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Abstract

Cartilage tissue engineering is a promising approach to treat osteoarthritis. However, current 

techniques produce tissues too small for clinical relevance. Increasingly close-packed channels 

have helped overcome nutrient transport limitations in centimeter-sized chondrocyte-agarose 

constructs, yet optimal channel spacings to recapitulate native cartilage compositional and 

mechanical properties in constructs this large have not been identified. Transient active TGF-β 

treatment consistently reproduces native compressive Young’s modulus (EY) and 

glycosaminoglycan (GAG) content in constructs, but standard dosages of 10 ng/mL exacerbate 

matrix heterogeneity. To ultimately produce articular layer-sized constructs, we must first optimize 

channel spacing and investigate the role of TGF-β in the utility of channels. We cultured ∅10 mm 

constructs with 0, 12, 19, or 27 nutrient channels (∅1 mm) for 6-8 weeks with 0, 1, or 10 ng/mL 

TGF-β; subsequently we analyzed them mechanically, biochemically, and histologically. 

Constructs with 12 or 19 channels grew the most favorably, reaching EY = 344 ± 113 kPa and 

GAG and collagen contents of 10.8% ± 1.2% and 2.2% ± 0.2% of construct wet weight, 

respectively. Constructs with 27 channels had significantly less deposited GAG than other groups. 

Channeled constructs given 1 or 10 ng/mL TGF-β developed similar properties. Without TGF-β, 

constructs with 0 or 12 channels exhibited properties that were indistinguishable, and lower than 

TGF-β-supplemented constructs. Taken together, these results emphasize that nutrient channels are 

effective only in the presence of TGF-β, and indicate that spacings equivalent to 12 channels in 

∅10 mm constructs can be employed in articular-layersized constructs with reduced dosages of 

TGF-β.
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 Introduction

Cartilage tissue engineering is a promising approach to treat osteoarthritis, a debilitating 

joint disease affecting over 27 million Americans and many more worldwide (Lawrence et 

al., 2008). Current cartilage tissue engineering (CTE) is a promising technique for 

recapitulating cartilage tissue in vitro (Buschmann et al., 1999; Hu and Athanasiou, 2006; 

Langer and Vacanti, 1993; Moutos and Guilak, 2009; Mouw et al., 2005; Paige and Vacanti, 

1995; Talukdar et al., 2011) which has reproduced native compressive Young’s moduli (EY) 

and glycosaminoglycan (GAG) contents in ~∅4 mm chondrocyte-agarose constructs (Byers 

et al., 2008). However, osteoarthritis (OA) is often asymptomatic until cartilage lesions reach 

~∅25 mm (Moisio et al., 2009), and therefore the ability to grow constructs of this size is 

ultimately necessary for clinical relevance of CTE. Previous attempts to culture articular 

layer-sized constructs exhibited matrix heterogeneity due to poor nutrient availability at 

construct interiors (Hung et al., 2003; Hung et al., 2004).

The incorporation of nutrient channels reduces transport distances within constructs (Bian et 

al., 2009; Buckley et al., 2009). We previously demonstrated beneficial effects of placing 3 

(CH3) or 12 (CH12) evenly spaced ∅1 mm channels in ∅10 mm juvenile bovine 

chondrocyteagarose constructs, compared to channel-free controls (CH0) (Bian et al., 2009; 

Cigan et al., 2014; Nims et al., 2015). Computational growth models of constructs with 

increasing numbers of channels up to CH12 (Nims et al., 2015) predicted increased glucose 

availability, a previously shown marker for construct growth (Cigan et al., 2013; Heywood et 

al., 2006; Nims et al., 2014), and concomitant increases in matrix synthesis. Later 

experiments supported these trends, though disparities in tissue growth due to channel 

spacing were greatly under-predicted by glucose availability alone and had no apparent 

plateaus (Nims et al., 2015).

For a given hydrogel size and cell seeding density, increasing the number of channels 

reduces the total cell number, and the benefits of heightened nutrient availability become 

offset. Thus an optimum channel density exists, which has yet to be determined. Recently, 

we demonstrated that conventional supplementation of constructs with 10 ng/mL active 

TGF-β, which permits the achievement of native EY and GAG content by constructs in 

serum-free media (Byers et al., 2008), contributes substantially to matrix heterogeneity 

within constructs (Albro et al., 2016), placing new emphasis on the utility of channels in 

CTE systems requiring TGF-β.

Ultimately, we aim to employ channels and TGF-β to cultivate articular layer-sized 

constructs (~10 cm2) that are clinically relevant for treatment of OA. To achieve this aim, 

our two immediate objectives are to more fully elucidate the interplay between channels and 

TGF-β, and to identify optimal channel spacing for this culture system before scaling up 

further. To these ends, we 1) cultivated CH0 and CH12 constructs without TGF-β and 

contrasted the results with TGF-β-supplemented constructs, and 2) placed greater numbers 

of channels (beyond CH12) in ∅10 mm constructs to explore the upper limits of channel 

effectiveness.
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 Methods

 Custom Mold Fabrication

CH0 and CH12 constructs were cast with previously described PTFE/steel/glass molds 

(Cigan et al., 2014). Closer-set channel configurations were designed such that whole 

numbers of triangularly-packed ∅1 mm channels could be symmetrically contained within 

∅10 × 2.3 mm cylindrical constructs. The resulting channels were spaced 1.83 mm or 1.54 

mm (center-to-center) to yield 19 or 27 channels (CH19 or CH27), respectively. These 

molds (Figure 1) were designed in Solidworks (Dassault Systèmes, Waltham, MA), 

manufactured from polyacrylate material (VeroWhitePlus RGD835) by a 3D printer 

(Objet24, Stratasys, Eden Prairie, MN), dried overnight under vacuum at 50 °F, and 

sterilized in 70% ethanol for 10 minutes prior to use.

 Culture conditions

Juvenile bovine primary articular chondrocytes were cast with nominal seeding density 60 × 

106 cells/mL in 2% w/v agarose as previously described (Cigan et al., 2013). The actual cell 

seeding densities were measured at 60 × 106 and 45 × 106 cells/mL (Studies 1 and 2, 

respectively). Experimental groups are depicted in Figure 2. In Study 1, CH0 and CH12 

constructs (n = 5 per group) were cast (Cigan et al., 2014) and cultured in ITS media (Cigan 

et al., 2013) for 42 days without TGF-β. In Study 2, CH0, CH12, CH19, and CH27 

constructs (Figure 1C-D) were cast and cultured for 56 days (n = 4 per group) with 10 

ng/mL TGF-β3 for the first 14 days; additional CH12 constructs (n = 2) were supplemented 

instead with 1 ng/mL TGF-β3 (CH12 1ng).

 Mechanical, Biochemical, and Histological Analyses

Constructs were tested for EY, bisected, and half of each construct was assessed for GAG 

and collagen contents and cellularity as previously described (Cigan et al., 2014; Farndale et 

al., 1986; Hollander et al., 1994). GAG and collagen were expressed as either percent of 

final wet weight (%/ww, a measure of construct composition) or as percent of initial wet 

weight (%/D0ww, a measure of total matrix deposition). Swelling ratios (SR) were 

calculated as the ratio of final construct weights to construct day 0 weights. Sagittal sections 

of remaining half-constructs were taken so as to intersect channels (when possible) and were 

stained with 0.1% Safranin O (for GAG) or 0.1% Picrosirius Red (for collagen) as 

previously described (Kelly et al., 2006).

 Statistics

Study 1 constructs (CH0 and CH12) were compared by unpaired Student’s t-test for EY, SR, 

and %/ww GAG and collagen. In Study 2, groups receiving 10 ng/mL TGF-β were analyzed 

by one-way ANOVA (α = 0.05) with channel configuration as the independent factor, and 

with EY, SR, and GAG and collagen contents (by %/ww and %/D0ww) as dependent 

variables. Tukey’s HSD post hoc tests were instituted upon determination of significance (p 

< 0.05). In a separate analysis, CH12 1ng and CH12 10ng constructs were compared by t-

test similarly as above.
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 Results

 Effects of channels without TGF-β

In Study 1, CH0 and CH12 constructs receiving no TGF-β had similar EY (100 ± 27 kPa, p = 

0.87; Figure 3A), GAG (5.0 ± 0.7 %/ww, p = 0.23; Figure 3C), and collagen (1.7 

± 0.3 %/ww, p = 0.42; Figure 3D). CH12 constructs had higher SR (1.28 ± 0.07) than CH0 

(1.17 ± 0.04, p < 0.05; Figure 3B).

 Effects of channel configuration

 Morphology and histology—All Study 2 constructs were opaque and resembled 

native cartilage (Figure 2). Channels tended to fill in, in some instances entirely, with dark 

staining for collagen often present at the margins (Figures 2, 4). CH0 constructs cracked at 

their centers and formed fluid-filled cavities (Figure 4A-B), with cracks reaching the surface 

(Figure 2). Distributions of GAG and collagen were uniform in channeled constructs (Figure 

4E-J). Channels influenced SR (p < 0.0001, Figure 5A), with CH27 constructs swelling the 

least (SR: 1.5 ± 0.4, p < 0.0005) and CH0 swelling the most (SR: 3.0 ± 0.1, p < 0.05).

 Functional properties—Channeled constructs receiving 10 ng/mL TGF-β developed 

EY ~340 kPa (Figure 5B); CH0 moduli were much lower (66 ± 57 kPa), but because two 

CH0 constructs could not be reliably mechanically tested due to extreme surface 

irregularities, no statistical effect of channel spacing was shown (p = 0.10). All constructs 

had similar %/ww GAG (10.3 ± 1.2 %/ww, p = 0.26; Figure 5C) and collagen (2.2 

± 0.2 %/ww, p = 0.51; Figure 5E), and %/D0ww collagen (4.7 ± 0.6 %/D0ww, p = 0.08; 

Figure 5F). %/D0ww GAG was influenced by channel spacing (p < 0.0005, Figure 5D), with 

CH27 having the lowest (15.3 ± 3.9 %/D0ww, p < 0.005) and the other constructs being 

similar (25.8 ± 2.8 %/D0ww, p > 0.46).

 Reduced TGF-β

CH12 1ng constructs developed similar morphological and histological features as CH12 

10ng constructs (Figures 2, 4C-F), though they swelled less (Table 1). Lower TGF-β dosage 

yielded EY over twice as high as constructs receiving standard 10 ng/mL dosages, though 

this was not statistically significant (Table 1). CH12 1ng had less %/D0ww GAG than CH12 

10ng, but similar %/ww GAG, %/ww collagen, and %/D0ww collagen (Table 1).

 Discussion

A primary objective of CTE studies is to recapitulate cartilage’s native mechanical 

properties and matrix content. The EY and GAG contents of TGF-β-supplemented, 

channeled constructs in this study (~347-705 kPa and ~10%/ww, respectively) reached or 

exceeded levels typical of native cartilage (250-730 kPa and 1-5%/ww, respectively), while 

collagen contents (~2.4%/ww) were below native (~10%/ww) (Canal Guterl et al., 2010; 

Fetter et al., 2006; Krishnan et al., 2003; Treppo et al., 2000). Together with ∅10 mm 

constructs of our previous experiments (Cigan et al., 2014; Nims et al., 2015), they possess 

the highest EY and GAG reported to date in constructs of their size. In our previous study 

using 10 ng/mL TGF-β, CH12 constructs contained over twice as much GAG and collagen 
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as CH0 constructs (Nims et al., 2015). The present results of Study 1 indicate that when 

TGF-β is withheld, nutrient channels are ineffective, suggesting that TGF-β is critically 

responsible for the beneficial effects of nutrient channels when glucose supplementation is 

plentiful (Nims et al., 2015). However, functional properties of TGF-β-free constructs were 

low compared to constructs receiving 1 or 10 ng/mL TGF-β (Figures 2-3, 5), as 

demonstrated previously in constructs cultured over similar durations as the present study 

(42-56 days) (Byers et al., 2008; Nims et al., 2014), reinforcing the importance of TGF-β 

and therefore of nutrient channels in chondrocyte-agarose constructs.

To investigate denser channel configurations, molds were 3D-printed for CH19 and CH27 

constructs (Figure 1). In contrast to previously-used plastic/metal molds which were labor- 

and time-intensive to fabricate (Cigan et al., 2014), this represents a precise, rapid, and 

economical method of producing various channel configurations. CH27 constructs produced 

substantially less GAG than all other groups (Figure 5D), and though they still contained 

similar levels of deposited collagen as other constructs, much of their overall growth 

occurred at the construct peripheries, outside the channel grid, suggesting that an upper limit 

for packing of channels had been reached, since the beneficial effects of shorter nutrient 

transport distances were outweighed by the lower initial cell population. Though CH12 and 

CH19 constructs developed similar properties, CH19 constructs were more fragile to handle 

and therefore we will employ the spacing used for CH12 constructs in our future 

experiments growing articular layersized constructs.

Constructs without channels performed poorly, albeit for different reasons than observed 

previously (Bian et al., 2009; Cigan et al., 2014; Nims et al., 2015). Compared to our prior 

experiment in which CH0 constructs produced less matrix and swelled to lesser extents 

(Nims et al., 2015), the current CH0 constructs swelled extensively at their peripheries, 

leaving large, fluid-filled cracks at their centers. However, we believe the inadequacies of 

CH0 constructs from both studies stem from poor nutrient availability at construct interiors, 

lending credence to channels as a strategy to enhance tissue growth.

CH12 constructs cultured with lower dosages of TGF-β (1 ng/mL) had similar GAG and 

collagen contents to those with standard dosages of 10 ng/mL (Table 1). Even though the 

lower dose resulted in less overall GAG synthesis (%/D0ww), the similarly reduced swelling 

may have been responsible for higher EY due to a more uniformly cylindrical shape, making 

more complete contact with testing platens. Furthermore, we recently demonstrated that 

quelling construct swelling can reduce damage to deposited collagen fibrils and increase EY 

(Nims et al., 2016). We deem the properties attained by CH12 1ng constructs acceptable, 

particularly in light of our recent findings that 10 ng/mL TGF-β exacerbates matrix 

heterogeneity (Albro et al., 2016), and considering that reducing TGF-β requirements 

tenfold greatly reduces the cost of cultivating large CTE constructs in sufficient media 

volumes (Nims et al., 2015), and will facilitate the culture of even larger-scale constructs.

The cells used in this study were of juvenile bovine origin. Though CTE methods with 

human cells are ultimately necessary to treat OA, juvenile bovine chondrocytes represent a 

highly useful and well-established model system (Freed and Vunjak-Novakovic, 1997; 

Mauck et al., 2000). Further, juvenile chondrocytes have shown promise for clinical 
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applications in allogeneic transplantation (Adkisson et al., 2010). Ongoing and future studies 

by our group seek to translate results in bovine model systems to human chondrocytes 

(Cigan et al., 2016; O'Connell et al., 2015).

Ultimately, we aim to employ nutrient channels to produce high-quality, human articular 

layer-sized CTE constructs with mechanical and biochemical properties reflective of native 

cartilage. The results of the current study expanded on prior results to provide valuable 

insights for cultivating channeled CTE constructs. An optimum channel spacing for 

enhancing construct growth was experimentally determined and a strong relationship was 

demonstrated between TGF-β supplementation and channel effectiveness. Finally, a tenfold 

reduction of conventional TGF-β dosages yielded constructs of similar quality for a fraction 

of the cost. Together with our previous work, these findings will help enable the cultivation 

of CTE tissues sufficiently large to repair entire joints damaged by OA.
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Figure 1. 
A) CAD diagram of CH27 mold, B) 3D-printed CH19 mold, and agarose gels cast for C) 

CH27 and D) CH19 groups.
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Figure 2. 
Experimental groups and their gross morphologies at day 42 or 56.
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Figure 3. 
A) EY, B) Swelling ratios, and C) GAG and D) collagen contents of Study 1 constructs with 

0 or 12 channels cultured without TGF-β.
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Figure 4. 
Histological images of Study 2 constructs, stained for GAG by Safranin O (left) or for 

collagen by Picrosirius Red (right). Sections through open channels had multiple fragments 

whose relative spacings may have been distorted by sectioning; Figure 2 provides a more 

accurate depiction of overall construct morphology. * filled channels, ▼ open channels, † 
cracks formed in constructs.
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Figure 5. 
A) Swelling ratio, B) EY, C) %/ww GAG, D) %/D0ww GAG, E) %/ww collagen, and F) %/

D0ww collagen for Study 2 constructs. † p < 0.05 between CH12 1ng and CH12 10ng, * p < 

0.05 between different channel configurations.
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Table 1

Properties of Study 2 CH12 constructs supplemented with 1 or 10 ng/mL TGF-β.

TGF-β
(ng/mL)

Swelling
ratio

EY
(kPa)

GAG
(%/ww)

GAG
(%/D0ww)

Collagen
(%/ww)

Collagen
(%/D0ww)

1 2.1 ± 0.1 705 ± 257 9.8 ± 0.8 20.1 ± 0.8 2.4 ± 0.2 4.9 ± 0.8

10 2.4 ± 0.1 347 ± 184 10.4 ± 1.4 25.2 ± 2.2 2.3 ± 0.2 4.7 ± 0.6

p 0.03 0.11 0.59 0.04 0.33 0.95
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