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γ-Secretase inhibitor–resistant glioblastoma stem cells 
require RBPJ to propagate
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Challenges of targeting brain 
tumor stem cells by Notch 
pathway blockade
Glioblastoma (GBM) is the most common 
malignant brain tumor in humans and 
has a median survival of only 14 months; 
therefore, new treatment strategies for 
this devastating disease are desperately 
needed (1–3). Brain tumor stem cells, also 
known as brain tumor–initiating cells 
(BTICs), have been prospectively isolat-
ed by several research groups (4–7) and 
have been shown to be resistant to con-
ventional radiation therapy and chemo-
therapy (8, 9). Targeting brain tumor stem 
cells, by blocking Notch signaling with a 
γ-secretase inhibitor (GSI) or by induc-
ing activation of the bone morphogenetic 
protein (BMP) pathway with BMP4, has 
shown some efficacy in preclinical studies 
(10, 11), bringing hope to improving brain 
tumor treatment based on targeting can-
cer stem cells.

The Notch pathway is a developmental 
signaling pathway that regulates cell fate 
decisions and stem cell self-renewal in mul-
tiple organs of almost all species, including 
neural stem cells of the mammalian CNS 
(12–15). Dysregulation of Notch signaling 
has been observed in many types of neo-
plasm, including GBM (7, 16–19). Several 
reports have shown that Notch pathway 
blockade by GSI inhibits BTIC propagation 
and prolongs survival in mice bearing intra-
cranial xenografts (20, 21). Moreover, in a 
recent Phase I clinical trial, 24% of patients 
with malignant glioma (a total of 44) 
responded to GSI treatment and had sta-
bilized disease for more than four months 
(22). Although some malignant glioma 
patients benefited from GSI treatment, 
most GBM patients did not respond to GSI 
treatment, and the mechanism of GSI resis-
tance in GBM cells is largely unknown.

GBMs are molecularly divided into 
proneural, proliferative, and mesenchymal 

subclasses, according to an initial study 
based on gene expression profiling (23). 
It was immediately speculated that the 
proneural subgroup would be sensitive to 
GSI therapy, as this population of GBMs 
exhibits a higher level of Notch pathway 
activation than the other subgroups (23). 
Indeed, a recent study showed that GBM 
neurosphere cells with a strong proneural 
gene signature respond to GSI treatment 
(24). Although no stratified clinical trial to 
assess GSI for the treatment of proneural 
GBMs has been carried out, identification 
of the molecular mechanism of GSI resis-
tance in GBM has the potential to help 
develop novel therapies for this deadly 
disease. In the current issue, Xie et al. 
elegantly demonstrate that a mediator of 
Notch signaling, RBPJ, is overexpressed 
in GSI-resistant BTICs preferentially in 
proneural GBMs and is required for BTIC 
propagation both in vitro and in vivo (25). 
The results of this study are of substantial 
clinical relevance, because a mechanism 
of GSI resistance in BTICs has been identi-
fied, thereby providing a new approach to 
target GSI-resistant tumor cells in general.

The Notch signaling pathway 
and RBPJ
Canonical Notch signaling is initiated 
when a Notch ligand, such as JAGGED 
(JAG1 or JAG2) or DELTA (DLL1, 3, or 4), 
binds to a NOTCH receptor (NOTCH1, 2, 
3, or 4) on adjacent cells. In turn, ligand 
binding to the NOTCH receptor induces 
γ-secretase–mediated proteolytic cleav-
age of the NOTCH receptor at the trans-
membrane domain to release NOTCH 
intracellular domain (NICD), which 
translocates into the nucleus, binds RBPJ 
protein complexes situated on DNA, 
recruits co-activators, and removes co-
repressors to activate downstream target 
genes, such as HES and HEY family genes 
(26–28). In the absence of NICD, RBPJ 
associates with histone deacetylase–con-
taining co-repressors, including SMRT, 
SHARP, CtBP, SKIP, and CIR, in closed 
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Targeting glioblastoma stem cells with γ-secretase inhibitors (GSIs) 
disrupts the Notch pathway and has shown some benefit in both pre-
clinical models and in patients during phase I/II clinical trials. However, 
it is largely unknown why some glioblastoma (GBM) does not respond to 
GSI treatment. In this issue of the JCI, Xie et al. determined that GSI-
resistant brain tumor–initiating cells (BTICs) from GBM express a higher 
level of the gene RBPJ, which encodes a mediator of canonical Notch 
signaling, compared to non-BTICs. Knockdown of RBPJ in BTICs decreased 
propagation in vitro and in vivo by inducing apoptosis. Interestingly, 
RBPJ was shown to regulate a different transcription program than Notch 
in BTICs by binding CDK9, thereby affecting Pol II–regulated transcript 
elongation. Targeting CDK9 or c-MYC, an upstream regulator of RBPJ, with 
small molecules also decreased BTIC propagation, and prolonged survival 
in mice bearing orthotopic GBM xenografts. This study not only provides a 
mechanism for GSI treatment resistance, but also identifies two potential 
therapeutic strategies to target GSI-resistant BTICs.
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While most studies have shown that 
canonical Notch signaling activates tar-
get genes through the DNA-binding RBPJ 
protein complex, Rbpj knockout mice do 
not have the same phenotype as Notch 
knockout mice (34). This discrepancy 
suggests that RBPJ can function in both 
Notch-dependent and -independent man-
ners (refs. 35, 36, and Figure 1). In addi-
tion, RBPJ generally represses target gene 
expression in the absence of NICD; there-
fore, it is believed that knockout or knock-
down of RBPJ could result in derepression 
of target genes (26, 36). Indeed, loss of 
RBPJ has been shown to induce expres-
sion of several Notch target genes, either 
in the presence or absence of NICD, and 
increase tumorigenesis in breast cancer 
and Burkitt lymphoma cells (37). In con-
trast, Xie et al. show that knockdown of 
RBPJ only derepresses a few Notch target 
genes, such as HES5, but induces apopto-
sis in BTICs (25). One possible reason for 
these opposite effects from knockdown of 
RBPJ in tumor cells is that the breast can-
cer cells and Burkitt lymphoma cells used 
were dependent on Notch signaling to 
grow (37), whereas the BTICs used by Xie 
et al. were already independent of Notch 
signaling for their growth (GSI-resistant 
cells) (Figure 1). Another possibility is 
that there could be different RBPJ binding 
landscapes across the genome and differ-
ent Notch-dependent target genes in dif-
ferent types of tumor cells.

RBPJ target genes
Xie et al. performed RNA-seq to examine 
changes in the transcriptional profile of 
BTICs in response to RBPJ knockdown or 
Notch signaling blockade with GSI (25). 
Only 10% to 15% of genes were commonly 
regulated by both RBPJ and Notch signal-
ing, suggesting that RBPJ regulates BTIC 
propagation mostly through the regulation 
of Notch-independent genes, an observa-
tion supported by the fact that propagation 
of GSI-treated BTICs is independent of 
Notch signaling. Xie et al. determined that 
tumorigenesis-associated genes FOXM1, 
CCNA2 (cyclin A2), and KRAS are not 
only exclusively regulated by RBPJ at the 
transcriptional level but also contain RBPJ 
binding sites at their promoter regions, sug-
gesting that these genes are possible direct 
targets of RBPJ in BTICs (25). ChIP-PCR 
analysis confirmed that FOXM1, CCNA2, 

GSI resistance in GBMs has not been care-
fully investigated. Interestingly, Xie et al. 
found that GSI-resistant BTICs have ele-
vated RBPJ expression compared to non-
BTICs and that BTICs lose RBPJ expres-
sion and stem cell markers upon their 
differentiation (ref. 25 and Figure 1). In 
addition, knockdown of RBPJ expression 
by shRNA decreased BTIC propagation 
in vitro and in vivo by inducing apoptosis 
(25). This reduction in BTIC propagation 
prolonged survival in mice bearing intra-
cranial xenografts (25). Together, these 
results demonstrate that RBPJ is required 
for GSI-resistant BTIC propagation.

chromatin to suppress gene transcription 
(26–28). Binding of NICD to RBPJ dissoci-
ates the co-repressor complex from RBPJ, 
and recruits mastermind-like proteins 
(MAMLs) and histone acetyltransfer-
ases to the NICD-RBPJ complex, thereby 
remodeling chromatin to activate tran-
scription of target genes (26–28). Active 
NOTCH1 mutations have been found in 
about 60% of T cell acute lymphoblastic 
leukemias (T-ALLs) that respond to GSI 
treatment (29, 30). Subsequently, it has 
been shown that genetic and epigenetic 
alterations of tumor cells contribute to 
GSI resistance in T-ALL (31–33). However, 

Figure 1. Targeting tumor cells with elevated level Notch activity with γ-secretase inhibitors (GSIs) 
or shRBPJ. Tumor cells with elevated levels of Notch activity can be divided into Notch signaling–
dependent and –independent classes, which are based on their genetic or epigenetic background. 
For Notch-dependent tumor cells, GSI treatment can reduce Notch target gene expression and 
decrease propagation. However, shRPBJ in these same cells will release RBPJ-mediated repression 
of gene transcription, induce expression of Notch target genes, and increase tumor cell propagation. 
In contrast, in Notch-independent tumor cells, or GSI-resistant cells, GSI treatment still can block 
NICD formation and decrease Notch target gene expression. However, GSI treatment has no effect on 
propagation, because growth of Notch-independent tumor cells depends on genes that are not Notch 
targets. In this issue, Xie et al. demonstrate that knockdown of RBPJ in Notch-independent cells 
downregulates expression of genes, including FOXM1, CCNA2, and KRAS, that control brain tumor–
initiating cell (BTIC) self-renewal and proliferation, and thereby decreases tumor growth through 
partnering with CDK9, which regulates elongation of RBPJ target genes. Furthermore, Xie et al. found 
that RBPJ is regulated by MYC and that blocking MYC expression, upstream of RBPJ, with JQ1 or 
blocking activity of CDK9 also decreases Notch-independent tumor cell propagation. Solid blue lines 
indicate results from Xie et al. Solid black lines indicate results from other reports.
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in these GSI-resistant tumor cells will 
decrease propagation by reducing expres-
sion of genes that are regulated exclusively 
by RBPJ, but not Notch, including FOXM1, 
CCNA2, and KRAS. In addition, the results 
of Xie et al. demonstrated that these GSI-
resistant tumor cells can be treated with 
the c-MYC inhibitor JQ1 or the CDK9 
inhibitor dinaciclib (ref. 25 and Figure 1). 
As RBPJ is considered to be a housekeep-
ing gene and is expressed in most cells in 
the body (39, 40), the potential toxicity of 
these approaches in normal cells will need 
to be closely watched during future studies 
aimed at evaluating the clinical application 
of RBPJ-targeting therapies.
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and KRAS are indeed direct targets of RBPJ 
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