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 INTRODUCTION

Intracellular bacterial pathogens cause a wide range of diseases and significantly contribute 

to the morbidity and mortality associated with infectious diseases worldwide (1–16) (Table 

1). These bacteria use several different strategies to replicate in host cells, and influence host 

processes such as membrane trafficking, signaling pathways, metabolism, cell death and 

survival (17–19). Broadly, intracellular bacteria colonize two topologically distinct regions 

of the host cell, and are divided into cytosolic and intravacuolar bacteria according to their 

intracellular lifestyle. However, most intracellular bacterial pathogens have unique 

intracellular life cycles with features strikingly different from one to the other (FIG. 1). It 

should also be noted that intravacuolar pathogens gain access to the host cytosol to some 

extent, and that cytosolic bacteria might spend an underestimated part on their intracellular 

life cycle within membrane-bound compartments (20–22).

Cytosolic bacteria escape from the endocytic pathway and replicate in the host cytosol. The 

host cytosol indeed constitutes an attractive replicative niche for intracellular bacteria 

because this subcellular compartment provides an environment rich in nutrients. The 

cytoplasm also offers the distinct advantage of being separated from the extracellular 

environment, and thereby, may constitute an ideal hideout where pathogens can evade 

extracellular immune surveillance and killing.

Alternatively, intracellular bacterial pathogens reside and replicate within the host 

endomembrane system, which is comprised of an intricate network of membrane-bound 

organelles and vesicular trafficking intermediates. The replication of intracellular bacteria in 

these vesicular compartments is accompanied by concomitant vacuolar membrane 

expansion, which is driven by adaptive strategies from pathogens. Even though the vacuolar 

intracellular lifestyle requires complex host-pathogen interactions in order to maintain the 

unique membrane-bound replication niche, bacterial pathogens benefit from this lifestyle 

that provides protection from the host cytosolic innate immune defenses.

Most intracellular bacteria replicate in myeloid cells, especially in macrophages (2, 23). 

Macrophages are plastic cells characterized by their phenotypic diversity, and are involved in 
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pathogen detection, antigen presentation, cytokine production, tissue reparation, and, more 

notoriously, microbial killing (24). These cells indeed possess an extensive antimicrobial 

arsenal, and are endowed with the ability to ingest and destroy microorganisms (25). The 

observation that most pathogenic bacteria preferentially replicate in macrophages thus 

constitutes a paradox (2, 17).

This chapter focuses on bacterial pathogens that have the ability to replicate in macrophages, 

and aims to provide an overview of the strategies deployed by these bacteria to grow 

intracellularly. A brief description of the defense mechanisms used by macrophages against 

these intracellular bacteria is provided, and the current knowledge about the pathogenic 

strategies specifically used by cytosolic and intravacuolar bacteria are reviewed.

 DEFENSE MECHANISMS AGAINST INTRACELLULAR BACTERIA

 Detection of intracellular bacterial infection by macrophages

Macrophages express a wide range of receptors that trigger innate immune responses and 

antimicrobial defenses upon bacterial infections (23, 26). These sensors are referred as to 

pattern recognition receptors (PRRs). PRRs recognized conserved microbial molecules 

referred to as pathogen-associated molecular patterns (PAMPs) as well as damage-associated 

molecular patterns (DAMPs) released in response to stress and tissue damage. There are two 

main classes of PRRs: the membrane-bound receptors (e.g. the Toll-like receptors (TLR)) 

and the cytosolic receptors (e.g. the NOD-like receptors (NLRs)).

TLRs are localized on the plasma membrane (e.g. TLR4) or on endosomal membrane 

compartments (e.g. TLR9), and recognize PAMPs such as lipoproteins, lipopolysaccharide 

(LPS), flagellin, or nucleic acids (27). Upon ligand recognition, TLRs activate signaling 

pathways and regulate downstream cytokine expression by interacting with adaptor proteins 

such as MyD88 (myeloid differentiation primary-response protein 88) and TRIF (TIR-

domain-containing adaptor protein inducing interferon-β) (26).

In the cytosol, the NLR proteins NOD1 (nucleotide-binding oligomerization domain-

containing protein 1) and NOD2 are triggered by the presence of peptidoglycan fragments, 

and activate NF-κB (28). Interestingly, it was shown that the activation of the NOD1 

signaling pathway by peptidoglycan fragments is dependent on the small Rho GTPase 

RAC1 and, more broadly, that the manipulation of small Rho GTPases by pathogens is a 

process that can be detected by the host in a NOD1-dependent manner (29). Recognition of 

PAMPs or DAMPs by other cytosolic NLRs, such as NLRC4 (NLR family, CARD domain-

containing 4), NLRP1 (NLR family, PYRIN domain-containing 1) and NLRP3, leads to the 

assembly of cytosolic multiprotein oligomers termed inflammasomes. In turn, 

inflammasomes activate caspase-1, induce the extracellular release of IL-1β and IL-18 and 

trigger a type of inflammatory cell death called pyroptosis (30, 31). The PYHIN member 

protein AIM2 (absent in melanoma 2) also activates an inflammasome in response to 

cytosolic DNA (32, 33) released from intracellular bacteria (34–39).

Besides AIM2, there are other PRRs that detect the presence of foreign nucleic acids in the 

cytosol, and trigger distinct immune responses (26). STING (stimulator of IFN genes) is 
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important in the cytosolic response to nucleic acids (40, 41) such as DNA (42) and cyclic 

dinucleotides (CDNs) (43), and triggers a type I IFN response upon bacterial infection. 

STING directly binds to cyclic dinucleotides (CDNs), but not to DNA, and is then both a 

direct sensor and an adaptor molecule (44). The host cytosolic DNA-sensor cGAMP 

synthase (cGAS) is able to synthesis cyclic GMP-AMP (cGAMP), which is an endogenous 

secondary messenger that binds and activates STING (45, 46). Accordingly, cGAS is 

involved in the secretion of IFN-β following the detection of bacterial DNA in the host 

cytosol (47–49). It is noteworthy that other cytosolic PRRs also contribute to nucleic acids 

sensing and induce a type I IFN response including DDX41 (50, 51) and IFI16 (52).

Besides antiviral immune response, the role of type I IFN during bacterial infection is 

enigmatic. Many intracellular bacteria induce type I IFNs during infection, but, rather than 

being protective for the host, type I IFNs enhance the host susceptibility to intracellular 

pathogens such as Listeria monocytogenes (53, 54), Salmonella Typhimurium (55), 

Chlamydia trachomatis (56, 57) and Mycobacterium tuberculosis (58–61). The mechanisms 

by which type I IFN signaling increases host susceptibility to bacterial infection is an active 

area of study and is not well defined.

 The phagolysosomal pathway is the front line defense against intracellular bacterial 
pathogens

Macrophages are proficient in the internalization and destruction of bacteria, and in 

promoting innate immune responses (25). Following phagocytosis, a series of coordinated 

fusion and fission events with specific compartments of the endocytic pathway ultimately 

leads to the generation of a phagolysosome. The phagolysosome possesses potent 

microbicidal features, and has a lumen that constitutes a highly acidic, oxidative, and 

degradative environment.

The acidification of the phagosome lumen is dependent on proton pumping by the V-

ATPase, which is required for the optimal activity of lysosomal hydrolytic enzymes and 

interferes with bacterial growth by impairing the metabolism of some bacteria (25, 62). The 

generation of ROS (reactive oxygen species) and RNS (reactive nitrogen species) by the 

NOX2 NADPH oxidase (63, 64) and the inducible NOS2 nitric oxide synthase (65), 

respectively, are also important antimicrobial mechanisms of the phagolysosomal pathway. 

Limitation in the availability of essential nutrients may also impact the growth of bacteria in 

the phagosome. For instance, NRAMP1 (natural resistance-associated macrophage protein 

1) interferes with housekeeping and antioxidative functions of some bacteria by extruding 

Fe2+, Zn2+ and Mn2+ from the phagosomal lumen (66). Molecules that directly compromise 

the integrity of bacteria such as defensins, cathelicidins, lyzozyme, endopeptidases, 

exopeptidases, as well as hydrolases targeting carbohydrates and lipids are also delivered to 

the phagosome lumen (25). The sum of these antimicrobial mechanisms defines the harsh 

environment that culminate in the phagolysosome, an organelle that intracellular bacteria 

need to avoid or adapt to in order to survive and proliferate.
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 Bacterial autophagy is a cell-autonomous defense mechanism

Macroautophagy (hereafter autophagy) involves the formation of a double-membrane 

vesicle (i.e., the autophagosome) that encloses and targets intracellular components for 

lysosomal degradation. During starvation, autophagy non-selectively targets parts of the 

cytoplasm in an attempt to maintain cellular homeostasis. Autophagy also selectively targets 

organelles (e.g. damaged mitochondria) and intracellular microbes. As such, autophagy 

contributes to innate immunity by restricting the intracellular growth of pathogens (67). 

Over 30 autophagy-related (ATG) proteins are involved in orchestrating autophagosome 

formation (68). However, some of these proteins have functions outside of the autophagy 

pathway and may affect host-pathogen interactions in an autophagy-independent manner 

(67, 69).

Initiation of autophagy is controlled by the availability of cellular nutrients and energy (70, 

71), or by recognition of specific cargo (72). During autophagy, the production of 

phosphatidylinositol-3-phosphate (PI3P) is involved in the recruitment of ubiquitin-like 

conjugation systems that catalyze covalent binding of LC3 proteins to the isolation 

membrane (67, 72, 73). This isolation membrane is then recruited to and engulfs the 

cytosolic cargo. The resulting autophagosome matures into an autolysosome, in which the 

intraluminal content is digested (73). In the case of selective autophagy, cargo-specific 

receptors (74–76) and adaptor proteins containing LC3-interacting region (LIR) recruit the 

LC3-decorated autophagosome to the cargo (77). Ubiquitylation and ubiquitin-binding 

protein adaptors such as NBR1, NDP52, Optineurin and p62 are involved in the specific 

targeting of intracellular bacteria by autophagy (78–83).

Several alternative or non-canonical forms of autophagy do not require some of the core 

autophagy machinery components (84–86). Alternative autophagy mechanisms also play a 

role in cell-autonomous defense against intracellular microorganisms as exemplified for 

Toxoplasma gondii (87) and Staphylococcus aureus (88). In addition, under some 

circumstances, the autophagy machinery participates in a degradative process referred as to 

LC3-associated phagocytosis (LAP) (89–91). In contrast to canonical autophagy, LC3 is 

conjugated directly to the single-membrane phagosome and the ULK1 complex is 

dispensable during LAP (90, 91). In addition, the engagement of TLRs (89) and the NOX2-

dependent production of ROS are involved in the formation of LC3-associated phagosomes 

(92). By promoting phagosome acidification and maturation, LAP restricts the intracellular 

growth of bacterial pathogens such as S. Typhimurium (92) and Burkholderia pseudomallei 
(93, 94).

 Programmed cell death is a host defense mechanism that destroys the replication niche 
of intracellular bacteria

Programmed cell death plays an important role in innate immunity and is an effective way to 

eliminate infected cells and control infection. There are three major cell death pathways: 

apoptosis, programmed necrosis, and pyroptosis. These cell death pathways all contribute to 

the host defense against microbial infections (95, 96).
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Apoptosis is a non-inflammatory form of cell death triggered by extrinsic (receptor-

mediated) and intrinsic (mitochondria-mediated) pathways. Apoptosis is characterized by 

membrane blebbing, cell shrinkage, DNA fragmentation, increased mitochondrial 

permeability, and the eventual cell breakdown and release of apoptotic bodies (95, 96). Both 

external and internal stimuli trigger apoptosis through the activation of cysteine proteases 

termed caspases, which target intracellular components to induce cell death. Mitochondria 

are central in modulating host cell death and survival pathways, especially apoptosis (97). 

As such, mitochondria-dependent cell death pathways are important in host-bacteria 

interactions (95, 97).

Although necrosis was traditionally regarded as an accidental and uncontrolled cell death, it 

is now appreciated that some forms of necrosis, referred as to necroptosis, are genetically 

controlled (96, 98). Necrosis is a caspase-independent cell death pathway characterized by 

organelle damage, cell swelling, rupture of the plasma membrane, and release of the cellular 

content. Necrotic cell death is induced upon bacterial infection and physical damage, and is 

triggered by ROS, lysosomal permeabilization, calpain activation, and depletion of ATP. 

More specifically, necroptosis is initiated by the activation of RIP1 (receptor-interacting 

protein 1) and RIP3 kinases that activate downstream targets by phosphorylation and induce 

cell death, especially when caspase-8 is compromised (99, 100). Many proteins involved in 

the regulation of apoptosis also regulate necroptosis, highlighting the importance of 

crosstalk between these cell death pathways (101).

Pyroptosis is a non-apoptotic cell death pathway induced following inflammasome mediated 

caspase-1 activation. Pyroptosis is characterized by DNA fragmentation, loss of membrane 

integrity, and release of the cell content. In addition, pyroptosis is associated with the 

secretion of the pro-inflammatory cytokines IL-1β and IL-18 (30, 31). The induction of 

pyroptosis decreases the replication of intracellular bacteria within host cells and exposes 

them to the extracellular immune response (102).

Although some microbes block or delay host cell death to promote their intracellular 

replication at early times of infection, escape and dissemination may eventually require host 

cell lysis. In some cases, cell death pathways are co-opted by pathogens as a strategy of 

pathogenesis (103, 104). Furthermore, by inducing host cell death, bacterial pathogens can 

eliminate key immune cells and, consequently, evade host defenses (95).

 INFECTION OF MACROPHAGES BY INTRAVACUOLAR BACTERIA

 Remodeling host pathways through specialized secretion systems

During their intracellular life cycle, intravacuolar bacteria generally reside in a remodeled 

membrane-bound compartment. In order to successfully survive and replicate in this 

“sealed” environment, one of the main challenges encountered by intravacuolar pathogens is 

to exert actions beyond the vacuolar membrane. This is mainly accomplished using systems 

that secrete effectors that actively modify the host physiology to create an environment 

permissive to bacterial proliferation.
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Protein secretion plays a central role in modulating the interactions of bacteria with their 

environment. This process is more complex for intravacuolar bacteria because secretion 

requires translocation across both the bacterial surface (plasma membrane and cell wall) and 

the host (plasma/vacuole) membrane. Four accessory secretion systems are known to play a 

role in establishing intravacuolar bacterial replication niches by delivering effector proteins 

into the host cytosol and by modulating a large variety of host cell functions, including 

vesicular trafficking and the host immune responses (Table 1).

The type III secretion system (T3SS), also called an injectisome, is found in Gram-negative 

bacteria that interact with both plant and animal hosts. The T3SS appears to have a common 

evolutionary origin with the flagellum (105). It is comprised of up to 25 proteins that form a 

series of rings that span the bacterial inner and outer membranes, and connect the bacterial 

and the host cytosol with a hollow filament (106). There are two T3SSs present in 

Salmonella enterica, each encoded in distinct genomic islands known as Salmonella 
pathogenicity island 1 (SPI-1) and SPI-2. SPI-1 confers the ability to invade nonphagocytic 

cells while SPI-2 allows Salmonella to survive within mammalian cells and spread to 

internal organs (105). In contrast, Chlamydia species possess one T3SS, which is active both 

at early and late phase of infection (107). Several putative Chlamydia T3SS substrates were 

identified using Salmonella (108), Shigella (109, 110), or Yersinia (111) as genetically 

tractable heterologous hosts.

Type IV secretion systems (T4SS) are extensively used by intravacuolar Gram-negative 

bacteria to colonize host cells. In comparison to other secretion systems, T4SS is unique in 

its ability to transport nucleic acid in addition to proteins into plant and animal cells, and is 

evolutionarily related to bacterial conjugation systems (112, 113). The T4SS can be divided 

into the canonical VirB (type IVA) and Dot/Icm (type IVB) secretion systems.

Both systems are multi-protein complexes that can span the bacterial surface and the host 

membrane. Essential roles for T4SS in pathogenesis are established in several important 

intravacuolar bacterial pathogens including Brucella suis (VirB) (114), Legionella 
pneumophila (Dot/Icm) (115, 116) and Coxiella burnetii (Dot/Icm) (117). In addition, other 

intravacuolar bacterial pathogens, including Anaplasma phagocytophilum and Ehrlichia 
chaffeensis, may also encode functional type IVA secretion systems that have a role in 

pathogenesis, as their putative T4SS genes were up-regulated during infection and several 

secreted effectors have been identified (118–120).

Type VI secretion systems (T6SS) are widely distributed in Gram-negative bacteria. The 

molecular mechanism by which T6SSs translocate effector proteins into target cells is 

similar to that of bacteriophage-like injection devices. Based on their function, T6SSs can be 

classified into two categories: eukaryotic cell targeting T6SS and competitor bacterial cell 

targeting T6SS (121, 122). For intravacuolar bacteria, the function of cell targeting is more 

relevant to their intracellular life cycle. Salmonella spp. harbour five phylogenetically 

distinct T6SSs, which are differentially distributed among serotypes (123). Two of them, 

SPI-6 and SPI-19, contribute to the pathogenesis of serotypes S. Typhimurium and S. 
Gallinarum in mouse and chicken macrophages, respectively (124, 125).
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Mycobacteria are unique among intracellular bacteria due to the composition of their cell 

wall, which is heavily modified by lipids and termed the mycomembrane. Perhaps as a 

consequence of this special structure that forms an outer membrane bilayer (126), these 

species use a family of specialized secretion system named the type VII section systems 

(T7SS) (127). Putative T7SSs have been identified in some other Gram-positive organisms 

and are defined by the presence of two conserved elements, a membrane-bound ATPase 

EccC and a small secretion substrate EsxB (128, 129). M. tuberculosis encodes up to five 

T7SSs (ESX-1 to ESX-5), that do not functionally complement each other. The importance 

of these secretion systems is highlighted by the fact that loss of the ESX-1 T7SS in M. 
tuberculosis is the most important genetic difference between virulent strains and the 

attenuated vaccine strain BCG (Bacillus Calmette–Guérin) (130, 131). The detailed structure 

and function of T7SS are an active area of investigation (132). A current model suggests that 

the M. tuberculosis-containing vacuole is permeabilized by the T7SS effectors ESAT-6 and 

CFP-10, which allows bacterial products to access the cytosol (61, 127, 133).

 Avoidance and adaptation to the phagolysosomal pathway

The majority of intravacuolar bacterial pathogens have mechanisms to avoid being trafficked 

to the terminal phagolysosome and generate specialized remodelled membrane-bounded 

compartments. Although the common function of these vacuolar compartments is to support 

the intracellular replication of these bacteria, the specific features of these compartments are 

determined in a pathogen-specific fashion. As such, intravacuolar bacteria exploit several 

strategies to generate their specialized vacuoles, leading to hybrid organelles that are 

biochemically and morphologically distinct from typical compartments found in uninfected 

cells (Figure 1).

Some intravacuolar bacteria actively evade the phagolysosomal pathway. Following entry, 

vacuoles containing Brucellae, Chlamydiae, and Legionellae rapidly diverge from the 

phagolysosomal pathway and fail to acquire late-phagosomal/lysosomal proteins (134). Both 

Legionella- and Brucella-containing vacuoles are ER-like membrane compartments and are 

associated with ribosomes (135, 136). Bacterial secretion systems are required for this 

divergent trafficking process (115, 116, 137). For example, L. pneumophila type IV effector 

proteins hijack the early secretory pathway and regulate vesicle traffic between the Golgi 

and the ER by targeting the host small GTPases Arf1 and Rab1, respectively (138–143). C. 
trachomatis also resides within a vacuole that is segregated from the phagolysosomal 

pathway. The Chlamydia-containing vacuole fuses with Golgi-derived vesicles and traffics 

to the Golgi area (144). The molecular mechanism of this process is still largely unknown, 

but the host GTPase Dynamin and Golgin-84 are involved in Chlamydia-mediated Golgi 

fragmentation, which is required for generating the Chlamydia replicative vacuoles (145, 

146).

Mycobacteria and Salmonella exploit another strategy to avoid terminal phagolysosome 

formation and block phagosome maturation. Mycobacterial vacuoles are decorated with the 

early-endosomal marker Rab5 and exclude the late-endosomal GTPase Rab7, indicating an 

early arrest of the vacuole maturation (147). The type VII effector, EsxH, interacts with the 

host endosomal-sorting complex required for transport (ESCRT) and disrupts phagosome 
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maturation (148). Moreover, the secreted M. tuberculosis protein tyrosine phosphatase 

(PtpA) prevents acidification of Mycobacterial vacuoles by binding and excluding the V-

ATPase machinery from the phagosome membrane (149). Interestingly, Legionella also 

targets and inhibits the host V-ATPase using the type IV effector SidK (150). These suggest 

that targeting the vacuolar proton pump is a common strategy utilized by intravacuolar 

bacteria for the biogenesis of their specialized vacuoles.

In addition, the active exclusion of PI3P from the M. tuberculosis-containing vacuole (151, 

152) represents another strategy of maturation arrest by removing the docking site for the 

Rab5 effectors EEA1 and Hrs (153–155). Conversely, S. Typhimurium increases PI3P levels 

on the vacuole to stimulate biogenesis of a unique compartment with properties of late 

endosomes, and characterized by transient acquisition of EEA1, gradual lumen acidification 

and acquisition of some lysosomal glycoproteins (156). However, unlike typical 

phagolysosomes, Salmonella-containing vacuoles are depleted of lysosomal degradation 

enzymes (157).

C. burnetii is a unique intravacuolar bacterium that does not follow this paradigm. C. 
burnetii resides in a vacuole that resembles a terminal phagolysosome and contains a variety 

of antimicrobial agents (158). However, instead of passively replicating in its vacuole, C. 
burnetii actively remodels it. For example, Coxiella is able to recruit the autophagy marker 

LC3 to its residing vacuole early after internalization and generate a specialized spacious 

vacuole in a T4SS-dependent manner (158–160).

 Maintenance of vacuole integrity

The specialized vacuolar environment provides an ideal hideout from recognition by 

cytosolic innate immune sensors. Several studies suggest that damage to the bacterial 

vacuole membrane exposes the intravacuolar bacteria to the host cytosol, and compromises 

the ability of these bacteria to colonize host cells (161–166). In macrophages and epithelial 

cells, cytosolic galectins are able to bind β-galactoside-associated membrane remnants 

derived from ruptured vacuoles. This leads to the recruitment of autophagy adaptor proteins 

and targeting by the autophagy machinery (161, 162). In addition, the presence of bacterial 

components in the host cytosol may activate immune responses and trigger cell death (167). 

Therefore, maintenance of the integrity of bacteria-containing vacuoles is essential for 

intravacuolar bacterial pathogens. Accordingly, recent studies suggest that intravacuolar 

bacteria target multiple host components and signaling pathways to maintain the stability of 

their residing vacuoles (164, 165).

The formation of specialized bacteria-containing vacuoles largely depends on vesicle 

trafficking, which relies on the host cytoskeleton network. Thus, it is not surprising that 

intravacuolar bacterial pathogens exploit effector proteins to remodel the cytoskeleton 

network. Interestingly, in addition to their role as a physical and structural support for 

trafficking, the cytoskeleton and cytoskeletal motors also contribute to vacuole stability as 

exemplified by Salmonella and Chlamydia-containing vacuoles (168, 169). Interestingly, 

loss of vacuole integrity is observed during infection with a Chlamydia mutant lacking the 

bacterial protease CPAF, which digests intermediate filament proteins to form a filamentous 

structure around its containing vacuoles (170). Similarly, during Salmonella infection, the 
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type III effector SifA regulates the interaction between cytoskeletal motors and the bacteria-

containing vacuole (171, 172), and deletion of SifA leads to loss of vacuole integrity (165, 

172, 173).

The formation of specialized bacteria-containing vacuoles is a highly ordered and tightly 

controlled process that requires the active modifications of the vacuole. The majority of 

these modifications involve the regulation of small GTPases by secreted bacterial effectors. 

Remarkably, in addition to their essential role in vacuole development, the timely acquisition 

of these small GTPases also contributes to vacuole stability (164). For example, one 

Legionella type IV effector, LidA, is involved in recruiting Rab1 and contributes to vacuole 

integrity (174). Comparatively, during S. Typhimurium infection, perturbation of GTPase 

activity by overexpressing dominant-positive Rab5 or dominant-negative Rab7 causes 

vacuole rupture and the release of bacteria into the cytosol (175).

A variety of bacterial pathogens affect the stability of the residing vacuoles by subverting 

their lipid composition for their own benefit. For example, certain phosphatidylinositol 

phosphates (PIPs) species can be either enriched or excluded from bacteria-containing 

vacuoles in order to regulate the binding of host signaling molecules and bacterial effectors 

(176). Nevertheless, instead of just providing a docking site for the recruitment of 

molecules, some vacuolar membrane lipids may play additional roles in vacuole stability. C. 
trachomatis recruits host sphingomyelin to its vacuole by incorporating lipid-droplets (111). 

Although the precise role of this molecule in vacuole stability is not yet clear, host 

sphingomyelin acquisition is absolutely required for vacuole expansion and prevents 

Chlamydia vacuole fragmentation (177, 178). S. Typhimurium and L. pneumophila are able 

to reduce cholesterol levels from their specialized vacuoles by secreting phospholipases SseJ 

and PlaA (179, 180), respectively. This process is thought to be beneficial to these 

intravacuolar bacteria by increasing membrane fluidity and inhibiting lipid rafts formation. 

However, exclusion of cholesterol from the vacuolar surface adversely affects its stability. S. 
Typhimurium and L. pneumophila use additional secreted effectors, SifA and SdhA, to 

counter this defect (164, 181, 182).

 Autophagy is a double-edged sword for intravacuolar bacteria

Although vacuole integrity is critical for intravacuolar bacteria, interacting with the host 

cytosol requires some level of vacuole permeabilization. However, membrane-

permeabilization leads to targeting by the selective autophagy pathway, as exemplified by M. 
tuberculosis (183). Exposure of M. tuberculosis DNA following vacuole permeabilization 

triggers ubiquitin-mediated autophagy through the cGAS/STING/TANK-binding kinase 1 

(TBK1) pathway (49, 183). Similarly, S. Typhimurium accidently exposed to the cytosol are 

targeted by autophagy, as shown by the recruitment of LC3 and other ATG proteins to the 

bacteria. Adaptor proteins, such as NDP52 and optineurin, as a well as TBK1 have a role in 

recognizing ubiquitylated Salmonella in the cytosol (82, 184).

In order to survive and propagate in the face of host cell-autonomous defense mechanisms, 

intravacuolar bacteria such as M. tuberculosis and L. pneumophila antagonize the host 

autophagy machinery. The M. tuberculosis secreted redox regulator Eis inhibits autophagy 

by indirectly blocking JUN N-terminal kinase (JNK) activation (185). The suppression of 
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the PI3-kinase VPS34 (151) and exclusion of PI3P from M. tuberculosis-containing 

vacuoles (152) could be another active strategy to avoid autophagy, as PI3P is required for 

autophagy initiation. In addition, a recent study suggests that M. tuberculosis inhibits 

autophagy flux in a T7SS-dependent manner, which suggests the existence of an 

uncharacterized autophagy modulator (186). Remarkably, the L. pneumophila effector RavZ 

directly and irreversibly uncouples ATG8 proteins attached to phosphatidylethanolamine on 

pre-autophagosomal structures (187).

In contrast, some bacteria, such as C. burnetii (159, 188, 189), B. abortus (190), and A. 
phagocytophilum (191, 192), subvert the autophagic pathway for the formation of their 

specialized vacuole. For example, pharmacological inhibition of autophagy flux arrests the 

biogenesis of Coxiella and Anaplasma-containing vacuoles, and impairs their growth in 

macrophages (189, 192). Both C. burnetii and A. phagocytophilum vacuoles are decorated 

with the autophagic protein beclin-1 (BECN1) (191, 193), a protein that forms a complex 

with VPS34 and is required for the initial steps of the autophagy pathway. Interestingly, C. 
burnetii infection also induces recruitment of the anti-apoptotic protein B cell lymphoma 2 

(BCL-2) to its vacuole surface, and the interaction between BECN1 and BCL-2 inhibits host 

apoptosis (193). Therefore, some intravacuolar bacteria use the autophagy pathway to 

promote intracellular replication and to block apoptosis (194). It is also possible that the 

autophagy pathway plays an important role in providing nutrients to the specialized vacuoles 

of these pathogens (67, 194). One C. burnetii T4SS effector protein, Cig2, is involved in 

recruiting autophagosomes to Coxiella vacuoles (159). However, the detailed mechanism of 

how autophagosomes are recruited and incorporated into vacuoles still needs to be 

elucidated, although bacterial secretion systems and effectors are likely to play a pivotal role 

in these processes (67).

 Manipulation of host cell death by intravacuolar bacteria

Even though intravacuolar bacteria reside in an environment that prevents host cytosolic 

sensing, the subversion of the host processes required to generate their specialized vacuoles 

can pose stresses to eukaryotic cells and trigger host cell death. Hence, intravacuolar 

bacterial pathogens have developed a myriad of strategies to modulate host cell death 

pathways (96, 195).

Mitochondria play a central role in modulating host cell death and survival. As such, many 

intravacuolar bacteria subvert mitochondria-dependent cell death pathways. L. pneumophila 
and C. burnetii secrete the type IV effector proteins SidF and AnkG into the host cytosol and 

target the proapoptotic factors BNIP3 and P32, respectively, thereby inhibiting 

mitochondria-mediated apoptotic signaling (196, 197). Similarly, C. trachomatis inhibits 

apoptosis by secreting the protease CPAF which degrades pro-apoptotic BH3-only proteins, 

including BIM, PUMA, and BAD (198, 199).

In addition to dampening pro-apoptotic pathways, activation of pro-survival pathways is 

another mechanism utilized by intravacuolar bacteria to prevent host cell death. The master 

regulators of the innate immune response NF-κB promotes cell survival, and the subversion 

of the NF-κB pathway also represents a common bacterial strategy to modulate host cell 

death. For example, the L. pneumophila effector LegK1 phosphorylates and inactivates the 
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NF-κB inhibitor IκBα and p100, thus enhancing the activation of the NF-κB pro-survival 

pathway (200). Some intravacuolar bacteria alter the activity of host kinases that are linked 

to NF-κB activation. One S. Typhimurium effector, AvrA, has acetyltransferase activity that 

targets MAPKKs and strongly inhibits the JNK signaling pathway (201), which helps 

dampen inflammatory and cell death responses. Moreover, although the molecular 

mechanisms are still largely unknown, Akt activation and enhancement of cell survival have 

been observed during C. trachomatis (202), C. burnetii (203), and S. Typhimurium (204) 

infections.

Although intravacuolar bacteria are separated from most cytosolic immune sensing 

mechanisms, their specialized secretion systems poke holes in host membranes and can be 

detected by the host cell. It has been shown that the basal body rod component of the T3SS 

SPI-1 apparatus of S. Typhimurium (PrgJ) is detected by NLRC4 and triggers 

inflammasome activation. However, SsaI, the equivalent basal body rod component of the 

T3SS SPI-2, is not detected by NLRC4. This constitutes an evasion strategy required for S. 
Typhimurium virulence (205).

 INFECTION OF MACROPHAGES BY CYTOSOLIC BACTERIA

 General strategies deployed by cytosolic bacteria to infect macrophages

During their intracellular life cycle, B. pseudomallei, Francisella tularensis, and L. 
monocytogenes escape from a phagosome, replicate in the macrophage cytosol, and 

manipulate host immune responses (18). In contrast to F. tularensis, both B. pseudomallei 
and L. monocytogenes exploit the host actin polymerization machinery to move within the 

cytosol and spread from cell-to-cell (206). The intracellular life cycles of B. pseudomallei 
and F. tularensis also have unique features such as the formation of multinucleated giant 

cells (MNGC) (207, 208) and the translocation to a membrane-bound compartment 

subsequent to replication in the host cytosol (22), respectively. It is noteworthy that other 

cytosolic bacterial pathogens such as Mycobacterium marinum, Rickettsia spp. and Shigella 
flexneri are also known to infect macrophages (18). However, macrophages are not the 

primary cells targeted during Rickettsial infections (209), and Shigella spp. induce 

macrophage cell death instead of replicating intracellularly as a strategy of pathogenesis 

(210–212).

Cytosolic bacteria secrete virulence factors within the host cells in order to establish 

infection. In L. monocytogenes, the virulence factors involved in phagosomal escape and 

cell-to-cell spread are well characterized, and are mostly encoded on the Listeria 
pathogenicity island-1 (LIPI-1) (213, 214). L. monocytogenes mainly relies on the canonical 

Sec translocation system to secrete virulence factors (215, 216) while the translocation of 

effectors in B. pseudomallei and F. tularensis depends on specialized secretion systems. In 

B. pseudomallei, a genetic locus with similarity to the Salmonella and Shigella type III 

secretion system (T3SS) is required for replication in host cells (217, 218). A type VI 

secretion system (T6SS) also contributes to the cell-to-cell spread ability and the virulence 

of B. pseudomallei, but the effectors secreted by this system are not well characterized (219, 

220). Interestingly, it was recently shown that the T6SS effector VrgG5 mediates host cell 

fusion (221, 222), which is suggested to be required for intercellular spread (223). Similarly, 
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several virulence determinants involved in the intracellular life cycle of F. tularensis are 

encoded on the Francisella pathogenicity island (FPI) (224, 225). A number of the genes 

within this island share sequence homology to the Type VI secretion system gene clusters 

found in Vibrio cholerae and Pseudomonas aeruginosa (226, 227), and the products of at 

least two of these genes are translocated in the host cytosol during infection (228).

 Mechanisms used by cytosolic bacteria to escape phagosomes

The ability to escape from vacuoles is crucial to cytosolic pathogens. Following 

internalization, cytosolic bacteria escape from a phagosomal compartment in as early as 5 

minutes, which may reflect a need to escape the vacuole before fusion with the lysosome 

(18). Cytosolic bacteria that exploit actin-based motility to spread from cell-to-cell also 

encounter a double-membrane vesicle referred as to the secondary vacuole. Escape from the 

secondary vacuole seems to process in a similar manner to the escape from the primary 

vacuole, at least for L. monocytogenes and S. flexneri (18).

L. monocytogenes avoids fusion with lysosomes, and escapes an acidified compartment with 

features of a late endosome (229, 230). More specifically, L. monocytogenes escapes the 

phagosome using the cholesterol-dependent cytolysin (CDC) Listeriolysin O (LLO) (231), 

which forms pores in vacuoles, blocks the trafficking of the bacteria within the endosomal 

pathway (229, 230), and ultimately promotes membrane disruption (232–234). LLO activity 

is compartmentalized by its acidic pH optimun, which prevents damage to the host cell 

(235). In addition, the reduction of LLO by GILT (γ-Interferon-inducible lysosomal thiol 

reductase) (236) and the CFTR (Cystic fibrosis transmembrane conductance regulator)-

dependent increase in chloride concentration (237) potentiate the activity of LLO within the 

phagosome. The escape of L. monocytogenes from vacuoles is also facilitated by a 

phosphatidylinositol-specific phospholipase C (PlcA) and a broad-range phospholipase C 

(PlcB) (238). Whereas Goldfine and colleagues showed that PlcA promotes phagosomal 

escape by activating the host PKCβ (239, 240), the involvement of PlcB in this process is 

attributed to a wide-spectrum activity again phospholipids and to an ability to mediate 

membrane fusion (241, 242). The interplay between LLO and the phospholipases C (PLCs) 

is not completely understood, but it is possible that these Listerial factors synergistically 

destabilize the membrane to promote optimal escape from the phagosome. It has also been 

suggested that PLCs translocate into the host cytosol through LLO pores (243).

The detailed molecular mechanisms involved in phagosomal escape are mostly 

uncharacterized in most other cytosolic bacterial pathogens. B. pseudomallei mutants 

lacking components of the T3SS and, more specifically, the T3SS effector BopA have a 

defect in the escape from the phagosome (93, 217). In F. tularensis, the secretion system 

encoded by the FPI is required for phagosomal escape, but the specific set of virulence 

factors involved is not well characterized (225, 228, 244–246). Interestingly, the Shigella 
effectors IpaB and IpaC, like LLO, form a pore complex that binds cholesterol and inserts 

into cell membranes (247, 248), and Rickettsia spp. produces a haemolysin and 

phospholipases that may play a role in escape from vacuoles (249–252).
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 Sensing of the vacuole to cytosol transition by cytosolic bacteria

Cytosolic bacteria are likely to exploit distinct sets of virulence factors at different stages of 

their intracellular life cycle. The sensing of the environmental changes encountered 

throughout their passage within the host cell is likely to be critical for the tight regulation of 

their virulence factors. However, although it is established that cytosolic bacteria induce the 

expression of specific sets of genes during intracellular infections (253–256), less is known 

about their spatial and temporal regulation within the intracellular niche. The intricacies of 

virulence factors regulation is exemplified by the on/off expression of the S. flexneri T3SS 

apparatus during cell infection, which is specifically activated during bacterial entry (257).

The Crp-family member transcription factor PrfA up-regulates virulence factors expression 

once L. monocytogenes reaches the host cytosol (258, 259). The activity of PrfA integrates 

both environmental and bacterial signals, and is regulated by temperature (260), a bacterial 

auto-repressor (261), and the availability of specific nutrients (262–268). Reniere et al. (269) 

recently identified that bacterial and host derived glutathione allosterically binds and 

activates PrfA in the host cytosol. Given that enhanced PrfA activation is dispensable for 

vacuole escape (270), the authors suggested a two-step activation mechanism based on the 

oxidation-reduction states of PrfA thiols and glutathione in the vacuole (oxidizing/repressing 

environment) and in the cytosol (reducing/activating environment). Although it is suggested 

that S. flexneri also takes advantage of an intracellular signal to activate the MxiE 

transcription factor during infection (271), the environmental cues and the bacterial 

regulatory machinery used to regulate virulence factors expression are still largely unknown 

in other cytosolic bacteria.

 Manipulation of host sensing pathways by cytosolic bacteria

Although cytosolic bacteria are protected from the extracellular immune responses and 

escape the microbicidal lysosomal environment, their detection by cytosolic PRRs activates 

defense mechanisms including autophagy, host cell death pathways, and secretion of 

cytokines. However, under some instances, it should be noted that the detection by the host 

cell and the subsequent consequences might be advantageous for the pathogen. For example, 

as discussed above, there is increasing evidence that some intracellular bacteria benefit from 

IFN-β signaling (272).

The notion that cytosolic pathogens employ active mechanisms to delay or redirect the 

immune response is attractive, but is supported by few studies. L. monocytogenes might 

dampen the host immune response by secreting the virulence factor InlC and by interfering 

with the activation of NF-κB during intracellular infection (273), but it is unclear whether 

this has an impact on virulence (274). It is also speculated that the active modulation of the 

immune response by F. tularensis contributes to pathogenesis, although the mechanisms 

remain poorly understood (224, 275). The ability of L. monocytogenes to grow in host cells 

without inducing inflammasomes activation is quite striking, and might involved regulatory 

mechanisms that limit flagellin expression during infection in order to avoid detection by 

NAIP5/NLRC4 (30, 276, 277). It is also plausible that L. monocytogenes avoids autolysis in 

host cells to minimize detection by the AIM2 inflammasome. Sauer et al. (37) demonstrated 

that while L. monocytogenes mutants with cell wall defects lyse within host cells and induce 
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the AIM2 inflammasome, wild-type bacteria showed very little intracellular bacteriolysis 

and induced low levels of pyroptosis. Conversely, the activation of the AIM2/ASC 

inflammasome plays a pivotal role in the innate immune response to F. tularensis, and leads 

to the control of bacterial replication both in macrophages and in vivo (34–36, 278). 

However, the F. tularensis protein encoded by FTL-0325 delays inflammasome activation 

during infection (279), possibly by contributing to the structural integrity of the bacterial 

surface rather than by actively repressing host inflammasome activation (280). Interestingly, 

it was recently shown that the S. flexneri T3SS effector OspC3 inhibits the induction of a 

non-canonical inflammasome by directly targeting caspase-4, the human ortholog of mouse 

caspase-11 (281). Nevertheless, it is not known whether this mechanism is active in myeloid 

cells or if other cytosolic pathogens use a similar strategy to inhibit inflammasome 

activation.

 Interaction of cytosolic bacteria with the autophagy pathway

Infection of host cells by cytosolic pathogens such as L. monocytogenes and S. flexneri 
leads to induction of autophagy (282–284), and not surprisingly, mechanisms of autophagy 

evasion are described for most cytosolic bacterial pathogens. L. monocytogenes uses ActA 

and InlK to recruit host proteins (Arp2/3 and Ena/VASP, and the Major Vault Protein) to the 

bacterial surface and interfere with autophagic recognition (78, 285). L. monocytogenes also 

causes stalling of pre-autophagosomal structures by reducing the autophagic flux and PI3P 

levels in a PLCs-dependent manner (283). Accordingly, it was recently demonstrated that 

the inactivation of both ActA and PlcA drastically impairs the ability of L. monocytogenes 
to avoid autophagy and to grow within macrophages (286). S. flexneri also interferes with 

autophagic recognition by secreting IcsB, which competes with ATG5 for binding to the 

bacterial protein VirG/IcsA (287). Interestingly, the F. tularensis polysaccharidic O-antigen 

contributes to autophagy evasion by preventing ubiquitylation and the recruitment of the 

autophagy adaptor p62 (288). Overall, these studies clearly demonstrate that interference 

with autophagy is common among cytosolic bacteria.

Instead of being targeted by macroautophagy, B. pseudomallei is targeted by LAP (93). B. 
pseudomallei mutants lacking the T3SS effector BopA showed a defect in escaping single-

membrane vacuoles and an increased colocalization with LC3 (93). Although the B. 
pseudomallei proteins BimA and BopA have high homology with the S. flexneri proteins 

IcsA and IcsB, it was suggested that they interfere with autophagy through different 

mechanisms (289, 290). However, recent data suggests that IcsB not only interferes with 

autophagic recognition of the bacterial surface, but also inhibits LAP or LC3 recruitment to 

vacuolar remnants early during S. flexneri infection (291). In addition, L. monocytogenes is 

also targeted by LAP early during macrophage infection (292). Overall, these studies 

suggest that the autophagy machinery can target cytosolic bacteria at the entry stage of their 

intracellular life cycle.

In most cases, it is assumed that the activity of the autophagy pathway is detrimental for 

cytosolic bacteria although it might not always be the case. For example, a proportion of F. 
tularensis re-enters a membrane-bound compartment with autolysosomal features 

subsequent to replication in the cytosol (22), but it is not clear whether this represents a 
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mechanism of dissemination or a host cellular defense mechanism. Evidence also suggests 

that autophagy provides F. tularensis with the nutrients required for intracellular replication 

(293). It is thus plausible that cytosolic bacteria benefit from an increase in nutrient 

availability resulting from autophagy activation.

 Manipulation of host cell death pathways by cytosolic bacteria

Although cytosolic bacteria may protect the intracellular replication niche by suppressing 

host cell death pathways, death of the infected host cell is inevitable because the host cell 

has multilayered mechanisms to induce cell death pathways in response to bacterial 

infections. For example, infection of macrophages with B. pseudomallei induces an early 

NLRC4-dependent pyroptosis, and late caspase-1-dependent and -independent cell death 

pathways (294). More specifically, induction of apoptosis was observed in caspase-1/11-

deficicent macrophages infected with B. pseudomallei (294). Similarly, caspase-1-deficient 

macrophages infected with F. tularensis undergo AIM2/ASC-dependent caspase-8-mediated 

apoptosis (295). As already mentioned, F. tularensis delays inflammasome activation during 

the early stages of infection (279), but also uses TolC-secreted effectors to delay the 

activation of the intrinsic apoptotic pathway in order to preserve the host cell (296). This 

suggests that cytosolic bacteria have to interact with several host pathways in order to 

inhibit, or at least delay, cell death. Nevertheless, our understanding of the mechanisms used 

by cytosolic bacteria to inhibit host cell death pathways remains mostly superficial.

Another strategy used by cytosolic bacteria to maintain their replication niche is to induce 

host pro-survival pathways. For example, S. flexneri and R. rickettsii activate pro-survival 

pathways to dampen cell death signals in nonphagocytic cells (297–299), but it is unknown 

whether these pathways also promote macrophage survival during infection. Cytosolic 

bacteria such as L. monocytogenes damage host membranes during their intracellular life 

cycle. However, in the case of L. monocytogenes, LLO has several mechanisms to minimize 

damage to the host cell membranes (231). In addition, adaptive mechanisms are likely to be 

deployed by the host cell to withstand and repair the lesions, and thus promote survival 

(300). The induction of autophagy is a common host response to several bacterial toxins, and 

might constitute a host protection or detoxification mechanism (300, 301). Interestingly, a 

tight relationship exists between autophagy and apoptosis, and it is possible that bacterial 

pathogens target host components shared by both pathways to promote survival of the host 

cell (301).

Some cytosolic bacteria may benefit from inducing a specific host cell death pathway during 

infection. For example, it was suggested that the accumulation of apoptotic cell debris leads 

to alternative macrophage activation and decreased bacterial clearance during F. tularensis 
infection (302). It thus seems conceivable that F. tularensis prevents early cell death 

induction to allow intracellular bacterial replication (279, 296), but then specifically induces 

apoptosis to promote an anti-inflammatory immune response (302, 303). Interestingly, B. 
pseudomallei deliver a cycle-inhibiting factor homolog (CHBP) that triggers macrophage-

specific apoptosis (304), but whether this leads to an anti-inflammatory immune response 

remains to be determined. Although macrophages infected with L. monocytogenes do not 

undergo apoptotic cell death (305), L. monocytogenes exploits the process of apoptotic cell 
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death clearance by macrophages (i.e., efferocytosis) to facilitate cell-to-cell spread and 

dissemination (306). Overall, these studies suggest that cytosolic bacteria manipulate the 

host apoptotic pathway to their own advantage during intracellular infection.

 CONCLUDING REMARKS

Macrophages, as major immune sentinel cells, play an essential role in sensing and 

destroying invading microorganisms, and release cytokines that shape the immune response 

of other cells. In comparison to extracellular bacterial pathogens, which are fully expose to 

all immune cells and components, intracellular bacteria hide and replicate within host cells. 

Paradoxically, many intracellular bacterial pathogens preferentially replicate within 

macrophages. Following long-term evolutionary selection, these highly adapted intracellular 

bacteria have selected a specific replication niche inside these host cells and have evolved 

sophisticated mechanisms that facilitate their intracellular replication (Fig. 1). The study of 

these bacterial pathogens has led to numerous mechanistic insights on basic host processes 

including endocytosis, vesicle trafficking and innate immune responses.

As reviewed here, intracellular bacteria have to deal with a variety of host defense 

mechanisms after being phagocytosed by macrophages (Table 2). In order to facilitate a 

comparative analysis of bacterial counter strategies, we exemplify some pathogen-host 

interactions that illustrate how these organisms use their effector arsenal to face the 

challenges encountered during an intracellular infection (Table 3). A delicate balance exists 

between the ability of the host cell to control invading microbes and the ability of pathogens 

to hide from or subvert these defenses. Due to the length of this review, we are not able to 

cover all aspects of host-pathogen interaction, but we highlight some of the most important 

and current topics in the field. Importantly, several interesting questions are still not fully 

understood. For example, both M. tuberculosis and M. marinum encode ESX-1 type VII 

secretion systems, however, they replicate in a vacuolar compartment and in the cytosol, 

respectively. It is puzzling why these genetically related bacteria that share common 

secretion systems replicate in distinct intracellular niches. Also, the function of type I 

interferon induction during intracellular bacterial infection is still elusive. Elucidating the 

molecular mechanisms underlying pathogen subversion strategies and how they specifically 

affect innate immune responses is critical to a comprehensive understanding of bacterial 

pathogenesis and the host response. In addition, the study of host-intracellular bacteria 

interactions may provide clues for advancing the development of novel therapeutics against 

pathogens and inflammatory diseases.
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Figure 1. 
Lifestyles of intracellular bacterial pathogens. (1) F. tularensis escapes a late endosome 

(LE)-like vacuole in a T6SS-dependent manner. Following replication in the cytosol, F. 
tularensis may retranslocate to a membrane-bound compartment resembling an 

autolysosome. (2) L. monocytogenes escapes the phagolysosomal pathway using the T2SS 

(Sec) effectors LLO and PLCs. L. monocytogenes replicates rapidly in the cytosol and 

hijacks the host actin polymerization machinery to move within and between cells. (3) B. 
pseudomallei escapes into the cytosol in a T3SS-dependent manner. B. pseudomallei 
performs actin-based motility and promotes host cell fusion. (4) C. burnetii is adapted to the 

phagolysosomal pathway and resides in a spacious phagolysosomal-like compartment. The 

Dot/Icm system (T4SS) is required for recruiting the autophagosomal marker LC3 and for 

vacuole biogenesis. (5) M. tuberculosis arrests phagosome maturation at the early endosome 

(EE) stage in a T7SS-dependent manner. (6) L. pneumophila and B. abortus segregate from 

the endocytic route at the EE stage, recruit endoplasmic reticulum (ER)-derived vesicles, and 

form ribosome-studded specialized vacuoles in a T4SS-dependent manner. (7) C. 
pneumoniae segregates from the endocytic route and form a unique inclusion vacuole by 

recruiting Golgi-derived vesicles. C. pneumoniae effectors promote Golgi fragmentation and 

generate actin filaments around the inclusion. Chlamydia is found in two different forms: the 

non-replicating infectious elementary body (EB) and the intracytoplasmic replicative 

reticulate body (RB). T2SS and T3SS effectors are thought to be involved in the intracellular 

life cycle of Chlamydia. (8) S. enterica replicates in a late endosome (LE)-like compartment 

that excludes lysosomal degradation enzymes. The S. enterica containing vacuole migrates 
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to the microtubule-organizing centre (MTOC) and forms Salmonella-induced filaments (Sif) 

along microtubules in a T3SS-dependent manner.
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Table 2

General strategies used by intravacuolar and cytosolic bacteria to deal with challenges encountered within host 

cells

Challenge Strategies utilized by intracellular bacteria

Intravacuolar Cytosolic

Phagolysosomal pathway Avoidance, blockage and adaptation Escape into the cytosol

Access to nutrients Hijack host vesicle trafficking to promote vacuole 
biogenesis and nutrient acquisition

Direct access to cytosolic nutrients

Microenvironment Intravacuolar bacteria create and enlarge their 
replication space using a variety of effectors

The cytosol constitutes a spacious and favorable 
environments

Innate recognition The vacuolar compartment provides a hideout from 

cytosolic innate sensinga
Cytosolic bacteria are directly exposed to the cytosolic 
sensing machinery, and need to down- regulate PAMP 
expression to delay recognition

Autophagy Maintenance of vacuole integrity
Inhibition of autophagy initiation
Inhibition of autophagy flux

Inhibition of autophagy initiation
Inhibition of autophagy flux
Prevention of autophagic recognition

Host cell death Dampening of pro-apoptotic pathways
Activation of pro-survival pathways

Interference with inflammasone activation
Dampening of pro-apoptotic pathways
Activation of pro-survival pathways

a
Some components of intravacuolar bacterial pathogens can be recognized by host cytosolic sensing mechanisms due to damage to the pathogen-

containing vacuoles or effector translocation by specialized secretion systems. For example, DNA from M. tuberculosis, PrgJ from S. enterica and 
the flagellum of L. pneumophila are recognized by the host cytosolic sensing machinery.
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Table 3

Examples of factors used by intracellular bacteria to counteract host defense mechanisms

Subverted host defense mechanism Strategies Pathogen Example of bacterial factors

Immune detection Actin-based cell-to-cell spread B. pseudomallei BimA

L. monocytogenes ActA

Modification of the immune response F. tularensis T6SS effectors

L. monocytogenes InlC

Low flagellin expression L. monocytogenes MogR

Maintenance of vacuole integrity C. pneumoniae CPAF

L. pneumophila LidA, PlaA, SdhA

S. Typhimurium SseJ, SifA

Phagolysosomal pathway Blockage of phagosome maturation L. pneumophila SidK

M. tuberculosis EsxH, PtpA

S. Typhimurium Unknown

Escape from the vacuole B. pseudomallei BopA

F. tularensis T6SS effector(s)

L. monocytogenes LLO, PLCs

Evasion of the endocytic pathway Brucella spp. VirB(T4SS) effectors

C. trachomatis Unknown

L. pneumophila Dot/Icm(T4SS) effectors

Phagosome permeabilization M. tuberculosis ESAT-6, CFP-10

Survival in a lysosome-like structure C. burnetii Dot/Icm(T4SS) effectors

Autophagy Escape from LAP B. pseudomallei BopA

Formation of a replication niche A. phagocytophilum Ats-1

Brucella spp. VirB(T4SS) effectors

C. burnetii Dot/Icm(T4SS) effectors

Interference with recognition F. tularensis O-antigen

L. monocytogenes ActA, InlK

Inhibition of autophagy initiation/flux L. monocytogenes PLCs

L. pneumophila RavZ

M. tuberculosis Eis

Nutrients acquisition F. tularensis Unknown

Cell death Inhibition/delay of apoptosis C. burnetii AnkG

C. trachomatis CPAF

F. tularensis TolC-dependent

L. pneumophila SidF

L. pneumophila LegK1

S. Typhimurium AvrA

Induction of apoptosis B. pseudomallei CHBP

Hijacking of efferocytosis L. monocytogenes LLO, ActA

Evasion of inflammasome S. Typhimurium SsaI
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