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Cellular wound healing or the repair of plasma membrane/cell wall
damage (plasma membrane damage) occurs frequently in nature.
Although various cellular perturbations, such as DNA damage, spindle
misalignment, and impaired daughter cell formation, are monitored
by cell cycle checkpoint mechanisms in budding yeast, whether
plasma membrane damage is monitored by any of these checkpoints
remains to be addressed. Here, we define the mechanism by which
cells sense membrane damage and inhibit DNA replication. We found
that the inhibition of DNA replication upon plasma membrane
damage requires GSK3/Mck1-dependent degradation of Cdc6,
a component of the prereplicative complex. Furthermore, the CDK
inhibitor Sic1 is stabilized in response to plasma membrane damage,
leading to cell integrity maintenance in parallel with the Mck1-Cdc6
pathway. Cells defective in both Cdc6 degradation and Sic1 stabiliza-
tion failed to grow in the presence of plasma membrane damage.
Taking these data together, we propose that plasma membrane
damage triggers G1 arrest via Cdc6 degradation and Sic1 stabilization
to promote the cellular wound healing process.
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It is common for cells to suffer from various attacks to their
plasma membrane and cell wall, such as physical damage,

pathogen invasion, and various environmental perturbations (1).
Maintaining structured barriers between the internal and exter-
nal environment of a cell, upon such challenges as those listed,
is critical for the integrity of genetic materials. Therefore, it is
advantageous to study cellular wound healing in a simple, genetically
tractable model organism such as yeast.
The budding yeast, Saccharomyces cerevisiae, responds to cell wall

and plasma membrane damage using an evolutionary conserved
signaling cascade known as the cell wall integrity (CWI) pathway.
The CWI pathway includes a Rho-type GTPase (Rho1) (2, 3) and
protein kinase C (Pkc1) (4), both conserved plasma membrane re-
pair proteins, and also includes part of the mitogen-activated protein
(MAP) kinase cascade (5). One major consequence of the CWI
pathway activation is transcriptional activation of enzymes required
for cell wall synthesis (6). The CWI pathway can be studied using
chemicals such as sodium dodecyl sulfate (SDS), which perturbs the
plasma membrane. Previously, Kono et al. established a laser dam-
age assay that specifically creates acute local damage to the yeast
membrane (7). Using this assay, the authors showed that daughter
cell growth is temporarily arrested by Pkc1-dependent degradation
of cell-polarity regulators (7). Although the growth arrest was sug-
gested to be triggered by plasma membrane damage, how the cell
cycle progression was modulated upon local membrane damage
remains to be understood.
The cell cycle is a series of events that leads to genome duplica-

tion and cell division, producing two daughter cells. In most eu-
karyotes, cells commit to division in G1, at which point the cells
integrate internal and external cues to determine cell fates (8). In
budding yeast, the restriction point is called START (9). During pre-
Start, cells arrest in response to mating pheromone, whereas post-

Start cells are committed to one cell cycle progression (10). G1
progression is triggered by the G1 cyclin Cln3/CDK complex, which
phosphorylates and inactivates Whi5, an inhibitor of transcription
factor Swi4/Swi6 (SBF) (11). SBF and MBF, an additional tran-
scription factor complex, then activate the transcription of two ad-
ditional G1 cyclins, Cln1 and Cln2 (10, 12). Cln1 and Cln2 compose
a positive feedback circuit via the activation of transcription factors
SBF and MBF (13, 14), triggering a genome-wide transcriptional
change that promotes the G1/S transition (15, 16). Subsequently, the
CDK inhibitor Sic1 is phosphorylated by the G1 cyclins, ubiquiti-
nated, and degraded in a SCF (Skp1–Cullin–F-box)-dependent
manner (17, 18). DNA replication is triggered upon Sic1
degradation. DNA replication origins are licensed for subsequent
firing by assembly of prereplicative complexes (pre-RCs). Each
pre-RC contains the Mcm2-7 helicase loaded onto origin DNA
through sequential binding of Orc1-6, Cdc6, and Cdt1 (19). At
the onset of S-phase, the pre-RC is acted on by two protein kinases,
Dbf4-Cdc7 (DDK) and S-phase Cyclin-Cdk (S-CDK), and then
converts into the Cdc45-Mcm2-7-GINS (CMG) replicative DNA
helicase (20). This step involves DDK-dependent loading of Sld3
and CDK-dependent assembly of the preloading complex, con-
sisting of Sld2, Dpb11, GINS, and DNA polymerase e (20, 21). In
yeast, three pre-RC components (Cdc6, Mcm2-7, and the ORC)
are phosphorylated by Cyclin/CDK to prevent a second round of
DNA replication, thereby inhibiting DNA rereplication (22–28).
Cdc6 protein degradation ensures DNA replication once and only

once during the cell cycle by which Cdc6 requires phosphorylation by
CDK for degradation (29). Previously, we demonstrated that the
yeast GSK-3 kinase, Mck1, phosphorylates Cdc6 at the GSK-3
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consensus site, at Thr-39 and Thr-368, promoting degradation of
Cdc6 to guarantee genome integrity (30). Cdc6-Thr368 phosphory-
lation requires a priming phosphorylation at Ser372 by Cyclin/CDK
(31). This double phospho-degron at Cdc6-T368-S372 created by
Mck1 and CDK serves as a binding site for the SCF F-box protein,
Cdc4 (31).
The yeast Mck1 is a serine/threonine protein kinase homologous

to mammalian glycogen synthase kinase-3 (GSK-3) (32, 33). Mck1
also plays a role in the stress response, such that mck1 deletion cells
are sensitive to hot and cold temperatures (34), benomyl (34), and
osmotic stress (35). Mck1 also stimulates calcineurin signaling (36–
38), and binds stress-response elements to activate transcription (38).
We recently showed that GSK-3–dependent Cdc6 degradation plays
a role in genome integrity maintenance when cells are exposed to
DNA damage (31). Thus, Mck1 ensures proper DNA replication,
prevents DNA damage, and maintains genome integrity by inhibiting
Cdc6 (31).
Here we provide evidence that plasma membrane damage acti-

vates a novel cell cycle checkpoint in G1 through Mck1-depedent
Cdc6 degradation and Sic1 stabilization.

Results
Plasma Membrane Stress Inhibits S-Phase Entry. First, we analyzed
the cell cycle profile upon plasma membrane stress. Cells were
synchronized in G1 by α-factor and then released into media with or
without SDS treatment. Wild-type cells, without SDS treatment,
entered S-phase 30 min after G1 release (Fig. 1A, Left column). In
contrast, S-phase entry was significantly delayed with SDS treatment
(Fig. 1A, Center column). However, cell cycle progression was
completely normal when cells were treated with SDS after the
origins have been fired, 20 min after G1 release (Fig. 1A, Right
column). This finding indicates that S-phase entry is inhibited in
response to plasma membrane damage. To test which DNA
replication step is affected by SDS treatment, we used a cdc7-4
mutant to arrest the cell cycle. Cdc7 binds to Dbf4 to make the
DDK complex, which then phosphorylates and activates Mcm4
to initiate DNA replication after origin licensing (39, 40). cdc7-4
is a DDK temperature-sensitive mutant that arrests the cell cycle
during G1-S phase, after pre-RC formation but with an inactive
helicase not yet able to unwind DNA (41). When cells were
treated with SDS upon cdc7-4 block and release, the cell cycle
proceeded normally (Fig. 1B), indicating that SDS affects the
DNA replication step before DDK is activated, probably at pre-
RC formation.

S-cyclin/CDK Activity Is Inhibited in Response to Plasma Membrane
Damage.Next, we examined cell cycle regulators to test if they play a
role in G1 arrest induced by membrane damage. We investigated
Sic1 protein expression, the S-phase CDK inhibitor, during cell cycle
arrest induced by plasma membrane stress. Sic1 is rapidly degraded
at the onset of the G1/S transition in untreated cells and is expressed
again 60 min later during the next G1 phase (Fig. 2A, Left) (18, 42).
In contrast, we found the Sic1 protein levels to be more stable in the
presence of SDS throughout the time course (Fig. 2A, Right). Next,
we examined protein levels of the S-phase cyclin, Clb5, under plasma
membrane stress. Under normal conditions, Clb5 is degraded by the
APCcdc20 complex during mitosis (43), which we observed 60 min
after α-factor block and release in untreated cells (Fig. S1A, Left).
Clb5 expression was observed again 80 min later during the next cell
cycle. Under SDS treatment, Clb5 was continuously expressed
throughout the time course (Fig. S1A, Right). Because of stable Sic1
protein level under SDS treatment, CDK activity might be inhibited
despite continual Clb5 expression. To test this possibility, we ex-
amined the phosphorylation status of a CDK substrate, Sld2, a DNA
replication protein phosphorylated by Clb5 (44). In a normal cell
cycle progression, Sld2 is phosphorylated during G1/S-phase and
dephosphorylated after S-phase (Fig. S1B, Left). In contrast, the
timing of Sld2 phosphorylation was delayed in cells treated with SDS

(Fig. S1B, Right). This delay indicates that CDK activity is inhibited
in response to plasma membrane stress, which leads to S-phase
delay; this was further tested by in vitro kinase assay using Clb5/CDK
purified from S-phase cells treated with SDS. We found that CDK
activity is greatly reduced after SDS treatment (Fig. 2B).

Plasma Membrane Damage Inhibits DNA Replication Through Cdc6
Degradation. Sic1 protein levels were more stable in response to
SDS (Fig. 2A). The Sic1 deletion strain, Δsic1, was sensitive to SDS,
indicating that Sic1 may play a role in G1 arrest upon SDS treatment
(Fig. S2A). We tested if Δsic1 rescues the S-phase delay caused by
SDS and observed that the cell cycle arrest was sustained (Fig. S2B),
indicating that Sic1 is dispensable for G1 arrest induced by SDS
treatment. This result is consistent with previous findings that Sic1
degradation is not a cause but a consequence of commitment to the
cell cycle progression (45). Next, we considered the possibility that
the cell cycle arrest upon SDS treatment is a result of pre-RC dis-
assembly, because the cell cycle progression had no effect when SDS
was added after pre-RC formation (Fig. 1B). We analyzed protein
levels of pre-RC components after SDS treatment and observed that
only Cdc6 was degraded in response to membrane damage triggered
by SDS (Fig. 3A and Fig. S3A). Next, we monitored Cdc6 levels after
different stress treatments. In contrast to Cdc6 degradation under
SDS treatment (plasma membrane stress), we found that Cdc6 was
stable at 40 °C (heat shock) or in the presence of 1 M NaCl (osmotic
stress) (Fig. S3B). Previously, we showed that Cdc6 degradation is
mediated by Mck1 during an unperturbed cell cycle or during a
DNA damage response (30, 31). Δmck1 deletion cells are sensitive to
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Fig. 1. S-phase progression is inhibited in response to SDS. (A) Wild-type
cells were arrested and released in G1-phase by α-factor. The cell cycle
progression was monitored by FACS analysis in the presence or absence of
0.0075% SDS added at time 0 (red arrow) or 20 min after release (blue
arrow). (B) First, cdc7-4 cells were arrested in G1-phase by α-factor at 23 °C
and then released at 37 °C, the restrictive temperature, to block the cells
after pre-RC formation but with an inactive helicase. Cells were then re-
leased into YPD media at 23 °C and collected every 20 min to monitor the
cell cycle progression by FACS analysis in the presence or absence of SDS
0.0075% added at time 0 (green arrow). The diagrams below show at what
point of the cycle that the cells were in when SDS was added.
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various stress stimuli, including plasma membrane stress (Fig. 4B),
which suggests a link between Mck1-dependent Cdc6 degradation
and membrane stress. Therefore, we examined the possibility that
Mck1 promotes Cdc6 degradation in the presence of membrane
damage. Indeed, Cdc6 degradation was rescued in Δmck1 deletion
cells, indicating that Cdc6 degradation in response to plasma mem-
brane stress requires Mck1 (Fig. 3A).
To further understand how Cdc6 is degraded upon plasma

membrane perturbation in respect to the cell cycle, Cdc6 protein

degradation was monitored using cells synchronized in G1 with low
CDK activity or in mitosis with high CDK activity. Cdc6 was de-
graded after SDS treatment when cells were arrested during G1
phase by α-factor, suggesting that CDK activity is not required for
Cdc6 degradation under membrane stress (Fig. 3B, Left). We also
observed Cdc6 degradation during mitotic arrest induced by the
nocodazole treatment (Fig. 3B, Right), suggesting that Cdc6 degra-
dation takes place independent of the cell cycle stages. We conclude
that Cdc6 does not require CDK activity for its degradation in re-
sponse to plasma membrane damage.
Next, the subcellular localization of Cdc6-GFP was monitored

under a time-lapse microscope after local plasma membrane laser
damage (Fig. 3C). Both the control and Δmck1 cells show an im-
mediate drop in GFP signal that we suspect to be an artifact, possibly
because of pH change or protein loss through membrane leakage or
photo bleaching. After the initial decline, the Cdc6-GFP signal for
both genotypes became relatively stable; however, the GFP signal in
the Δmck1 cells stabilized with a higher intensity than in the wild-
type cells. The Δmck1 cells retained a nuclear Cdc6-GFP signal even
after laser damage, confirming the above results that Mck1 is re-
quired for Cdc6 degradation after plasma membrane damage (Fig.
3A). Thus, Cdc6 is selectively degraded in a Mck1-dependent
manner after membrane damage.

Mck1-Dependent Cdc6 Phosphorylation at T39 and T368 Are Responsible
for DNA Replication Inhibition Induced by Plasma Membrane Stress.
Previously, we showed that Mck1 phosphorylates Cdc6 at T39 and
T368 (30, 31). Motivated by these findings, we tested if the Cdc6
phosphorylation mutant, Cdc6-T39A-T368A, is stabilized upon
SDS stress. The levels of Cdc6-T39A-T368A protein, even after
SDS treatment, remained unchanged (Fig. 4A), similar to wild-
type Cdc6 protein in Δmck1 cells (Fig. 3A), suggesting that SDS-
dependent Cdc6 degradation requires phosphorylation at T39 and
T368 by Mck1.
Next we examined whether Cdc6 degradation is required for via-

bility in the presence of SDS. Indeed, cells with Cdc6-T39A-T368A
failed to grow in the presence of SDS, similar to Δmck1 cells (Fig. 4B,
Center). Moreover, the marginal growth phenotype of Cdc6-T39A-
T368A cells and Δmck1 cells was suppressed by the addition of the
plasma membrane-stabilizing reagent, sorbitol (46) (Fig. 4B, Right),
suggesting that the cell lethality in Δmck1 and CDC6-T39A-T368A
cells in the presence of SDS was because of cell lysis. We tested if
the stabilized Cdc6 bypasses the S-phase delay caused by SDS.
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chronized by α-factor, and then released into fresh YPD medium in the
presence or absence of 0.02% SDS to induce plasma membrane damage.
Protein samples were collected every 15 min to observe Sic1-13myc levels by
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CDC6-T39A-T368A cells entered mitosis 40 min after α-factor block
and release and showed normal cell cycle progression when cells were
untreated (Fig. 4C). Wild-type cells arrested their cell cycle during
G1-phase during SDS treatment (Fig. 4C). Conversely, the CDC6-
T39A-T368A cells treated with SDS progressed through S-phase and
entered mitosis 80 min after α-factor release (Fig. 4C). G1-phase in
the CDC6-T39A-T368A cells was greatly reduced despite the pres-
ence of SDS (Fig. 4C). We also detected an increase in the sub-G1
population in CDC6-T39A-T368A cells treated with SDS after
120 min, suggesting that Cdc6 stabilization after plasma membrane
damage causes cell lysis. Thus, upon plasma membrane damage,
Mck1-dependent phosphorylation/degradation of Cdc6 is required
for cell cycle arrest before the G1/S-transition.
When CDC6-T39A-T368A mutations are combined with Δsic1,

the SDS sensitivity was exacerbated (Fig. 4D), suggesting that the
Sic1 stabilization and Cdc6 degradation were genetically parallel to
maintain cell viability upon SDS treatment. What is the consequence
in Δsic1 CDC6-T39A-T368A cells after plasma membrane damage?
To test whether cells lacking both Cdc6 degradation and Sic1

stabilization mechanisms undergo cell lysis, we examined the plasma
membrane’s integrity after SDS treatment by using DAPI, as it only
stains cells with a ruptured membrane (47). In wild-type untreated
cells DAPI does not permeate the cell membrane, therefore there
was no DAPI staining observed (Fig. 4E). In wild-type cells treated
with SDS, 12% of cells showed plasma membrane rupture via DAPI
staining (Fig. 4E). In contrast, we found that 50% of Δsic1 CDC6-
T39A-T368A cells underwent plasma membrane rupture under SDS
treatment (Fig. 4E). Thus, continued DNA synthesis and cell cycle
progression in the presence of plasma membrane damage induces
plasma membrane rupture and cell lysis, eventually leading to
cell death.
Cdc6 degradation is mediated through the SCFCdc4 complex (22–

24). Previously we showed that methyl methanesulfonate (MMS)-
induced Cdc6 degradation was rescued when Cdc4 was defective
(31). To test if Cdc6 degradation induced by SDS is also mediated
through Cdc4, we monitored the Cdc6 protein levels in a cdc4-1
mutant. Cdc6 was stabilized in the presence of SDS when the cdc4-1
temperature-sensitive mutant was incubated at the nonpermissive
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temperature (36 °C) (Fig. S4). Thus, Cdc4 is likely to be involved in
the degradation of Cdc6 during plasma membrane damage.
Our results imply that inhibition of DNA replication is crucial

when cells encounter plasma membrane damage. Aberrant DNA
replication under membrane stress may lead to cell death because
cells have no chance to repair membrane damage. To assess this
hypothesis, we tested if cells that rereplicate DNA are sensitive to
plasma membrane damage induced by SDS. DNA rereplicating cells
such as ORC6-rxl GAL-CDC6 or ORC6-rxl GAL-CDC6-T368A,
grown on galactose-containing plates, were sensitive to SDS, but not
to high temperatures (Fig. S5). These results are consistent with our
understanding that continuous DNA replication in the presence of
plasma membrane damage leads to lethality. This genetic evidence
supports the biological importance of DNA replication control un-
der plasma membrane stress.

Discussion
In this work, we revealed a novel cell cycle checkpoint activated by
plasma membrane damage. This checkpoint arrests the cell cycle
after Start but before DNA replication initiation. DNA replication is
inhibited upon plasma membrane damage, primarily via Mck1-
dependent Cdc6 degradation. In addition to the primary pathway,
Sic1 stabilization also plays a role in CDK inhibition, to promote
plasma membrane healing and protect cells from cell lysis
(Fig. 4F).
What is the molecular mechanism of Cdc6 degradation caused

by membrane stress? Cdc6 phosphorylation at T368 by Mck1
requires a priming phosphorylation at S372 by CDK. Consider-
ing that CDK activity is inhibited by Sic1 in response to plasma
membrane stress, it is possible that Cdc6 uses a different priming
kinase other than CDK that enables cells to promote Cdc6
degradation independently from cell cycle progression but in
response to plasma membrane stress. In fact, Cdc6 was still de-
graded in G1 cells when CDK activity is low (Fig. 3B). It is of
interest to study if the kinases involved in the CWI pathway
phosphorylate Cdc6 at its priming site, which allows Cdc6 to
create a “stress-responsive” phosphodegron to ensure timely
protein degradation in response to stress. It is worth noting that
Δmck1 cells did not rescue G1 arrest induced by SDS (Fig. S6),
which is probably because of other unknown functions of Mck1
during the G1-S transition. Furthermore CDC6-T39A-T368A
mutant cells partially but not completely rescued the G1 arrest
(Fig. 4C), which indicates that there might be a Mck1-independent
Cdc6 regulation mechanism involved in the G1 arrest caused by
SDS. It is also possible that other DNA replication proteins and
steps are regulated during S-phase in response to stress.
What is known about DNA replication control in response to

stress in general? DNA replication is linked to the osmotic stress-
response pathway. Hog1 (stress-activated protein kinase, SAPK)
phosphorylates Mrc1 to delay origin firing in response to osmotic
stress, resulting in the maintenance of genome integrity in yeast (48).
Mrc1 phosphorylation by Hog1 is independent of that by the DNA
damage checkpoint; therefore, Hog1 and Mrc1 play a role in a novel
S-phase checkpoint upon osmotic stress (48). Taken together, these
data show that cells use distinct kinases and downstream cell cycle
targets to respond to various environmental stresses and maintain
genome integrity.
The sustained Cdc6 expression in CDC6-T39A-T368A mutants

led to S-phase entry even in the presence of membrane damage
caused by SDS, leading to cell lethality (Fig. 4 B and D). A CDC6-
T368A single mutation did not cause severe cell growth defects in the
presence of SDS (Fig. 4B). It might be interesting to study the role of
the Cdc6-T39 phosphorylation site, which might have prominent role
in the stress response.
Our results also explain previous observations that cells de-

fective in SCF function (cdc53-1 and cdc34-2 mutants) show SDS
sensitivity (49). First, Cdc6 phosphorylation is recognized by the
SCFCDC4 complex for its degradation (22, 23, 29, 31), suggesting

that the SCF mutants cause Cdc6 stabilization. Furthermore, Sic1 is
also targeted for its protein degradation by the SCF complex (18).
Therefore, Sic1 is ectopically accumulated in cells defective in SCF
function. Thus, SCF function seems to be critical for cell cycle arrest
as well as for initiating a wound-healing response.
The sensitivity of the CDC6-T39A-T368A mutant to SDS was

more severe than that in Δsic1, indicating that Cdc6 degradation
might be the primary mechanism to arrest the cell cycle during G1
(Fig. 4D). DNA rereplication could trigger chromosome instability,
which is a hallmark of tumorigenesis in higher eukaryotes (50). The
DNA replication protein Cdc6 has to be degraded after origin
licensing to prevent DNA rereplication in yeast (24, 51–53). In
human, Cdc6 is overexpressed in brain tumors (54), lung carcinomas
(55), and lymphomas (56), indicating the importance of Cdc6 pro-
tein levels in tumorigenesis. An ectopic expression of CDC6 induces
DNA replication in quiescent cells (57) and DNA rereplication in
tumor cells (58). To our knowledge, this is the first evidence sug-
gesting that plasma membrane damage promotes a checkpoint-like
mechanism inhibiting DNA replication. Given that the players in-
volved in plasma membrane damage-dependent inhibition of DNA
replication are evolutionarily conserved, the cell cycle and DNA
replication control under plasma membrane stress should be
investigated in higher eukaryotes. Thus, linking the stress
response to DNA replication and cell cycle control will offer
insights into the mechanism for control of cancers.

Materials and Methods
Plasmids and Strains. Standard methods were used for mating, tetrad dissection,
and transformation. All strains listed in Table S1 are congenic with W303
unless noted.

Cell Cycle Block and Release. Log-phase cells (OD = 0.3–0.4) were blocked by
incubating for 2 h with the addition of α-factor (10−7 M). Cells were washed three
times with YPD and then placed into fresh YPD media to release the block. For
the cdc7-4 strain, cells were incubated to log-phase at 23 °C and blocked with
α-factor, as described above. The temperature was shifted to 36 °C for 1 h upon
α-factor release to create an additional block. The cell cycle was released again by
shifting the temperature back to 23 °C. To induce mitotic block, cells were treated
with nocodazole at the concentration of 15 μg/mL for 2 h.

SDS Experiment. SDS at the concentration of 0.0075%was used unless indicated.
BY4741 is less sensitive to SDS and was treated at 0.02% in Fig. 2.

Western Blotting. Cells were lysed by agitation in SDS sample buffer with glass
beads using a FastPrep (MPBiomedicals) for 20 s, twice, at speed 6. The proteinwas
separated by SDS/PAGE with 10% (wt/vol) polyacrylamide gel. Western blot
analysis was performed using an anti-cMYC antibody 9E10 (Sigma) at 1:2,000
dilution, anti-cMYC antibody A-14 (Santa Cruz) at 1:1,000 dilution, anti-Cdc2
(PSTAIRE) antibody (Santa Cruz) at 1:1,500 dilution, anti-Pgk1 antibody (Life
Technologies) at 1:2,000 dilution as a loading control, anti-Tub1 antibody (AbD
Serotec) at 1:5,000 dilution as an additional loading control. Protein-A–tagged
proteins were probed using HRP-conjugated anti-rabbit IgG antibody (Sigma) at
1:5,000 dilution.

Fluorescence Microscopy. The laser-damage experiment was performed as pre-
viously described (7), with modifications as follows. A yeast culture grown over-
night was refreshed and incubated for an additional 2–6 h until OD600 reached
0.1–0.3. Cells were then spotted onto an agarose bed (SD medium + 1.2% aga-
rose) on glass slides. An LSM 780 NLO confocal laser scanning microscopy (Carl
Zeiss) was used to create the damage and to monitor the fluorescent and bright-
field images. Signal quantification was performed using FIJI software.

Kinase Assay. Cdc28/Clb5-13myc was immunopurified using anti-myc (9E10) an-
tibody. Kinase reactions were performed as described previously (59). Histone H1
(Roche) was used as a substrate.

Plasma Membrane Integrity Assay. Yeast strains were grown to early-log phase
(0.1–0.2 OD600) in YPD media, transferred to YPD supplemented with 0.0075%
SDS for 16 h. OD600 = 1.5 equivalent of cells were collected and washed once with
YPD, then resuspended in YPD including DAPI. Cells were then observed under
a fluorescence microscope.
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