Skip to main content
. 2016 Jan 11;4(1):cov055. doi: 10.1093/conphys/cov055

Table 3:

Summaries of optimal models for each activity measure

Parameter Estimate SEM P-value
Yk = Aday Optimal model: M1: Aday = αkp + FLj + ajkp + ϵijkp
αkp −954.1 519.3 0.066
FLj 8.7 3.2 0.0083
σakp 132.0 n.a. n.a.
σjkp 185.2 (73.4–1169.4) n.a. n.a.
ICCjkp 0.34 (0.013–0.76) n.a. n.a.
Yk = Umax Optimal model: M1a: Umax = αkp + FLj + FRj + ajkp + ϵijkp
αkp −1.53 0.32 <0.001
FLj 0.0041 0.00083 <0.001
FRj 0.29 0.068 <0.001
σakp 0.029 n.a. n.a.
σjkp 0.12 (0.03–0.28) n.a. n.a.
ICCjkp 0.051 (0.011–0.55) n.a. n.a.
Yk = Uinst Optimal model: M1a: Uinst = αkp + FLj + FRj + ajkp + ϵijkp
αkp −2.60 0.47 <0.001
FLj 0.00087 0.0011 0.44
FRj 0.24 0.10 0.015
σakp 0.052 n.a. n.a.
σjkp 0.26 (0.19–0.46) n.a. n.a.
ICCjkp 0.037 (0.013–0.068) n.a. n.a.
Yk = ARday Optimal model: M1: ARday = αkp + FLj + ajkp + ϵijkp
αkp −582.0 418.5 0.17
FLj 5.11 2.59 0.0497
σakp 109.9 n.a. n.a.
σjkp 111.4 (53.5–998.1) n.a. n.a.
ICCjkp 0.49 (0.01–0.81) n.a. n.a.

Parameter estimates and associated standard errors (where available) are given. Medians are given for σjkp2 and ICCjkp, with the minimum and maximum in parentheses. For all four models, it is assumed that ajkp~N(0,σakp2) and ϵijkp~N(0,σjkp2). P-values are obtained from likelihood ratio tests comparing the optimal model with a nested model excluding the respective parameter.