
Calibrating genomic and allelic coverage bias in single-cell 
sequencing

Cheng-Zhong Zhang#1,2, Viktor A. Adalsteinsson#2,3,4, Joshua Francis1,2, Hauke Cornils5,6, 
Joonil Jung2, Cecile Maire1, Keith L. Ligon1,7,8,9,10, Matthew Meyerson1,2,7,11, and J. 
Christopher Love2,3,4

1 Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, 
USA.

2 Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA.

3 Department of Chemical Engineering Cambridge, Massachusetts Institute of Technology, 
Cambridge, Massachusetts 02139, USA.

4 Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 
Cambridge, Massachusetts 02139, USA.

5 Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 
02215, USA.

6 Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.

7 Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA.

8 Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.

9 Department of Pathology, Boston Children's Hospital, Boston, Massachusetts 02115, USA.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

Correspondence and requests for materials should be addressed to M.M. (Matthew_Meyerson@dfci.harvard.edu) or to J.C.L. 
(clove@mit.edu). 

Author contributions
C.-Z.Z. and V.A.A. initiated the project and carried out the analysis. C.-Z.Z. performed analysis of amplification bias; V.A.A. 
performed analysis of census-based detection sensitivity with help from C.-Z.Z. J.F., H.C., C.M. and K.L.L. prepared sequencing 
libraries for the RPE cell line and glioblastoma samples. C.-Z.Z., V.A.A., J.C.L. and M.M. wrote the manuscript with help from all the 
authors. M.M. and J.C.L. supervised the study.

Additional information
Accession codes: The sequence data have been deposited in the Short Read Archive from NCBI under the following accession codes: 
RPE-1 bulk (SRX858057); two-cell RPE libraries (SRX858832, SRR1779331 for RPE #1, SRR1779329 for RPE #2, SRR1779330 
for RPE #3); single RPE libraries (SRX858836, SRX858838, SRX858840, SRX858841); glioblastoma bulk whole-genome 
sequencing (SRX848889); glioblastoma bulk whole-exome sequencing (SRX857666); single-glioblastoma nuclei pool #1 (59 nuclei, 
SRX858332); single-glioblastoma nuclei pool #2 (22 nuclei, SRR1778915, SRR1779027, SRR1779078, SRR1779079, SRR1779080, 
SRR1779083, SRR1779085, SRR1779088, SRR1779089, SRR1779091, SRR1779092, SRR1779093, SRR1779095, SRR1779098, 
SRR1779157, SRR1779161, SRR1779163, SRR1779167, SRR1779172, SRR1779174, SRR1779175, SRR1779177); deeply 
sequenced single-glioblastoma nuclei (SRX858848, SRR1779345 for GBM #1, SRR1779347 for GBM #2; SRR1779348 for GBM 
#3; SRR1779350 for GBM #4); whole-genome sequencing of blood reference for the glioblastoma patient (SRX851083); whole-
exome sequencing of the blood reference for the glioblastoma patient (SRX857684).

Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: M.M. is a founder and equity holder of Foundation Medicine, a for-profit company that provides next-
generation sequencing diagnostic services.

How to cite this article: Zhang, C.-Z. et al. Calibrating genomic and allelic coverage bias in single-cell sequencing. Nat. Commun. 
6:6822 doi: 10.1038/ncomms7822 (2015).

HHS Public Access
Author manuscript
Nat Commun. Author manuscript; available in PMC 2016 June 27.

Published in final edited form as:
Nat Commun. ; 6: 6822. doi:10.1038/ncomms7822.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://npg.nature.com/reprintsandpermissions/
http://www.nature.com/naturecommunications


10 Center for Molecular Oncologic Pathology, Dana Farber Cancer Institute, Boston, 
Massachusetts 02115, USA.

11 Center for Cancer Genome Discovery, Dana Farber Cancer Institute, Boston, Massachusetts 
02215, USA.

# These authors contributed equally to this work.

Abstract

Artifacts introduced in whole-genome amplification (WGA) make it difficult to derive accurate 

genomic information from single-cell genomes and require different analytical strategies from 

bulk genome analysis. Here, we describe statistical methods to quantitatively assess the 

amplification bias resulting from whole-genome amplification of single-cell genomic DNA. 

Analysis of single-cell DNA libraries generated by different technologies revealed universal 

features of the genome coverage bias predominantly generated at the amplicon level (1–10 kb). 

The magnitude of coverage bias can be accurately calibrated from low-pass sequencing (~0.1 ×) to 

predict the depth-of-coverage yield of single-cell DNA libraries sequenced at arbitrary depths. We 

further provide a benchmark comparison of single-cell libraries generated by multi-strand 

displacement amplification (MDA) and multiple annealing and looping-based amplification cycles 

(MALBAC). Finally, we develop statistical models to calibrate allelic bias in single-cell whole-

genome amplification and demonstrate a census-based strategy for efficient and accurate variant 

detection from low-input biopsy samples.

Single-cell sequencing has provided unique insights into the genetic diversity of living 

organisms and among different cells within the same individual1–3. Recent single-cell 

analyses have uncovered different clonal populations within a single tumour4,5, revealed 

genomic diversity in gametes6,7 and neurons8,9, and resolved historical cellular lineages 

during development10,11. Single-cell sequencing also has many potential clinical 

applications, such as characterization of circulating tumour cells12,13 or fine-needle aspirates 

for clinical diagnostics.

A major drawback of single-cell sequencing, however, is the need to amplify genomic DNA 

before genomic characterizations14–17. Owing to the limited processivity (<100 kb) and 

strand extension rate (<100 nt per second) of DNA polymerases, the amplification of large 

genomes requires priming and extension at millions of loci, each amplified 10,000- to 

1,000,000-fold. Such a large number of polymerase reactions inevitably generate 

amplification errors that confound the detection of genetic variants (Supplementary Fig. 1). 

Furthermore, differential priming efficiencies and extension rates result in uneven 

amplifications across the genome18,19 and skewed representations of homologous 

chromosomes. These variations both compromise variant detection sensitivity and may lead 

to incorrect genotypes5,12. Although technological innovations may improve the fidelity of 

whole-genome amplification (WGA)15–17,20–23, statistical fluctuations in the amplifications 

of millions of different DNA templates will persist.

As genetic variants are detected by the relative abundance of variant-containing DNA 

templates in the library, non-uniformity in genome coverage directly impacts the sensitivity 
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to detect variants. For example, grossly non-uniform libraries emphasize only 

overrepresented regions of the genome, and contain little information on other regions. 

Current methods to assess the uniformity of WGA rely on either direct visual inspection or 

various statistical measures of the sequencing coverage at the base level18,22 or the allele 

level5,12. These empirical methods and metrics generally require substantial sequencing (10 

× or greater) and only gauge the deviation of amplified DNA from the ‘uniform’ bulk DNA 

at a particular sequencing depth. They fail, however, to characterize the intrinsic non-

uniformity resulting from WGA that is independent of sequencing depth (Fig. 1a,b). 

Moreover, the nature of the main sources of bias remains poorly characterized (Fig. 1c).

Here, we report a systematic analysis of the coverage bias in single-cell whole-genome 

amplification. We show that the structure of individual WGA amplicons imparts a dominant 

amplification bias on length scales longer than the average size of sequencing fragments. 

Sequencing at low depths (0.1–1 ×) can effectively reveal this variation in the amplicon-level 

coverage and enable accurate predictions of the depth-of-coverage yield when sequencing 

single-cell libraries to arbitrary depths. We further characterized the amplification bias 

between homologous chromosomes using analytically solvable models and validated these 

model predictions of allelic coverage by experimentally observed coverage at heterozygous 

sites. These results provide a framework for quality assurance of single-cell libraries and for 

estimating the sensitivity to detect local variants—such as single-nucleotide variants or 

chromosomal translocations—present in an individual cell at a given sequencing depth. 

Finally, we demonstrate that the amplification bias in multi-strand displacement 

amplification (MDA) is more random than recurrent. Although such random bias cannot be 

corrected systematically, it suggests an efficient census-based strategy to accurately 

determine somatic genetic variants in small biopsy samples by sequencing multiple single 

cells from the same sample at modest depths.

 Results

 Information yield from bulk and single-cell sequencing

In bulk DNA libraries, each sequencing fragment represents genomic information from an 

individual cell; therefore, the information content increases with the sequencing depth until 

fragments are sequenced to exhaustion. The information content of a DNA library (‘library 

complexity’) is thus measured by the total number of distinct molecules (sequencing 

fragments) in the library24–26. This measure is essentially determined by the total number of 

cells (or the total amount of genomic DNA) used to prepare the library (Fig. 1a, left panel). 

In single-cell DNA sequencing, WGA precedes the construction of a DNA library and 

introduces non-uniformity across the genome: As sequencing depth increases, more genomic 

regions are uncovered (Fig. 1a, right panel). Hence the fraction of the single-cell's genome 

uncovered at a given sequencing depth determines the information content of single-cell 

sequencing. This measure ultimately depends on the uniformity of genome coverage, or the 

magnitude and spread of whole-genome amplification bias, and is conceptually equivalent to 

a ‘single-cell DNA library complexity.’
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 Amplicon-level bias dominates coverage variation

Visual inspection of single-cell sequencing coverage suggests that the genome coverage 

varies at many different length scales (Fig. 1b). To systematically evaluate the amplification 

bias in single-cell libraries, we sequenced MDA-generated DNA libraries of diploid RPE-1 

cells (5–10×) and compared the sequencing coverage to a matched, unamplified bulk DNA 

library (~12×). To eliminate the effects of sequencing depths, we computationally down-

sampled the bulk and single-cell DNA libraries and calculated the auto-correlation of base-

level coverage in disomic chromosome 1 at various depths to examine coverage correlations 

at all length scales (Fig. 2a, Supplementary Fig. 2). Both bulk and MDA libraries exhibited a 

correlation at length scale lc≈100 bp, reflecting the sequencing read length (101 bp). 

Looking more closely, we also identified a correlation at lc≈250 bp, corresponding to the 

average size of the paired-end fragments (Supplementary Fig. 2). As expected, the 

magnitude of such correlations at the fragment scale decays with increasing sequencing 

depth.

Besides the fragment-level correlations, the bulk DNA sequencing coverage showed 

minimal correlation between loci separated by more than 1 kb. In contrast, single-cell 

libraries exhibited a prominent correlation in 1–100 kb that is independent of the sequencing 

depth. Independent sequencing of the same single-cell library to 0.1× on the Illumina MiSeq 

platform and to 9× on the HiSeq platform revealed the same correlation with a characteristic 

length lc≈33 kb (Fig. 2a). The sequencing depth-independent correlation reflects the 

intrinsic non-uniformity in the DNA library and suggests a characteristic length scale of 

amplification bias.

The predominant correlation at lc suggests that adjacent loci within this distance have 

comparable coverage. This observation implies that the primary source of coverage variation 

(or amplification bias) is at or above the distance lc. Therefore, statistical variation of 

coverage at the single-base level should reflect coverage variation at the amplicon level. To 

test this hypothesis, we computed the cumulative distribution of bin-level coverage (bin 

size≈17 Kb, half of lc). Normalizing the bin-level coverage by the mean depth-of-coverage, 

we found the cumulative distribution of bin-level coverage to be nearly identical between 

independent sequencing at 9× or at 0.1× (Fig. 2b), confirming that the amplicon-level 

coverage variation is intrinsic to the amplified DNA but independent of the sequencing 

depth. Furthermore, the cumulative distribution of single-base coverage at 9× sequencing 

depth aligned with the bin-level coverage (Fig. 2b, Supplementary Fig. 2), suggesting that 

the amplicon-level variation was indeed the dominant source of non-uniformity in single-cell 

libraries.

To further validate this conclusion, we computed the depth-of-coverage curves and the 

Lorenz curves for the bulk RPE-1 library and a single RPE-1 library by MDA at different 

bin sizes (Supplementary Fig. 3). For the bulk library, the distribution of single-base-level 

coverage is indistinguishable from that evaluated at the bin level when the bin size is smaller 

than the fragment size (~300 bp); above this scale, the bin-level distribution is more uniform 

than the single-base level distribution, reflecting smoothing of coverage non-uniformity.
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By contrast, for the MDA-generated library, the distribution of single-base-level coverage 

remains constant until the bin size exceeds the amplicon size, ~10 kb. Characterization of 

coverage non-uniformity by Lorenz curves22 also confirmed that the same bias was observed 

for bin sizes less than or comparable to the amplicon size and was independent of the 

sequencing depth. In particular, at sequencing depths <<1×, the majority of the genome is 

uncovered and shows no variation in the single-base-level coverage; amplification bias, 

however, is manifested in the correlation between covered loci and can be evaluated by low-

pass sequencing. For typical MDA-generated libraries, the amplicon size is on the order of 

10 kb, hence, at 0.1× sequencing depth, there are 0.1×104/100≈10 reads (assuming 100 bp 

single-end reads) on average for each amplicon. As long as the number of reads per 

amplicon is much larger than the statistical variation due to random selection in sequencing 

(for example, assuming poisson distribution, the standard deviation of the observable is 

given by the square root of the expectation), the percentage of such amplicons can be 

accurately calculated. At 0.1× sequencing, the amplicon-level coverage can accurately 

predict the fractional genome coverage down to 0.1× mean depth, when there is 

approximately one read for each of these under-represented amplicons; below this depth, 

low-pass sequencing at 0.1× cannot distinguish between regions that are severely under-

amplified (<0.1× mean depth) and those that dropped out of amplification.

 Magnitude of amplicon-level variation determines coverage

We tested the validity of the correlation analysis by analysing DNA libraries generated from 

different types of cells and by different amplification technologies. For this purpose, we 

analysed single-cell sequencing data of additional RPE-1 samples (Supplementary Fig. 2) 

and data from multiple published studies, including frozen glioblastoma nuclei27 

(Supplementary Fig. 4), single diploid lymphoblastoid cells5 (Supplementary Fig. 5), frozen 

single neuron nuclei8 (Supplementary Fig. 6), single sperms6 (Supplementary Fig. 7) and 

SW480 tumour cells22 (Supplementary Fig. 8); all samples were amplified by MDA. The 

SW480 cells were also amplified by quasi-linear multiple annealing and looping-based 

amplification cycles (MALBAC). The amplicon size in MDA-generated libraries ranged 

from 5 to 50 kb, with the sperm libraries having the lowest lc≈5 kb (Supplementary Fig. 7). 

Interestingly, MDA of hundreds or thousands of neurons exhibited similar amplicon sizes 

between 10 and 20 kb (Supplementary Fig. 6), consistent with estimates by standard and 

alkaline gel electrophoresis8. In contrast, MALBAC showed a much shorter correlation 

length ~600 bp (Supplementary Fig. 8), consistent with the reported average amplicon size 

(500–1,500 bp, ref. 22). We also found significant correlations at the fragment-size level in 

one single-cell library and the reference bulk library5 that persisted at high sequencing 

depths (Supplementary Fig. 5); these correlations reflected substantial GC bias at the 

fragment level absent in the other bulk libraries and likely arose during library preparation 

due to PCR. Despite the vastly different correlation lengths evident in MDA and MALBAC 

amplifications, our analysis accurately predicted the cumulative coverage distribution in all 

libraries sequenced to above 10× from computationally down-sampled sequencing data at 1× 

or less (Supplementary Figs 2 and 4–8).

To benchmark the performance of different single-cell libraries, we compared the fraction of 

covered genome (≥1×) when each library was sequenced to 1×. This percentage was either 
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computed directly from down-sampled data (when the original data had higher depths) or 

inferred from the depth-of-coverage curve when the original data had lower depths. The 

coverage benchmark was plotted against the magnitude of amplicon-level variation as 

measured by the plateau correlation strength at the amplicon scale (Methods, Fig. 2c). As 

expected, smaller amplification bias results in a larger fraction of covered genome. Out of 

the five published single-cell DNA sequencing studies analysed here, the single-neuron 

libraries had the best overall uniformity, followed by the two single YH1 libraries; the 

MALBAC libraries overall had less amplification bias than MDA, although optimized MDA 

libraries performed equally well. The frozen glioblastoma libraries (59 total) exhibited a 

range of variations that can be fitted by an empirical relationship

(1)

where y is the percentage of covered genome and x is the (dimensionless) correlation 

magnitude. Except for the single-sperm libraries that exhibited substantial bias, all other 

analysed data closely followed this relationship. This result suggested that the uniformity of 

genome coverage is solely determined by the amplicon-level variation but not the amplicon 

size. Therefore, one can directly use this empirical relationship to benchmark the uniformity 

of single-cell libraries by the correlation magnitude that can be accurately computed from 

low-pass sequencing ~0.1×.

We further selected the best single-cell libraries from each study and compared the fraction 

of genome covered at different depths as observed in the original high-depth sequencing 

(Fig. 2d). Owing to the different sequencing depths applied to these libraries, we plotted all 

cumulative genome coverage against the normalized depth (by the mean depth). The 

benchmark of amplification uniformity as measured by the depth-of-coverage curve agrees 

with the computed correlation magnitude (Fig. 2c inset).

Finally, we also analysed the base-level coverage in single-cell libraries amplified by 

degenerate oligonucleotide primed PCR (DOP–PCR)28. The correlation was evident both at 

the read length level (~50 bp) and on a longer scale of ~200 bp (Supplementary Fig. 9) that 

is consistent with the size of purified DOP-PCR product4. In comparison with MDA- or 

MALBAC-generated libraries, the smaller overall correlation magnitude (at the amplicon 

level) explains the better uniformity of DOP-PCR. Interestingly, even for the MDA 

generated libraries, shorter amplicon size tends to result in better uniformity (Supplementary 

Fig. 9); the underlying mechanism for this observation requires further characterization.

 Genome coverage variation reflects allele-level bias

Coverage at the locus level includes contributions from homologous chromosomes (the 

allele-level coverage). The same non-uniformity in the genome coverage, however, may 

result from different combinations of non-uniformity at the allelic level (Fig. 3a). Although 

allele coverage determines the sensitivity to detect heterozygous variants, we rarely consider 

this aspect in bulk sequencing due to the comparable contributions of all alleles and largely 

uniform coverage of the genome. In single-cell libraries, however, we often observe 
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disproportionately represented alleles and numerous loci may exhibit ‘allelic dropout’5,12. 

Consequently, the detection sensitivity of hemizygous variants is measured by the allele 

coverage and needs to be derived from the genome coverage.

To predict the allele coverage from the locus-level genome coverage, we considered two 

limiting scenarios: a ‘segregated template model’ (STM) assuming completely independent 

amplification of homologous chromosomes, and a ‘mixed template model’ (MTM) 

assuming identical coverage of homologous chromosomes (as expected in bulk sequencing, 

Fig. 3a). The difference between the two models is most evident in highly amplified regions: 

STM implies preferential amplification of one allele, whereas MTM suggests that both 

alleles have been highly amplified. Both models are analytically solvable and can be easily 

implemented computationally (Methods, Supplementary Fig. 10).

We compared the model predictions for allele-level coverage with the observation at 

germline heterozygous sites detected from bulk DNA sequencing (Fig. 3b, Supplementary 

Figs 5 and 11). For glioblastoma libraries (Fig. 3b), both locus- and allele-level coverage 

was calculated from disomic chromosome 12 at 1× sequencing depth. Coverage at 

heterozygous sites was evaluated for different disomic chromosomes (5, 12 and 13) from 

higher-depth sequencing at 9–10×. As expected, the total coverage (reference plus alternate 

bases) at these sites agreed well with the prediction for locus-level coverage, reflecting 

similar amplification bias for different chromosomes with the same copy number. 

Meanwhile, coverage of either reference or alternate bases followed the same distribution as 

predicted by the STM model. These results suggested homologous chromosomes are 

amplified almost independently during WGA and manifest the same degree of amplification 

bias. This discovery was further underscored by the agreement between the observed 

coverage of monosomic chromosome 10 and the STM allele-coverage prediction 

(Supplementary Fig. 11).

We further verified that coverage of alternate or reference alleles was indeed independent of 

each other in the glioblastoma samples by looking at the distribution of alternate and 

reference reads at heterozygous sites in disomic chromosome 5 (Supplementary Fig. 12). 

Interestingly, the two-cell RPE-1 libraries showed positive correlations between the counts 

of the reference and of the alternate alleles (Supplementary Fig. 12), consistent with the 

MTM model (Supplementary Fig. 11). Of the two published single YH1 libraries5, one 

agreed better with the MTM model and the other agreed with the STM model 

(Supplementary Fig. 5). Whether this difference resulted from the cell's initial condition 

(frozen versus fresh), the stage of cell cycle, or other factors requires further 

characterization.

 Census-based strategy enables efficient variant detection

Our analytical prediction of the allele coverage measures the average probability of 

capturing a single-variant read in single-cell sequencing. In sequencing analysis, however, 

more than one observation of the variant is necessary to mitigate sequencing errors. This 

requirement substantially reduces the percentage of detectable variants at low sequencing 

depths. In one example (GBM #4, correlation magnitude ≈4 for disomic chromosomes), the 

normalized allele coverage implied that only 13.3% of clonal hemizygous variants could be 
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confidently detected at a mean sequencing depth of 1× when requiring at least two reads for 

each variant (Supplementary Fig. 11). This percentage increased with sequencing depth to a 

limit of 79% at 100×. In contrast, the sensitivity to detect a subclonal mutation with allelic 

fraction of 0.4 in a bulk library at 10× sequencing is ~80% and quickly reaches >95% at a 

sequencing depth of 20× (ref. 29). The reduced dependence of detection sensitivity on 

sequencing depth for single-cell libraries suggested that deep sequencing of an individual 

library is not an efficient approach to increase power for detecting variants from libraries 

prepared by WGA.

To overcome this challenge, we devised an approach to sequence a large number of single-

cell genomes at only modest depths (~1×). We simultaneously controlled for errors resulting 

from random MDA artifacts or from sequencing by requiring true variants to appear in 

multiple libraries (‘census based’, Fig. 4a). We expected this population-based approach to 

be effective only when the amplification bias is random, but not recurrent (Fig. 1c). We thus 

evaluated the correlation between the coverage of reference and alternate alleles in four 

independent glioblastoma libraries. The small covariance (~0.01) between the coverage of 

each given allele in different libraries is consistent with random MDA bias (Table 1). These 

data contrasted with recurrent locus-specific amplification bias in degenerate-

oligonucleotide-primed PCR methods such as GenomePlex30.

We next examined how many single cells sequenced to the same total depth would maximize 

the total allele coverage by census-based variant detection using a representative library with 

modest bias (GBM #4, correlation magnitude ≈4, Fig. 4b). In all the cases, our model 

predicted maximum allele coverage when each individual cell was sequenced to a modest 

depth (~1×). We repeated this calculation using each of the other libraries as the 

representative, and found that the optimal depth for detecting clonal and subclonal variants 

is always ≲ 1× (Fig. 4c).

To test this experimentally, we sequenced each of the following subsets of single 

glioblastoma libraries to 20× total depth: 59 libraries (~0.33× per library), 22 libraries (~1× 

per library), two libraries (~10× each, group A) with minimal bias (correlation magnitude 

≈0.9 for disomic chromosomes) and two libraries (~10× each, group B) with average bias 

(correlation magnitude = 2~4). We genotyped germline heterozygous single-nucleotide 

polymorphisms (SNPs) and detected somatic single-nucleotide variants and small insertion/

deletions (indels) by the census-based strategy and compared the call sets with results from 

bulk DNA sequencing. For germline SNPs in disomic chromosome 5, we observed that 

census-based detection in the two pools of single-cell libraries (59 and 22 each) each 

uncovered more than 80% of all SNPs detected in bulk, while the two sets of two libraries 

with minimal and average bias uncovered only ~30 and ~5% of the heterozygous sites, 

respectively (Fig. 4d). Even combining all four deeply sequenced libraries together to a total 

depth of 40× still cannot reach the detection sensitivity offered by the two larger groups. A 

similar improvement in sensitivity was observed for the detection of somatic single-

nucleotide variants and indels among the single cells sequenced to ~0.33× and ~1× per 

library (as opposed to ~10× per library), detecting more somatic variants found in bulk 

whole-exome sequencing with fewer private or false positive calls (Fig. 4e, Supplementary 

Data 1–5). The false positive calls usually occur at low allele frequencies within each library 
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and likely reflect recurrent amplification errors and sequencing errors. Such errors are less 

frequent when the library is sequenced to a low depth and can be suppressed by requiring 

more than one read for each variant. Together, these data validate our statistical estimates of 

the variant detection sensitivity from a population of single cell libraries and demonstrate 

that a census-based strategy using only modest depths of sequencing for many single cells 

can substantially improve both sensitivity and specificity for detecting variants compared 

with deep sequencing of individual libraries.

 Discussion

Here we have established a universal method to characterize the amplification bias in single-

cell DNA libraries at both locus and allele levels. On the basis of our discovery that intrinsic 

amplification bias occurs predominantly at the amplicon level, we demonstrated that the 

cumulative distribution of bin-level coverage (with bin size set to the length scale of 

dominant amplification bias) directly predicts the depth-of-coverage at any sequencing 

depth. We further derived a quantitative measure of amplification bias that can directly 

predict locus-level coverage via an empirical relationship. Our analysis thus provides a 

statistical description of the relationship between the genomic coverage of single-cell DNA 

libraries and the intrinsic amplification bias. This metric provides a robust benchmark that 

enables a quantitative prediction of the complexity of single-cell libraries from low-pass 

sequencing (0.01~0.1×).

We demonstrated that amplification of different chromosomes (including different 

homologous chromosomes) in a single cell is often independent (‘segregated template 

model’), reflecting random priming and amplification. This biophysical feature is 

fundamentally different from amplification from bulk DNA, where allele-level coverage is 

strongly correlated31,32 (‘mixed template model’). We proposed analytically solvable models 

that can quantitatively predict the allele coverage of single-cell libraries at any sequencing 

depth. These models provide the basic framework for estimating the detection sensitivity of 

hemizygous genetic variants by single-cell sequencing.

The characteristic length in the coverage autocorrelation also determines the scale at which 

the source of amplification bias should be characterized. In bulk DNA libraries, a dominant 

bias at the fragment length level is shown to be associated with the sequence content (GC%), 

but such bias quickly decays at longer length scales (Supplementary Figs 5 and 6). In MDA-

generated libraries, however, we observed substantial variation even in regions with similar 

GC content (Supplementary Fig. 6). This is in sharp contrast to MDAs from bulk 

samples18,31–33. Such a wide range of variation reflects random priming bias17 instead of 

recurrent polymerase extension bias, and may also depend on the size of DNA templates 

after cell lysis, which is known to affect displacement efficiency21. Our discoveries of the 

amplicon-level correlation and independent allele amplifications are both consistent with the 

dominant bias being generated in the early stage of amplification of single DNA templates 

and reflect the discrete nature of single-molecule biochemical reaction. As early stage bias 

can be exponentially amplified during subsequent cycles of amplification, limited 

amplification should result in better uniformity27,34.
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The random nature of single-cell genome amplification further underscores the necessity of 

single-cell-specific bioinformatic tools and experimental design. Deep sequencing of single-

cell libraries to recover measures of variant alleles easily extends the sequencing cost and 

becomes prohibitive for libraries with extreme bias. Our analyses suggest a more practical 

approach by (1) preparing individual sequencing libraries from many independent samples 

and (2) ranking and selecting the best libraries on the basis of the complexity and the allelic 

coverage predicted based on low-pass whole-genome sequencing of each library (~0.1×) 

before extensive sequencing.

For clinical samples with a limited number of cells, such as fine-needle aspirates or 

circulating tumour cells, the most interesting genetic variants are shared among the cells, 

including both subclonal and clonal variants. For this purpose, it is most efficient to perform 

‘census-based variant detection’ from multiplexed sequencing of independently amplified 

single-cell DNA libraries each sequenced to modest depths (~1×). The census-based variant 

detection strategy simultaneously controls random errors due to sequencing (0.1–1% per 

sequenced base) or amplification (~1% loci with error reads exceeding 10% allele frequency, 

Supplementary Fig. 7, refs 27,34) and maximizes the total allele coverage at a given 

sequencing depth by sampling many independently amplified libraries, thus enabling 

accurate detection of somatic variants and dissection of clonal heterogeneity.

One technical complication in single-cell sequencing is DNA contamination. Contamination 

of non-human-genomic DNA before whole-genome amplification will result in a large 

percentage of sequencing reads that are not mapped to the reference assembly, which can be 

readily identified and excluded by low-pass sequencing. The census-based strategy also 

effectively controls human genomic DNA contamination limited to one single-cell library. 

Contaminations to multiple single-cell libraries are usually present at many more copies than 

a single-cell genome at the affected loci and should be recognizable as they are substantially 

amplified after whole-genome amplification.

At the current stage, errors introduced during WGA prohibit an accurate characterization of 

individual genetic variants within a single cell. (This task can be accomplished through 

independent amplifications of biological replicates after cell division.) It is, however, 

possible to infer global features of mutagenesis, such as the mutation rates in tumour 

progenitor cells or circulating tumour cells, by single-cell sequencing after correcting the 

total number of detected genetic variants by the statistical power for detecting variants in a 

single-cell library sequenced to a certain depth. Our analyses have laid the foundation for 

single-cell genetic variant detection by calibrating the amplification bias at both genomic 

and allelic levels.

 Methods

 Amplification and sequencing of RPE-1 cells

The hTERT RPE-1 (ATCC) cell line stably expressing GFP-H2B was cultured and treated as 

follows: Briefly, cells were transfected with a pool of siRNAs (Smartpool, Dharmacon) 

against p53 using RNAiMAX (Invitrogen) according to the manufacturer's instructions. 

Eighteen hours later, cells were treated with Nocodazole (100 ng ml−1; Sigma) for 6 h. The 
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G2/M arrested cells were collected by mitotic shake-off and replated after three washes with 

medium. Four hours after replating, G1-released cells were sorted into 384-well tissue 

culture plates and cultured. Confirmed single cells were allowed to divide once, before being 

washed twice with PBS and lysed and amplified within the 384-well tissue culture plate as 

outlined above35.

Amplified DNA from two RPE-1 cells after one round of cell division was subject to 

standard whole-genome DNA library preparation and assessed by low-pass sequencing 

~0.1× using the MiSeq platform (Illumina). DNA libraries of RPE cells (three total) were 

then sequenced to 4–9× on the HiSeq2500 platform (Illumina). Bulk RPE-1 DNA was 

sequenced to ~12× on the HiSeq2500 platform (Illumina).

 Processing of single-cell sequencing data

Sequencing reads from published studies were downloaded from the NCBI Short Read 

Archive. For the diploid YH genome, we downloaded all sequencing runs of the bulk 

reference (SRR294761) and two single-cell samples, ‘BGI_YH1’ (SRR294759) and 

‘BGI_YH2’ (SRR294760). For diploid neurons, we downloaded all the data from 

SRP014781, including sequencing data for the bulk DNA, and for the whole-genome 

amplified products from single-cell DNA, 100-cell DNA and 50,000-cell DNA. For haploid 

sperms, we downloaded the deep sequencing data of eight single sperm libraries, ‘Sperm23’ 

(SRS344176), ‘Sperm24’ (SRS344190), ‘Sperm 27’ (SRS344191), ‘Sperm28’ 

(SRS344192), ‘Sperm101’ (SRS344222), ‘Sperm113’ (SRS344223), ‘Sperm135’ 

(SRS344224), ‘Sperm136’ (SRS344225). For SW480 tumour cells, we obtained data 

corresponding to the bulk reference (SRS374235), a single-cell MDA library (SRS375060) 

and five single-cell MALBAC libraries (SRS373654, SRS374233, SRS375671, SRS375672, 

SRS375673). The data of the glioblastoma libraries were generated from a previous study 

and can be accessible from SRP052627.

Reads were aligned to the human genome reference (hg19/GRCh37) using bwa (http://bio-

bwa.sourceforge.net/) in the paired-end mode. The RPE and glioblastoma libraries were 

aligned by ‘bwa aln’ followed by ‘bwa sampe’ with default parameters. The remaining data 

were aligned by ‘bwa mem’. PCR duplicates were removed by MarkDuplicates from PICARD 

(http://picard.sourceforge.net/). Sequencing data of the glioblastoma libraries and the 

matching blood were re-calibrated and indel-realigned by GATK (http://

www.broadinstitute.org/gatk/) before variant detection.

Down-sampling of deep sequencing data to ~1× was done by DownsampleSam from PICARD. 

Base-level sequencing coverage was enumerated by the DepthOfCoverage module from 

GATK with minimum read mapping quality set to 5.

To evaluate the allele coverage in RPE-1 MDA libraries, we detected heterozygous SNPs in 

Chr. 1 of the RPE-1 cells from the sequencing of bulk RPE-1 DNA (~12×) and individual 

MDA libraries by UnifiedGenotyper from GATK; only variants with Qual. ≥100 and at least 

three reference and three alternate reads in the bulk sample were selected to evaluate the 

allele coverage in MDA libraries. For other samples, we genotyped HapMap SNPs (v3.3) to 

estimate the allelic coverage; only variants found to be heterozygous in the matching blood 
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with Qual. ≥500 were selected and genotyped in each set of glioblastoma libraries. Somatic 

single-nucleotide variants and small insertions/deletions were detected by HaplotypeCaller 

from GATK in each set of glioblastoma libraries and in the bulk library, and by MuTect29 

from bulk whole-exome sequencing.

 Computation of auto-correlation function of sequence coverage

The dimensionless auto-correlation function of coverage is defined as

(2)

The brackets denote average over all genomic loci x and Δ measures the spread of 

correlation. In computing the auto-correlation functions, we only include regions not 

adjacent to the assembly gaps. (Adjacency is determined by the step Δ.)

The correlation function is fitted to an exponential form to estimate the correlation length lc:

(3)

For MDA, the correlation length lc is on the order of 10 kb and the correlation function G(Δ) 

is roughly constant above the fragment length (~300 bp) and below the correlation length lc. 
In this regime, G(Δ) can be written as

(4)

Here C̄ is the average coverage within each bin [x, x + Δ). It becomes evident that G(Δ) 

measures the standard deviation of bin-level coverage. For convenience, we choose to 

evaluate G(Δ) at Δ = 1 kb as a quantitative metric of the magnitude of amplification bias 

(correlation magnitude).

 Statistical models for predicting allele coverage from genome coverage

The power to detect a genetic variant is given by the probability that this variant locus 

(usually of one chromosome) is represented in the sequencing data, or the relative 

abundance of variant-supporting reads. But the direct observable in sequencing data is the 

total number of reads covering all possible alleles, that is,

(5)
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where C is the total observed coverage at a given locus as a sum of contributions from each 

allele denoted by mi.

In the presence of amplification bias, both C and mi's vary across the genome. The 

distribution of C across different loci can be straightforwardly evaluated from the depth-of-

coverage curve; here, we want to infer the statistical distribution of mi when the distribution 

of C is known. The STM assumes that amplifications of homologous chromosomes are 

independent. As a consequence, the counts of reference and of alternate bases at 

heterozygous sites are independent, and one highly amplified allele may dominate over the 

remaining ones. In the MTM, different alleles are assumed to be amplified to the same 

extent at every individual locus. As a result, the counts of reference and of alternate bases at 

heterozygous sites follow a symmetric binomial distribution.

In mathematical terms, mi's are independent of each other but follow the same distribution in 

STM. In this scenario, one can numerically compute the distribution of mi from the 

characteristic functions C(k) and m(k) (that is, the Fourier transforms of the probability 

distribution for C and m), which satisfy

(6)

Here, we present an iterative method to calculate the distribution of mi and illustrate this 

method using a diploid genome (that is, n = 2).

At a given sequencing depth, denote the total percentage of loci that are covered ≥1× by f,

(7)

the percentage of loci that are covered in a particular allele is denoted by

(8)

It is then straightforward to see that

(9)

or

(10)

Hence, in a region with n alleles, the probability that a given allele is covered is given by
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(11)

For diploid genomes, this becomes

(12)

We can expand this further to compute the coverage at higher depths. For example,

(13)

If we denote the percentage of loci where total coverage is at or above two as f2, and the 

percentage of loci covered at or above two for each allele as λ2, then we have

(14)

or

(15)

The iteration can be continued to calculate the allele coverage at any depth,

(16)

or (denoting λ0 = 1, λ1 = λ and so on.)

(17)

which gives

(18)

Zhang et al. Page 14

Nat Commun. Author manuscript; available in PMC 2016 June 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In the mixed template model, we assume that the local coverage C is a mixture of all alleles 

randomly sampled at the same frequency. In disomic regions, this implies that m follows a 

binomial distribution B(C, 0.5) at any total coverage C. Under this model, we have

(19)

where the sum runs over all observed local coverage (t = 1, 2, ... M). The series converges 

quickly as both ft and the exponential prefactor decay quickly. Furthermore, one easily 

verifies that when f is small, this result is equal to the segregated template model to the 

leading order (f/2).

It is also straightforward to calculate the allele coverage at higher depths.

(20)

 Census-based detection sensitivity from a pool of single-cell libraries

As the percentage of genome that is covered at or above 1× at any sequencing depth can be 

estimated, we can also predict the census-based detection power for hemizygous variants in 

a pool of single-cell libraries. Consider a total number of Y libraries having similar 

amplification bias and the probability of observing a hemizygous variant in any of the Y 
libraries is given by λ, then the probability for observing this variant in a subset of libraries 

(X out of Y) is given by

(21)

We can then compute this for a subclonal variant at clonal fraction y in a total of Z libraries 

from

(22)
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where random selection of cells containing the subclonal variant follows a binomial 

distribution B(Z,y).

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Non-uniformity in genome coverage and its impact on the sequencing yield
(a) Dependence of the information yield on the sequencing depth. Deeper sequencing of 

bulk libraries yields information on a larger population of cells; deeper sequencing of whole-

genome amplified single-cell libraries reveals information on a larger fraction of the genome 

(thick lines). (b) Genome coverage bias at different levels. ‘Amplification bias’ (top): whole-

genome amplification generates coverage bias at the amplicon level, which is ~10–50 kb for 

multi-strand displacement amplification. ‘Sequencing bias’ (bottom): non-uniformity in the 

selection of sequencing fragments can be caused by multiple sources of bias including 

whole-genome amplification: the variation in sequencing coverage can be observed from 

100 bp to multiple megabases. (c) Schematic representations of recurrent and random 

amplification bias from multiple independent amplifications of the same DNA material.
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Figure 2. Statistical analysis of whole-genome amplification bias and coverage uniformity
(a) Autocorrelation in the genome coverage of a two-cell RPE-1 DNA library (RPE#1) 

amplified by multi-strand displacement amplification (MDA). The same library 

independently sequenced to 0.1× (open triangles) and to 8× (solid triangles) and exhibits a 

correlation above 1 kb that is invariant at intermediate depths (shaded triangles) from 

downsampling of the 9× sequencing data. Black-dashed curve represents exponential fitting 

of the autocorrelation in the 1–100 kb range as 2+0.17e−Δ/lc with a correlation length lc = 33 

kb (95% confidence interval: 27–42 kb). This correlation is absent in the bulk library 

sequenced to different depths. Both the bulk and the MDA-generated libraries show a 

sequencing-fragment-level correlation (lc=100 bp) that decays with the sequencing depth. 

(b) The identical normalized cumulative coverage at bin size 1/2×lc evaluated from the 9× 

(solid) and from the 0.1× sequencing (dashed) reflects the same amplicon-level variation due 

to MDA. The agreement between bin-level (dashed and solid lines) and base-level (red dots) 

depth-of-coverage curves further suggests that the bin-level variation contributes the 

dominant amplification bias. See Supplementary Figs 2 and 4–8 for more examples of the 

correlation (a) and coverage (b) analysis of single-cell sequencing data from different 

studies. (c) Relationship between genome coverage (% covered at 1× mean sequencing 

depth) and amplification bias (measured by the amplitude of the amplicon-level correlation) 

of single-cell libraries from different studies. Coverage is evaluated at Chr. 1 for both 

haploid sperms and diploid cells, as well as the SW480 tumour cells (disomic in Chr. 1), and 

at Chr. 10 (monosomic), Chr. 12 (disomic) and Chr. 13 (disomic) for glioblastoma nuclei. 

The inverse dependence is fitted with an empirical formula, . 

(d) Comparison of the cumulative coverage in the most uniform single-cell library from each 
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study. Data were directly evaluated from high-depth sequencing of all samples except the 

neuron library for which the curve was interpolated from 0.5× sequencing as in b.
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Figure 3. Amplification bias of homologous chromosomes
(a) Schematic illustration of the ‘mixed template model’ and the ‘segregated template 

model’ reflecting different allele-level contributions to the same locus-level coverage. 

(Methods, Supplementary Fig. 10). (b) Comparison of the allele coverage predictions 

(‘Pre.’) from 1× sequencing depth with the observed coverage at heterozygous sites (‘Obs.’) 

at 9× sequencing depth in three single glioblastoma libraries. The combined coverage of 

reference and alternate bases (red dots) at 9× sequencing validates the prediction from 1× 

sequencing (dashed curve). The allele coverage (reference or alternate) is then predicted 

from the combined coverage assuming mixed templates (MTM, blue dotted lines) or 

segregated templates (STM, green dotted lines) and compared with the coverage of reference 

(blue triangles) or alternate (green triangles) bases at heterozygous sites. The predictions 

were made from the sequence coverage in disomic Chr. 12 but the agreement with 

observations in different disomic chromosomes demonstrate that amplification bias is 

consistent in all chromosomes.
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Figure 4. Variant detection in single-cell genomes
(a) Census-based variant calling requires that acceptable variants be observed in at least two 

independent single-cell libraries. (b) Estimates of the census-based detection sensitivity for a 

population of independently amplified single-cell libraries all assumed to have similar 

amplification bias as GBM #4 (Supplementary Fig. 11). Optimal detection sensitivity is 

achieved at roughly 0.5× depth-per-library regardless of the sub-clonal fraction or the total 

sequencing depth. (c) Optimal depth-per-library for census-based variant detection in a 

population of independently amplified single-cell libraries assumed to have similar coverage 

bias. The range of the optimal depths is calculated on the basis of the amplification bias 

observed in single glioblastoma libraries in Fig. 2b. For libraries with more bias or for the 

detection of variants with lower clonal fractions, it is optimal to sequence more libraries at 

modest depths (0.1–0.5×). (d) Observed coverage of reference and alternate bases at 

heterozygous SNP sites in disomic Chr. 5 as an estimate of the census-based detection 

sensitivity for clonal variants. A varying number of single glioblastoma nuclei (59, 22 and 2) 

were sequenced to the same total depth (20×) and genotyped at germline heterozygous SNP 

sites. Group (A) included two cells with the best uniformity and group (B) included two 

cells with average uniformity. For either heterozygous coverage or the detection of alternate 

bases, the larger pools offer better sensitivity than the two groups of two cells. (e) 

Comparison between somatic non-synonymous variants detected in different-sized pools of 

single cells sequenced to the same total depths (20×). The truth set (48 variants in total) 

included 43 variants that were detected in both 30× whole-genome and 120× whole-exome 

sequencing of bulk tumour DNA, plus five additional variants detected in bulk whole-

genome and single-cell sequencing. At the same overall sequencing depth, census-based 

detection from a population of cells (59 and 22) offers higher sensitivity and better 

specificity over deep sequencing of two libraries. A larger number of private/false positive 
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mutations are observed when individual samples are sequenced to higher depths, and these 

private calls often arise from sporadic sequencing errors that coincide with amplification 

errors.
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Table 1

Overlap and correlation between allele coverage in independent single-cell libraries by multi-strand 

displacement amplification.

(a) Coverage at heterozygous sites in single glioblastoma nuclei libraries.

Depth Total Reference Alternate Allelic % Hets (est.) Hets (obs.)

(i) 9.2 × 49,457 40,345 40,356 72 28,931 29,336

(ii) 8.1 × 48,745 39,569 39,521 70 27,787 28,149

(iii) 6.6 × 35,765 22,163 21,549 39 8,486 7,950

(iv) 9.0 × 37,507 23,763 23,883 42 10,084 10,144

(b) Overlap between independent single-nuclei libraries (covariance = pAB – pA × pB).

Allele A Allele B Allele A Allele B Allele A Allele B

Cell (i) 40,345 40,356 Cell (i) 39,569 39,521 Cell (i) 40,345 40,356

Cell (ii) 39,569 39,521 Cell (ii) 22,163 21,549 Cell (ii) 23,763 23,883

Overlap 28,912 28,953 Overlap 15,290 15,195 Overlap 17,420 17,521

Covariance 0.010 0.011 Covariance 0.006 0.001 Covariance 0.007 0.007

Total germline heterozygous SNPs in Chr. 5: 56,278 (quality (qual.) ≥500, HapMap).

Allele coverage in each library is evaluated by the number of covered HapMap heterozygous SNP sites in disomic chromosome 5 detected in bulk 
sequencing (combining blood and bulk tumour) by UnifiedGenotyper (Qual. ≥500). (a) In each single-cell library, coverage of A and B alleles is 
almost equal and the expected overlap assuming random A or B allele coverage—the estimated coverage of heterozygous sites—is comparable to 
the observed number of heterozygous sites. (b) The overlap between different single-cell libraries’ coverage of each allele is also close to the 
expected overlap based on random allele coverage.
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