their power to detect rare
events and their generalizability to patient populations with many co-
morbidities and poly-pharmacy. These limits have driven efforts
in postmarketing surveillance for ADEs using a variety of observa-
tional data sources as a key component of the learning healthcare sys-
tem.4–10

These efforts have at their core the collection of counts of drugs be-
ing taken and adverse events occurring, derived from a variety of data
sources. Most work has used spontaneous reporting system data
such as the US Food and Drug Administration’s FDA Adverse Event
Reporting System (FAERS), but other data sources such as claims data
have also been used. Each of these data sources have well-docu-
mented biases. For instance, FAERS relies on voluntary reporting of
suspected drug adverse event cases and suffers from reporting biases
such that associations with adverse events with many possible causes
are difficult to detect,11 while claims data suffers from biases arising
from its primary use for billing instead of conveying clinical
information.12

In contrast, electronic medical records (EMRs) and free text of clin-
ical notes (CNs) provides arguably the most complete and unbiased
picture of clinical events available.13 There has been much progress in
using methods from Natural Language Processing (NLP) to extract
structured information from the unstructured free text of CNs.5,14

These studies typically use NLP to generate counts of drug and

disorder mentions in the clinical text, often subject to constraints that
reflect, for instance, the intuition that the cause of an adverse event—
for example, taking a drug—must precede the adverse event itself.
Given such counts, there are 2 main approaches to identifying possible
drug adverse event associations. One approach, disproportionality
analysis (DPA), tackles the problem using the well-known framework
of statistical hypothesis testing. These methods use counts of drugs,
adverse events, and their co-occurrence to calculate a P-value for the
association of the drug and adverse event relative to a null hypothesis
of no association, with varying degrees of adjustment for confounding.
LePendu et al.5 applied DPA to counts and co-mention counts to clini-
cal text and achieved an area under the curve (AUC) of 0.79, matching
the accuracy achieved by current state of the art DPA methods applied
to FAERS in Harpaz et al.11 However, recent work has shown that us-
ing P-values to prioritize possible drug-adverse event associations is
problematic, most notably because even with multiple testing correc-
tions it is not possible to remove false positives.15 Furthermore, it has
been noted that integration of other data sources is likely essential in
effective postmarketing surveillance using observational data.12

However, it is not clear how to effectively incorporate some forms of
relevant information, such as prior knowledge of known ADEs. Such
prior knowledge may be especially helpful for detection of ADEs in
which the drug or adverse event is rare.

An alternative to statistical hypothesis testing is using discrimina-
tive classifiers such as a logistic regression model. These methods dif-
fer from DPA in that they attempt to learn a function that guesses the
validity of drug adverse event associations given inputs, or features,
such as counts of the drug and the adverse event in the data.
Importantly, the input can include features that reflect prior knowledge
such as similarity to known ADEs. Such discriminative classifiers can
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be applied to spontaneous reports or to EMR derived counts. Harpaz
et al.11 conducted a systematic review of drug adverse event algo-
rithms using FAERS data that found logistic regression methods out-
performing even the state of the art DPA methods across a variety of
adverse events. Recent work by Noren et al. has shown that building
such a discriminative classifier that uses additional information such
as the geographic origin of an adverse event report and the timing of
the submission achieves much better performance than existing meth-
ods.16–18 Cami et al.19 went even further and developed a logistic re-
gression model using only features encoding prior knowledge about
known ADEs that achieved high performance.

Liu et al.20 used a discriminative classifier to distinguish ADEs
(pairs of drugs and adverse events in which the drug causes the ad-
verse event) from drug usages (pairs of drugs and disorders in which
the drug is used to treat the disorder). Their classifier used features
derived from the free text of millions of CNs from the Stanford
Translational Research Integrated Database Environment (STRIDE)21

that encoded the frequency of drug and disorder mentions and co-
mentions in the text, subject to constraints on the order of the men-
tions in time. We have built on this work, developing a method suited
for systematic, automated detection of potential ADEs from EMRs. Our
method also uses a computationally efficient text processing system
to extract mentions of drugs and disorders from the text of CNs. These
mentions are further processed into statistics that are used by a
discriminative classifier that outputs the probability that a given drug–
disorder pair represents a valid ADE association. However, we address
a different problem from Liu et al.—we seek to discriminate ADEs
from all other drug-AE pairs, rather than from drug-indication pairs.
Further, Liu et al. limited their study to drug–disorder pairs in which
there were at least 1000 co-occurrences in the clinical text. We relax
this restriction to all possible drug–disorder pairs in which the drug
and disorder each appear at least once in the data in order to detect
rare ADEs. Thus, we address a much harder classification problem.
Because we are now making predictions on drug–-disorder pairs that
may be very rare in the data, we also include features similar to those
used in Jung et al.22 that encode prior knowledge about known ADEs
and drug usages.

The classifier achieved an AUC of 0.94 on hold out test data. This
result is a significant improvement on both the current state of the art
DPA method and the classifier-based analysis applied to FAERS (0.79
and 0.83, respectively) reported in Harpaz et al.5 It is also improve-
ment on DPA applied to electronic health record (her) free text (AUC
0.79) reported in LePendu et al.11 Applying it to all possible drug-
adverse event pairs and filtering the predicted ADEs support in
independent and complementary data sources—FAERS and
MEDLINE—resulted in 240 well-supported, high-confidence ADEs.
Our goal is to develop a scalable method that can exploit the free text
of EHRs for comprehensive, timely surveillance for drug-adverse event
associations. In such applications, it is critical to estimate the positive
predictive value (PPV) of the method. We therefore validate our method
using ADEs that were either withheld from the training data or became
known after the dataset was created. We find that 87 of the 240 well-
supported, high confidence ADEs are thus validated (36%). Figure 1
summarizes our approach.

MATERIALS AND METHODS
Constructing training and test sets
Discriminative classifiers learn a function that maps input features to
an output such as the probability that the inputs represent a true drug
adverse event pair. In order to learn and evaluate the performance of
this function, these methods require a set of examples of drug adverse

event pairs whose status as true or false associations is known. We
constructed such a set of positive and negative examples of drug-AE
pairs using known ADEs from the Medi-SpanVR Adverse Drug Effects
Database (from Wolters Kluwer Health, Indianapolis, IN, United States),
a manually curated, commercial compendium of drug usages, side ef-
fects and pricing information, which was obtained under an academic
license. Medi-Span up to 2012 contains 711 468 drug–disorder pairs
comprising 13 000 unique drugs and 3403 unique disorders. Of these,
3550 pairs were assumed to be true ADE pairs because they occur in
black box warnings with additional constraints (e.g., above moderate
severity level), which are listed in Supplementary Materials Table S1.
We used RxNorm to normalize drugs to their active ingredients and
discarded pairs in which either the drug or adverse event did not occur
in the EMR data. This resulted in 1898 positive examples for training
and testing. To construct negative examples, we randomly sampled
drugs and adverse events from among the drugs and adverse events
in the positive set and ensured that the co-mention count distribution
of the negative samples are roughly the same as those of the positive
samples. Four thousand three hundred and thirty-six such negative
samples remained after removing inadvertently generated positive ex-
amples. These drug adverse event pairs were then randomly split into
4358 training examples used to learn classifiers and 1877 test exam-
ples used to evaluate the performance of the classifiers.

Processing of clinical text-notes from STRIDE
An National Center for Biomedical Ontology (NCBO) Annotator–based
text-processing pipeline23,24 was used to annotate 9.5 million CNs
from STRIDE with mentions of drugs and disorders. Negated mentions
(e.g., “MI was ruled out”) or those referring to other people (e.g.,
“father had a stroke”) were removed using NegEx25 and ConText,26

respectively. The notes spanned 18 years and 1.6 million patients.
Drugs and disorders were mapped to Unified Medical Language
System (UMLS) unique concept identifiers (CUIs). In this study
we used the 2011AB version of the UMLS. Drugs were normalized
to active ingredients using RxNorm27 as provided by UMLS2011AB—
for example, Panocaps was normalized to lipase, protease, and
amylase.

Feature construction
For each drug–disorder pair, we constructed 9 features from the CN-de-
rived mentions—the drug and disorder frequency, co-mention frequency,
drug first fraction (the fraction of patients in which the first mention
of the drug precedes the first mention of the disorder), and association
scores derived from these counts (e.g., chi squared statistic, odds ra-
tio, and the conditional probability of drug mention given disorder
mention).

In addition, we constructed 8 features encoding known drug-AEs
and 12 features encoding known usages. Those features were moti-
vated by the intuition that a drug may be more likely to cause a disor-
der if it is similar to other drugs known to cause that disorder. We
calculate similarity as follows. First, we define different ways in which
drugs may be similar to each other. For instance, we may calculate
drug–drug similarity on the basis of known disorder associations. This
prior knowledge is represented as a matrix in which the rows corre-
spond to drugs and columns correspond to disorders. The (i, j)-th entry
of the matrix is 1 if drug i is known to be associated with disorder j
and 0 otherwise. Each drug is thus represented as a binary vector. We
next define the set of other drugs to which we will compare drug i, the
query drug, as the set of all other drugs that are known to be associ-
ated with disorder j. This corresponds to the set of drugs that have a 1
in column j. We then calculate cosine and Jacquard similarity between
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the query drug and each drug in this set using the binary vectors for
the respective drugs. Finally, we pool the similarities over the set of
drugs with max or mean operations over the sets of similarities. We
also calculate drug-drug similarity using the same set of related drugs,
on the basis of the known usage associations of the drugs, their tar-
geted molecular pathways, and their drug classes. Disorder–disorder
similarities are calculated in a similar manner, except that we calcu-
late similarities between the columns of the matrix instead of the
rows. This process is summarized in Figure 2. For usage-similarity,
we adopted features described in Jung et al.22 In all, we used 29 fea-
tures for each drug–disorder pair, listed in Supplementary Materials
Table S2.

Classifier development
We fit L1 regularized logistic regression,28 support vector machine
with radial basis function kernels,29 and random forest classifiers30,31

to the training data. We used the R packages glmnet,32 e1071,33 and
randomForest,34 respectively, and model hyper-parameters were
tuned by cross validation on the training set. The classifiers were then
evaluated on the hold out test set. The classifier development process

is summarized in Figure 3. In order to investigate the contribution of
different features, we performed an ablation analysis in which we
evaluated classifiers trained on subsets of the features.

Identifying putative drug–AE associations
Performance on the test set indicated that the random forest classifier
was superior to the other classifiers in all metrics (Supplementary
Materials S3). We therefore focused on this model, and applied a clas-
sifier trained on the full gold standard dataset to all possible drug–AE
combinations. One thousand six hundred and two unique drugs and
1475 unique disorders are each mentioned at least once in the clinical
text of STRIDE, resulting in 2 362 950 possible drug–AE pairs. We fo-
cused on the most confident predicted associations by using a thresh-
old of 0.7 for the posterior probability output by the classifier, yielding
41 248 predicted ADE associations.

In this study, the set of 3550 known ADEs were gathered from the
Medi-SpanVR Adverse Drug Effects Database, where the documenta-
tion level is marked as “black box warning”; known usages were
gathered from the Medi-Span Drug Indications Database (Wolters

Figure 1: Overview of methods and results.
For each of the 2 362 950 possible drug–disorder pairs, we calculated 9 features from the free text of clinical notes in
STRIDE, 8 features from known AEs in Medi-Span, and 12 features from known usages in Medi-Span and Drugbank.
Based on these features, a Random Forest classifier was trained on the gold standard dataset to recognize the drug–AE re-
lationships. Then, we applied the trained classifiers to the 2 362 950 possible drug–disorder pairs and filtered for support
in FAERS and MEDLINE, yielding a set of 240 well supported, high confidence ADEs. Drug–AE pairs used in training are
censored.
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Kluwer Health, Indianapolis, IN, United States) and the National Drug
File – Reference Terminology.35

Filtering in FAERS and MEDLINE
The classifier achieved an estimated specificity of 0.913 on hold out
test data. However, even with such high specificity, we can expect on
the order of 200 000 false positive results when we apply the classifier
to 2.3 million possible ADEs because the prevalence of true ADE asso-
ciations is likely very low. It is therefore critical to reduce the number of
false positives in the candidate set for it to be practically useful. We
note that this requirement is holds regardless of the method used to
generate candidate ADEs; since DPA methods applied to both EHR data
and FAERS report significantly lower accuracy in test sets, we can con-
clude that they will also suffer from a high false positive rate if applied
to 2.3 million drug–disease pairs. We thus filter the predicted ADEs for
positive support in FAERS36 and MEDLINE, two independent and com-
plementary data sources that reflect clinical practice and published bio-
medical knowledge respectively. FAERS case reports contain explicit
links between drugs and adverse events. We used all case reports
from Q1 2005 through Q4 2013 to assess support for putative ADEs in

terms of the number of case reports in which the drug was reported as
the primary or secondary suspect drug for the adverse event. FAERS
drugs and adverse events were mapped to UMLS CUIs, yielding a set of
4 508 892 drug-event reports covering 372 379 unique pairs. We also
obtained reports of ADEs described in the biomedical literature from
MEDLINE. Using an approach based on Avillach et al.,37 we obtained
118 552 unique ADEs from about 200 000 articles in MEDLINE that had
been indexed with combinations of medical subject heading (MeSH) de-
scriptors and qualifiers for both a drug involved in an adverse event
(e.g., Ofloxacin/adverse effects) and its manifestation (e.g., Tendinop-
athy/chemically induced). We mapped the MeSH terms of drug– dis-
ease pairs (e.g., Ofloxacin–Tendinopathy) to their corresponding UMLS
CUIs to make the findings compatible with our predictions. The query is
provided in Supplementary Materials S5.

Validation in Medi-Span and time-indexed reference
We validate the drug–AE associations using drug–AE associations un-
known to the system during training. The training examples used in our
model were constructed from ADEs marked as “black box warning” in

Figure 2: Drug–drug and disorder–disorder similarity using known ADEs.
We represent known drug–AEs as a matrix where the rows are drug names and columns are disorders, and the (i, j)-th en-
try is a binary indicator for whether or not the drug in the i-th row causes the disorder in the j-th column. In this way, each
drug is represented as a binary vector. For a given query drug and adverse event (e.g., aspirin and hypersensitivity in panel
a), we find other drugs that are known to be associated with hypersensitivity and calculate similarities between aspirin and
those drugs. We summarize the similarities with 2 scalar values—the max and mean similarity.
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Medi-Span up to 2012; thus we only used well-established adverse
events in training the classifier. Medi-Span also contains ADEs marked
as “reported in multiple reports and uncontrolled studies” or “reported
in few case reports and suggested links”; we refer to these ADEs with
moderate support. We validated the drug–AE associations left after
filtering based on FAERS and MEDLINE using ADEs with moderate
support in both Medi-Span up to 2012 as well as with the additional
Medi-Span data from 2012 to 2015. Medi-Span up to 2012 contains
95 115 ADEs with moderate support, and Medi-Span from 2012 to
2015 contains an additional 755 ADEs that were not reported in Medi-
Span as of 2012. In addition, we used a time-indexed reference stan-
dard by Harpaz et al.38 to further assess the classifier’s ability to detect
recent drug-AE associations. The reference standard was systemati-
cally curated from drug labeling revisions (e.g., new warnings issued
and communicated by the US Food and Drug Administration in 2013),
and included 62 positive test cases and 75 negative controls.

RESULTS
Performance of a classifier for drug–AE associations
The random forest classifier to detect drug–AE associations achieved
an AUC of 0.94 in the hold out test set. We then fit a new random for-
est classifier using the entire gold standard and applied it to the
2 362 950 drug–AE pairs arising from all combinations of the 1602
unique drugs and 1475 unique disorders appearing in our data. After
applying a cutoff on the classifier’s confidence (posterior probability of
0.7), we arrived at a set of 41 248 putative drug–AE associations. We
refined these 41 248 drug–AE associations by filtering for support in
FAERS and MEDLINE. Two hundred and forty associations were sup-
ported by at least 2 reports in both FAERS and MEDLINE. Table 1 lists
the 10 associations with the highest level of support in FAERS; the
complete table is available as Supplementary Materials Table S4.

Previous work by LePendu et al.5 demonstrated the use of the free
text of EHRs for discovery of ADEs achieving an AUC of 0.79, while the
current state of the art DPA method applied to FAERS in Harpaz
et al.11 also achieved an AUC of 0.79. Our classifier thus achieves sig-
nificantly higher performance than DPA methods using either EHR text
of FAERS. We further note that the best performing method (logistic
regression, a classifier based approach) using FAERS reported in11

achieved an AUC of 0.83. These results collectively suggest that the
free text of EHRs is both a useful source of data about ADEs, and that
classifier-based approaches outperform current DPA approaches in
both EHR text and FAERS.

Assessing the quality of the predictions
Out of the 240 well-supported drug–AE associations, 76 occurred in
the set of the ADEs with moderate support in Medi-Span up to 2012.
We also found that 10 out of the 240 drug–AE associations occurred
in the recent established ADEs included in the additional Medi-Span
data from 2012 to 2015. Finally, 2 of the drug–ADE associations were
also supported by a reference standard provided by Harpaz et al.38

Figure 4 shows the support from those independent and complemen-
tary data sources for the predicted drug–AE associations. Overall,
from the 240 drug–AE associations, 87 of them (36%) are supported
in at least one of the resources that have information not available to
the classifier.

We also evaluated the PPV of the classifier alone, FAERS alone,
and MEDLINE alone using the above methodology. We found that 823
of 41 248 novel ADEs predicted by the classifier were supported in the
validation set, yielding a PPV of 2%. FAERS and MEDLINE alone each
had PPVs of approximately 1% and 3.5%, respectively (Table 2).
These results, together with the AUCs reported in various studies cited
above, highlight the benefit of combining signals from multiple, inde-
pendent data sources, with the PPV increasing from 1–3.5% to 36%.

Figure 3: Training a classifier to recognize drug–ADE relationships.
Positive examples collected from known ADEs in Medi-Span and negative examples created through randomly sampling a
drug and disorder with roughly the same co-mention distribution as the positive examples. For each drug–disorder pair in
the gold standard, we used 9 features to characterize the pattern of drug and disorder mentions in 9.5 million clinical notes
from STRIDE, 8 features to characterize the domain knowledge of drug, disorder, and known ADEs from Medi-Span, and 12
features to characterize the domain knowledge of drug, disorder, and known usages from Medi-Span and Drugbank. The
gold standard dataset was randomly split into 70% for training and 30% for testing the classifier.
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Table 1: List of 10 validated drug–AEs and their support in FAERS as well as MEDLINE.

Drug_Name Drug_CUI Event_Name Event_CUI FAERS Support MEDLINE Support

Etanercept C0717758 Pruritus C0033774 11485 2

Metoclopramide C0025853 Depression, neurotic C0282126 1473 9

Rofecoxib C0762662 Heart diseases C0018799 861 3

Clonazepam C0009011 Depression, neurotic C0282126 691 2

Diazepam C0012010 Depression, neurotic C0282126 608 5

Levofloxacin C0282386 Pruritus C0033774 540 3

Cyclosporine C0010592 Pruritus C0033774 517 5

Clozapine C0009079 Epilepsy C0014544 410 13

Lorazepam C0024002 Depression, neurotic C0282126 403 3

Ibuprofen C0020740 Pruritus C0033774 374 4

Figure 4: Support from independent and complementary data sources.
We validated the predicted drug–AE associations from three independent and complementary data sources. From the 240
drug–ADE associations, 76 occurred in the set of the ADEs with moderate support in Medi-Span up to 2012; 10 occurred
in the recent established ADEs included in the additional Medi-Span data from 2012 to 2015; 2 occurred in the reference
standard provided by Harpaz, R. et al. Overall, 87 of them (36%) were supported in at least one of the resources that have
information that was not available to the classifier.
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This result is consistent with the improvement in PPV reported for
combining DPA signals from EHR text and FAERS in Harpaz et al.39

Feature contribution
Feature ablation experiments were done to investigate the contribution
of each group of features. We grouped the 29 features into 3 catego-
ries: features from CNs, features from known ADEs (KA), and features
from known usages (KU). As shown in Table 3, classifiers using fea-
tures from CNs, known ADEs, and known usages had AUCs of 0.92,
0.72, and 0.82, respectively. Classifiers that used both CN features
and known ADE or usage information achieved an AUC of 0.93. Above
the features derived from CNs, features from prior knowledge contrib-
uted little in our classifier. Thus, it would be helpful to incorporate the
features used in Cami et al.’s work19 to encode the prior knowledge
about known ADEs and usages.

DISCUSSION
We have developed a method for systematic, automated detection of
ADEs. The method achieves high specificity and sensitivity in a hold
out test set using features derived from both CNs and prior knowledge
about drug usages and ADEs. Our classifier does not make any as-
sumptions on relationship between the inputs, allowing us to easily in-
corporate disparate types of knowledge into the predictions. In
particular, features derived from CNs are empirical, and reflect clinical
practice as is, while features encoding prior knowledge potentially al-
low us to make better predictions in cases where the empirical data is
lacking.

The direct use of EMRs also opens the door to prioritizing potential
novel ADEs using the observed frequency of co-occurrence of the drug
and adverse event in the EMR, which may better reflect their true
prevalence than data sources such as FAERS. We note that systematic
detection of ADEs requires methods that are easily applicable to many
healthcare institutions. Our method has several characteristics that

make it especially suitable for such use. First, its input is primarily de-
rived from clinical free text through a computationally efficient text
processing system that can handle millions of notes in hours. Second,
unlike other approaches to enabling cross institution analysis of EMR
data, our method assumes only access to the text of CNs without as-
suming a common data model. Third, it is easy to adapt the classifier
to different institutions because no components other than the classi-
fier need site specific tuning. The latter is not an obstacle to adoption
because the training and validation of the classifier can be entirely au-
tomated. These characteristics of our approach minimize the compu-
tational and organizational demands of implementing the method in a
variety of settings.

A key contribution of our work is our quantification of the PPV of
our system in a realistic manner. Direct comparison of this PPV with
previously published results cannot be done because, to the best of
our knowledge, no other study has evaluated signal detection methods
on a large number of possible ADE associations. Instead, prior studies
use evaluation datasets that are manually curated, contain “well-
known” associations, and assume a high prevalence of true associa-
tions (close to 50% in Harpaz et al.11). The actual prevalence of true
drug-adverse event associations is unknown, but is likely much lower
than 50%. Therefore, PPVs calculated from such reference sets are
hard to generalize.40–42.

We can compare our results with previous work using intrinsic
measures of performance such as specificity, which does not depend
on prevalence. Specifically, we can compare methods using the AUC,
which summarizes sensitivity and specificity over the whole range of
possible thresholds for signal detection. Our classifier has an AUC of
0.94, higher than the 0.79 AUC of the methods currently used for sig-
nal detection in FAERS. Note that these AUC estimates are calculated
using different sets of manually curated ADE associations.

Table 2: Performance of our method.

Dataset Method AUC PPV

EHR text alone DPA [5] 0.79 N/A

EHR text alone Our classifier 0.94 0.020

FAERS alone DPA [11] 0.79 N/A

FAERS alone Raw counts (�2) 0.72 0.010

MEDLINE alone Raw counts (�2) 0.69 0.035

All Classifierþ raw counts
in FAERS and MEDLINE

N/A 0.36

Our method consists of a classifier based on EHR text in conjunction
with filters based on counts in FAERS and MEDLINE. The classifier
alone achieves an AUC of 0.94, but its PPV is only 0.020 because of
the low prevalence of true ADE associations. Previous work shows
that DPA applied to both EHR text and FAERS achieves an AUC of
0.79, significantly lower than that of our classifier. The PPV for these
methods is not reported because these studies do not estimate
PPV in a realistic setting; instead they calculate PPV in datasets highly
enriched for true ADE associations. Using raw counts in FAERS and
MEDLINE lead to similarly low PPV. In contrast, our method combining
the classifier with counts in FAERS and MEDLINE achieved a PPV
of 0.36.

Table 3: Performance of Random Forest classifier on held-
out test set with different feature sets.

Subsets of
Features

AUC Precision/
PPV

Specificity Sensitivity/
Recall

From clinical
notes (CNs)

0.920 0.763 0.803 0.702

From known
adverse-event
(KA)

0.723 0.526 0.624 0.550

From known
usage (KU)

0.815 0.561 0.661 0.584

CNþ KA 0.932 0.775 0.714 0.801

CNþ KU 0.937 0.781 0.719 0.820

All 0.944 0.796 0.913 0.839

We performed feature ablation to investigate the contribution of differ-
ent feature sets on the performance of the random forest classifier for
detecting drug–AE relationships. The first column is the feature set
used to train the classifier. The classifier performance was evaluated
on the 1.9k withheld test examples. Individually, features from clinical
notes (CNs) yielded higher performance than features from known
ADEs (KA) and known usages (KU) in all metrics. Adding features from
KA or KU to features from CNs significantly improved the classifier per-
formance in terms of sensitivity, while all features together resulted in
a sensitivity of 0.839 and an AUC of 0.944.
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Our work has important limitations. First, we emphasize that the
classifier generates hypotheses (i.e., “signals” of a putative associa-
tion) instead of verified ADEs. Furthermore, our working definition of
novelty in this study is novelty with respect to a set of well-established
ADEs. We view this positively, as further validation of our method, be-
cause our primary aim is to demonstrate the feasibility of an approach
to postmarketing surveillance which is suitable for large scale deploy-
ment across many healthcare institutions. We note that in practice,
the set of “known ADEs” used in training could be tuned to change
the sensitivity of the classifier. We also note that despite the classi-
fier’s high specificity in test data, applying it to millions of hypothetical
drug–AE pairs may result in a large absolute number of false positives.
Second, as in previous studies that have used free text to discover re-
lationships between drugs and disorders, the mismatch between
terms as they are formally defined in formal ontologies versus how
they are used in practice may lead to seemingly novel results that are
in fact already known.22 Third, we note that while the use of CNs may
provide an estimate of prevalence that can be used to prioritize find-
ings for further study, it would be better still to combine prevalence
with severity, which may require deeper NLP to ascertain severity.
Fourth, we note that any biases that are present in the training set of
known ADEs will likely carry over to predictions made on a wider
range of drug adverse event pairs, potentially leading to missed asso-
ciations. Furthermore, with respect to the use of this method for sys-
tematic, nation-wide postmarketing surveillance, we note that the
problem of optimally integrating safety signals from multiple sites is
an unsolved research problem despite recent progress.43 Meta-ana-
lytic approaches or weighted voting schemes may be necessary to
combine the signals generated by such a classifier from multiple sites.

Despite these limitations, this method is an important first step to-
ward automated, systematic, and comprehensive postmarketing sur-
veillance for ADEs using EMRs as the primary source; such ability is an
important use case envisioned for the learning healthcare system.10

We envision a future in which it is possible to generate hypotheses of
ADEs automatically, in real time, and queue them up for potential re-
view and submission to the Federal Adverse Event Reporting System.

CONCLUSION
We have developed and validated a data-mining method for identifying
putative, new ADEs using clinical data and prior knowledge of known
ADEs. Our classifier achieves high discrimination capability with an AUC
of 0.94 on a held out test set. By applying the classifier to 2 362 950
drug–disorder pairs consisting of 1602 unique drugs and 1475 unique
disorders we identified 240 high-confidence drug–AE associations.
These high-confidence associations are well supported by multiple in-
dependent and complementary resources. Our method enables system-
atic post-marketing surveillance for new ADEs using EMRs.
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