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ABSTRACT
Spatio-temporal changes in genetic structure among populations provide crucial

information on the dynamics of secondary spread for introduced marine species.

However, temporal components have rarely been taken into consideration when

studying the population genetics of non-indigenous species. This study analysed

the genetic structure of Styela plicata, a solitary ascidian introduced in harbours

and marinas of tropical and temperate waters, across spatial and temporal scales.

A fragment of the mitochondrial gene Cytochrome Oxidase subunit I (COI)

was sequenced from 395 individuals collected at 9 harbours along the NW

Mediterranean coast and adjacent Atlantic waters (> 1,200 km range) at two

time points 5 years apart (2009 and 2014). The levels of gene diversity were

relatively low for all 9 locations in both years. Analyses of genetic differentiation

and distribution of molecular variance revealed strong genetic structure, with

significant differences among many populations, but no significant differences

among years. A weak and marginally significant correlation between geographic

distance and gene differentiation was found. Our results revealed spatial structure

and temporal genetic homogeneity in S. plicata, suggesting a limited role of

recurrent, vessel-mediated transport of organisms among small to medium-size

harbours. Our study area is representative of many highly urbanized coasts

with dense harbours. In these environments, the episodic chance arrival of

colonisers appears to determine the genetic structure of harbour populations

and the genetic composition of these early colonising individuals persists in the

respective harbours, at least over moderate time frames (five years) that encompass

ca. 20 generations of S. plicata.
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INTRODUCTION
The increase in maritime traffic and aquaculture activities in recent decades has fostered

the spread of non-indigenous marine species (NIS) across the globe (Carlton, 1996;

Galil, 2000; Grosholz, 2002; Zenetos et al., 2012). At the same time, the field of invasion

genetics has become a well-established discipline (Holland, 2000; Geller, Darling &

Carlton, 2010; Darling, 2015) and genetic tools have proved invaluable for understanding

crucial aspects of the invasion process, including cryptic diversity, introduction pathways,

and connectivity among native and introduced populations (Rius & Darling, 2014;

Viard & Comtet, 2015; Rius et al., 2015).

International traffic among large commercial ports is a common pathway for the

spread of NIS into new and often distant areas (i.e., pre-border dispersal, sensu Forrest,

Gardner & Taylor, 2009). Further expansion to nearby areas is facilitated by smaller vessels

mostly used for fishing and recreational activities (Wasson et al., 2001; Darbyson et al.,

2009; Goldstien, Schiel & Gemmell, 2010; Davidson et al., 2010). Therefore, small harbours

and marinas play an important role in the spread of NIS at the local level (secondary

spread or post-border dispersal, Forrest, Gardner & Taylor, 2009). In highly urbanized

coastal areas, dense networks of harbours and artificial structures can act as stepping-

stone strongholds for the propagation of introduced species (Glasby et al., 2007;

Dafforn, Glasby & Johnston, 2012; López-Legentil et al., 2015; Airoldi et al., 2015).

These networks provide unique opportunities for the study of dispersal mechanisms

and processes occurring during secondary spread of NIS.

The Mediterranean is the largest enclosed sea on Earth and supports intense,

international maritime traffic (Kaluza et al., 2010; Keller et al., 2011). Consequently, the

Mediterranean Sea has been invaded by many NIS (Streftaris, Zenetos & Papathanassiou,

2005; Streftaris & Zenetos, 2006; Galil, 2009; Coll et al., 2010) and shipping is among

the leading vectors of introductions (Zenetos et al., 2012; Galil et al., 2014). In addition,

Mediterranean coasts are highly urbanized and support a dense network of harbours

and artificial structures, in particular the NW region (Airoldi & Beck, 2007). Therefore,

the NW Mediterranean represents an ideal system to study the role of harbours in post-

border processes of NIS dispersal (López-Legentil et al., 2015; Airoldi et al., 2015).

An unexpected conclusion of many marine invasion genetic studies is that founder

effects are not always the norm, contrary to theoretical considerations. Instead,

introduced populations often display similar or even higher levels of genetic diversity than

native populations (reviewed in Rius et al., 2015), with important implications for their

success (Tsutsui et al., 2000; Barrett & Schluter, 2008). Recurrent introductions from

different locations and/or introductions of large numbers of individuals often explain the

high genetic diversity of introduced populations (Frankham, 2005; Roman & Darling,

2007). In particular, recurrent introductions are expected in primary entry points such

as ports with international traffic. However, populations in small harbours and marinas

are likely subject to high stochasticity in the arrival of individuals, resulting in the low

levels of genetic diversity previously reported (Dupont et al., 2007a; Pérez-Portela, Turon &

Bishop, 2012; Rius & Shenkar, 2012). In such cases, the combined effects of bottlenecks,
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genetic drift, and adaptation to novel environments (Sakai et al., 2001; Strayer et al., 2006;

Keller & Taylor, 2008) may yield important temporal changes in the genetic composition

of these populations.

Despite the importance of temporal dynamics for understanding introduction

processes in the sea (Rius et al., 2015), most studies to date only address spatial

differentiation in the genetic structure of NIS. Among the few studies that have

investigated temporal variation, some report marked decreases in genetic diversity

over time (Pérez-Portela, Turon & Bishop, 2012), while others documented short-term

changes in allele frequencies, within a context of sustained high genetic diversity

(Paz et al., 2003; Guardiola, Frotscher & Uriz, 2012; Reem et al., 2013; Karahan et al.,

2016; Pineda et al., 2016). To our knowledge, only Dupont, Bernas & Viard (2007b)

reported temporal genetic homogeneity across age groups of an introduced gastropod.

Goldstien et al. (2013) demonstrated how temporal sampling can provide a better

understanding of introduction dynamics and improve the identification of sources of

introduced populations.

Ascidians have prominent examples of marine introduced species, which often thrive in

artificial habitats (Lambert & Lambert, 2003; Lambert, 2007; López-Legentil et al., 2015;

Ordóñez et al., 2015; Ordóñez et al., 2016) causing economic losses (Aldred & Clare, 2014).

The limited natural dispersal capabilities of ascidians (Svane & Young, 1989; David,

Marshall & Riginos, 2010) makes them dependent on artificial transport for long-distance

dispersal and an exemplary model for the study of introduction processes (Zhan et al.,

2015). Styela plicata is a solitary ascidian that has been translocated around the globe for

centuries (Pineda, López-Legentil & Turon, 2011), which has blurred any signal about

its native area (presumably the NW Pacific, de Barros, da Rocha & Pie, 2009; Pineda,

López-Legentil & Turon, 2011). The type-specimen was collected from a ship hull in

Philadelphia (NE USA) and its present distribution encompasses warm-temperate areas

of the Atlantic and Indo-Pacific oceans, from approximately 45�N to 38�S (de Barros, da

Rocha & Pie, 2009). S. plicata can withstand drastic changes in temperature and salinity

(Thiyagarajan & Qian, 2003; Pineda, Turon & López-Legentil, 2012) and tolerates high

levels of pollutants in the water (Galletly, Blows & Marshall, 2007; Pineda, Turon & López-

Legentil, 2012). Not surprisingly, S. plicata is a conspicuous member of the fouling

communities in harbours and artificial structures throughout the world.

In this study, S. plicata was used as a model to test the spatio-temporal dynamics of

populations inhabiting small to medium-size harbours and marinas across > 1,200 km

of Mediterranean coast (Iberian Peninsula) and adjacent Atlantic waters. Contrary to

other introduced ascidians in this area (e.g.,Microcosmus squamiger, Ordóñez et al., 2013),

S. plicata does not occur outside of ports and confined environments, thus its dispersal

among localities relies on human transport. We sampled the same populations at

two time points separated by five years. Considering that S. plicata grows to maturity in

three months and features a continuous reproductive cycle in the study area (Tursi &

Matarrese, 1981; Pineda, López-Legentil & Turon, 2013), this temporal scale encompassed

at least 20 generations. The investigated harbours have mostly local traffic and are

likely seeded by occasional interchange of NIS among neighbouring harbours, as well as
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interchange with more distant, larger ports that act as entry points. Thus, we hypothesized

that the high stochasticity of these seeding events and the low number of individuals

that can be transported by small vessels at a given time will result in a patchwork-like

distribution of genetic variability, which will in turn be highly dynamic in time as a result

of bottlenecks, drift, and further occasional interchanges. Unravelling the genetic

signatures of these processes will provide insight into the secondary spread of NIS in

the area and contribute to the broader knowledge of introduced species dynamics in

highly urbanized coasts.

MATERIAL AND METHODS
Sampling
Nine localities along the Spanish coast (Iberian Peninsula) were sampled: seven on

the Mediterranean side and two on the Atlantic shores, near the Strait of Gibraltar

(Fig. 1). These localities consisted of small to medium-size harbours, mostly with only

short-range fishing fleets and/or recreational vessels (Table 1). The harbours were sampled

in 2009 and 2014 by collecting specimens attached to ropes and buoys (at least 5 m

apart from each other), at 0–2 m depth. The ascidians were dissected immediately

upon collection, and tissue close to the buccal siphon was preserved in absolute ethanol.

Samples were kept at -20 �C until processed.

DNA extraction and sequencing
DNA was extracted from muscle or branchial tissue with REDExtract-N-AmpTissue

PCR Kit (Sigma-Aldrich, St. Louis, MO, USA). A fragment of the mitochondrial

Cytochrome Oxidase I (COI) gene was amplified using the universal primers LCO1490

and HCO2198 (Folmer et al., 1994). Amplifications were performed in a final volume of 20

mL using 10 mL of REDExtract-N-amp PCR reaction mix (Sigma-Aldrich, St. Louis, MO,

USA), 0.8 mL of each primer (10 mM), and 2 mL of template DNA. The PCR program

consisted of an initial denaturing step at 94 �C for 2 min, 30 amplification cycles

(denaturing at 94 �C for 45 s, annealing at 50 �C for 45 s and extension at 72 �C for 50 s),

and a final extension at 72 �C for 6 min, on a PCR System 9700 (Applied Biosystems).

PCR products were purified using MultiScreen� filter plates (Millipore), labelled using

BigDye� Terminator v.3.1 (Applied Biosystems) and sequenced on an ABI 3730 Genetic

Analyser (Applied Biosystems) at the Scientific and Technological Centres of the

University of Barcelona, Spain (CCiTUB). Other samples were directly sent for

purification and sequencing to Macrogen Inc. (Seoul, South Korea). Sequences were

edited and aligned using BioEdit� v.7.0.5.3 (Hall, 1999).

Genetic analyses
Number of alleles (Nh), haplotype diversity (Hd), and nucleotide diversity (π) were
computed with DnaSP v.5 (Librado & Rozas, 2009). Two estimates of allelic

differentiation between populations at each sampling year were used: the FST estimator

of Weir & Cockerham (1984), based on allele frequencies and calculated with Arlequin

v 3.0 (Excoffier, Laval & Schneider, 2005); and the adjusted Dest estimate described

Pineda et al. (2016), PeerJ, DOI 10.7717/peerj.2158 4/21

http://dx.doi.org/10.7717/peerj.2158
https://peerj.com/


by Jost (2008), and obtained with SPADE (Chao & Shen, 2010). Both estimators varied

between 0 (no differentiation) and 1 (complete differentiation). The use of FST-like

estimators has been criticized on the basis that it is dependent on the variability of the

marker used (Jost, 2008; Jakobsson, Edge & Rosenberg, 2013), and it is advisable to use

estimators independent of within population diversity, such as Dest, in combination

with traditional FST-like statistics (Meirmans & Hedrick, 2011; Verity & Nichols, 2014).

Figure 1 Map of the Iberian Peninsula (NW Mediterranean) showing the sampling sites of Styela
plicata. Pie charts represent haplotype frequencies for the COI gene in each population analysed in

2009 and 2014. Private haplotypes are shown in white. Population codes as in Table 1.

Table 1 Locality name. code. geographical region and GPS position for the populations of Styela
plicata analysed in this study. Harbour size is based on the surface of enclosed waters within the

perimeter of the harbour (m2) calculated with the polygon tool on Google Earth Pro (Google Inc.).

Locality Code Region Harbour size (�103 m2) Coordinates

Blanes BLA Mediterranean 108 41�40′27″N; 02�47′45″E

Arenys de Mar ARE Mediterranean 160 41�34′35″N; 02�33′31″E

Vilanova i la Geltrú VIL Mediterranean 360 41�12′53″N; 01�44′10″E

Xàbia XAB Mediterranean 91 38�47′52″N; 00�11′06″E

Carboneras CAR Mediterranean 53 36�59′22″N; 01�53′56″W

La Herradura HER Mediterranean 23 36�43′38″N; 03�43′37″W

Torre Ladrones TOR Mediterranean 16 36�29′08″N; 04�44′28″W

Conil CON Atlantic 54 36�17′42″N; 06�08′17″W

Chipiona CHI Atlantic 87 36�44′45″N; 06�25′46″W
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The significance of FST values was calculated (permutation tests, 10,000 replicates),

and a correction for multiple comparisons was applied following the Benjamini-

Yekutieli false discovery rate (FDR) (Narum, 2006). For Dest, the mean and SE values

obtained with SPADE from 10,000 bootstrap replicates were used to calculate

confidence intervals (using a normal approximation) with a FDR-corrected

probability. A value of Dest was deemed significant when the confidence interval

around its mean did not contain 0.

In order to complement these differentiation methods based on allelic frequencies,

we used two approaches that explicitly consider the spatial distribution of alleles across

samples. First, we performed a spatial analysis of shared alleles (SAShA, Kelly et al., 2010),

which tests the average geographic distance between co-occurrences of alleles against its

expectation under panmixia. Based on results from the previous tests (see Results), this

analysis was performed pooling the samples for both years. We used the SAShA 1.0

software and performed 10,000 permutations of data for assessing significance. Individual

alleles were also analysed separately, which may be useful when common alleles mask a

potential non-random distribution of less common alleles. In a second approach,

estimates of gene flow (in number of migrants per generation) based on the frequency

of private alleles (Slatkin, 1985; Barton & Slatkin, 1986) were performed between the

localities studied at both years using the web version of the GENEPOP 4.2 software

(Raymond & Rousset, 1995). Again, the analysis of private alleles may uncover patterns

masked by abundant and widespread alleles.

For temporal comparisons, differentiation values (FST and Dest) were computed for

each population between sampling years. A correlation between these values among pairs

of populations at both years was also calculated. Finally, an analysis of the molecular

variance (AMOVA) was performed using haplotype frequencies with Arlequin, grouping

the populations per sampled year, and its significance was tested by running 10,000

permutations of the data.

Mantel tests were also computed to correlate genetic and geographic distances

separately at each year. The shortest distances by sea between points were calculated using

Google Earth (Google Inc.). Mantel tests were performed with Arlequin for FST and with

the R package ade4 (function mantel-rtest) (Dray & Dufour, 2007) for Dest, and their

significance was tested by permutation (10,000 replicates).

The dataset was used to construct a median-joining network using Network

v.4.5.1.6 (Bandelt, Forster & Röhl, 1999). A maximum likelihood tree was also computed

using Styela gibsii as an outgroup (GenBank accession number HQ916447) with Mega

v6.06 (Tamura et al., 2013), and the significance of the branches was tested by 10,000

bootstrap replicates. The General Time Reversible (GTR) model with proportion of

invariable sites (+I) and rate variation among sites (+G) was selected for tree-building

using jModelTest v.2.1.7 (Posada, 2008) and the Akaike Information Criterion.

RESULTS
Twenty to twenty-six individuals were sequenced per locality in 2009 and 2014 (Table 2),

resulting in a total of 395 sequences with a final length after alignment and trimming
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of 580 bp. These sequences corresponded to 12 haplotypes featuring 28 variable positions.

Half were private haplotypes (Table 2) from a single locality and time point. Between 1

and 4 haplotypes were found in each population. For consistency with the global

dataset of Pineda, López-Legentil & Turon (2011), the same haplotype numbers presented

in that study were used for identical sequences. New haplotypes were labelled from

23 onwards, as there were 22 haplotypes described in Pineda, López-Legentil & Turon

(2011). Six of our sequences (haplotypes 1, 2, 3, 4, 5 and 9) were already identified by

Pineda, López-Legentil & Turon (2011), of which 5 (haplotypes 1, 2, 3, 4 and 5) were also

found byMaltagliati et al. (2015) in Italian waters (from both eastern and western shores).

Haplotype frequencies per population and year are presented in Supplemental

Information (Table S1). All new sequences obtained in this study have been deposited in

GenBank (accession numbers KU878146–KU878151).

Overall, haplotype and nucleotide diversity were low (0.206 ± 0.042 and 0.0027 ±

0.0009, respectively, mean ± SD) (Table 2). The highest haplotype diversity appeared

in Conil (CON) in 2014 (0.594 ± 0.097), while a single haplotype (Hd = 0) was found

in La Herradura (HER) in 2014 and in Torre Ladrones (TOR) and Chipiona (CHI) at

both years. No clear geographic or temporal trend was apparent for haplotype

diversity, with some populations showing higher values in 2009 and others in 2014

(Table 2).

Table 2 Diversity measures for the studied populations of Styela plicata. Population codes as in

Table 1. Year of sampling. Number of individuals analysed per population (N). Haplotype (Hd)

and nucleotide (π) diversity and their corresponding standard deviations in parentheses. Number of

haplotypes per population (Nh) with private haplotypes in parentheses.

Locality Year N Hd SD π SD Number of haplotypes

BLA 2009 21 0.271 (±0.124) 0.00049 (±0.00060) 4(1)

2014 26 0.286 (±0.112) 0.00052 (±0.00062) 4(1)

ARE 2009 20 0.1 (±0.088) 0.00017 (±0.00034) 2

2014 24 0.235 (±0.109) 0.00269 (±0.00185) 3

VIL 2009 22 0.090 (±0.080) 0.00015 (±0.00032) 2(1)

2014 21 0.185 (±0.110) 0.00082 (±0.00082) 3(1)

XAB 2009 20 0.484 (±0.112) 0.00417 (±0.00263) 3

2014 20 0.284 (±0.128) 0.00136 (±0.00115) 4(1)

CAR 2009 21 0.266 (±0.119) 0.00796 (±0.00454) 3(1)

2014 23 0.383 (±0.119) 0.01075 (±0.00591) 4

HER 2009 24 0.163 (±0.099) 0.00287 (±0.00194) 3

2014 21 0 – 0 – 1

TOR 2009 23 0 – 0 – 1

2014 21 0 – 0 – 1

CON 2009 24 0.373 (±0.119) 0.00522 (±0.00314) 4

2014 20 0.594 (±0.097) 0.01186 (±0.00651) 4

CHI 2009 24 0 – 0 – 1

2014 20 0 – 0 – 1

Total 395 12
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Haplotype 2 was the most abundant and widespread (only absent in Xàbia in 2009),

followed by haplotype 1, which was dominant in Blanes (BLA), Arenys de Mar (ARE),

and Xàbia (XAB). Haplotype 5 was the third most frequent and the dominant

haplotype in Carboneras (CAR). The remaining haplotypes were found only in 6 or

less individuals (Fig. 1; Table S1). The haplotype frequencies in the two years were

quite similar for the three common haplotypes (Fig. S1), while they varied in the less

abundant alleles, of which three were found exclusively in 2009 and another three

only in 2014 (Fig. S1).

The haplotype network revealed that haplotype 5 was most divergent, separated by

16 mutational steps from the remaining haplotypes, which were grouped more closely

together, albeit with some divergent sequences (e.g. haplotypes 3 and 25, Fig. 2).

Accordingly, the maximum likelihood tree (Fig. 3) showed a highly supported branch

comprising all sequences except for haplotype 5, which was set apart in a different branch.

The results of the spatial differentiation analyses using FST and Dest are shown in

Table 3. Mean values for both years were 0.481 ± 0.044 for FST and 0.586 ± 0.052 for

Dest (mean ± SE). A majority of pairwise comparisons were significant (FST: 64% in 2009,

72% in 2014; Dest: 64% in 2009 and in 2014). Overall, Vilanova i la Geltrú (VIL) was the

locality that showed fewer significantly different comparisons with other populations,

while Carboneras (CAR) showed significant differentiation in all cases. In contrast, the

values of differentiation between years for the nine localities were extremely low and

non-significant in all cases (FST = 0.007 ± 0.004, Dest = 0.005 ± 0.003, mean ± SE)

(Table 3).

Population differentiation means per year and between years are plotted in Fig. 4, which

clearly reflects the gap between differentiation measures among localities and those between

years for the same locality. There is also a highly significant correlation between FSTand Dest

values for bothyears (correlationcoefficients r>0.95, Fig. 5), indicating that thedifferentiation

level for any given population pair was maintained over the period studied. Figure 5 clearly

showstwogroupsofpairwisecomparisons separatedbyagap.Somepopulationpairs exhibited

low differentiation values, including geographically close populations (for instance, most

populations pairs around the Strait of Gibraltar) and also distant populations (for instance,

Xàbia (XAB) with the two northernmost populations). A majority of population pairs,

however, showed high differentiation values at both years (Fig. 5).

The spatial analysis of shared alleles (SAShA), combining information of both years,

showed a significantly restricted spatial distribution of the alleles in our samples (expected

mean distance between co-occurrences: 497.98 km, observed mean: 353.63 km, p < 0.001)

(Fig. 6). These results imply that alleles occur more closely together than expected by

chance, indicating an overall restriction to gene flow. A more detailed analysis allele per

allele (only those distributed among at least two localities can be used in this approach)

(Fig. S2) revealed that this pattern is consistent among alleles, with the exception of

haplotype 4, which is more evenly distributed among localities. On the other hand, an

analysis based on the frequency of private alleles revealed a non-negligible migration rate

between localities, and the estimate was lower (1.139 migrants) for 2009 than for 2014
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(2.201 migrants). This difference relates to the higher mean frequency of private alleles

in 2009 (0.078) than in 2014 (0.053).

The results of the AMOVA grouping populations by sampling year showed that

most genetic variability occurred between populations in a given year (74.26%, p < 0.001)

and within populations (33.64%, p < 0.001) (Table 4). In contrast, the variance explained

by the factor year was negative and not significant. The Mantel tests showed in general

marginally significant results (FST-2009: r = 0.287, p = 0.065; FST-2014: r = 0.252,

p = 0.086; Dest-2009: r = 0.273 p = 0.066; Dest-2014: r = 0.252, p = 0.084), indicating an

overall relationship between genetic and geographic distances, albeit with the geographic

component explaining little variance in genetic structure.

DISCUSSION
Our setting is representative of many highly urbanized coasts along the Mediterranean Sea

and elsewhere, with a dense network of harbours and marinas of different sizes. We

focused specifically on small to medium-size harbours, which mainly host short-range

fishing fleets and recreational boats. These are typically sites of secondary dispersal for

introduced species (post-border dispersal sensu Forrest, Gardner & Taylor, 2009). In a

study of populations of Styela clava in New Zealand, Goldstien, Schiel & Gemmell (2010)

showed that large ports and marinas can have separate dynamics. Large ports with

commercial and overseas cruise activities are interspersed among our sampling areas

(Barcelona, Tarragona, Valencia, Cartagena, and Algeciras have the highest volumes of

traffic) and can act as initial entry points of introduced species from other seas.

Figure 2 Network of haplotypes. Median-joining haplotype network for Styela plicata using COI sequences. Area of circles is approximately

proportional to the number of individuals found for each haplotype. Partitions inside the circles represent the proportion of each population within

each haplotype. Lines between circles represent one mutational step, except where number of steps is indicated with roman numerals.
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Through the analysis of the genetic structure of populations of an introduced

ascidian over ca. 1,200 km of coastline at two time points five years apart, we have

found significant spatial differentiation, but negligible temporal variation. This was

contrary to our prediction of high variability related to both space and time in this

species that relies on human transport for dispersion between harbours. The system

was less dynamic than anticipated, showing temporal persistence in the genetic

composition of the populations over a period of time that encompassed at least

20 generations of the species. This time frame has also provided ample opportunities

for interchange via vessel movements, considering that fishing activities are continuous

and that recreational traffic is very active in the studied area, particularly in

summertime.

In another population of Styela plicata, Pineda et al. (2016) documented a much more

dynamic scenario with frequent gains and losses of microsatellite alleles. That population,

however, was located in an unstable habitat in the Atlantic Intracoastal Waterway (North

Carolina, USA), subject to periodic flooding and die-off episodes, which contrasts with

the apparent stability of the harbours analysed here, at least over the temporal scale

analysed. Importantly, Pineda et al. (2016) used both microsatellite and COI sequence

Figure 3 Tree of COI haplotypes. (A) Maximum Likelihood tree of partial COI sequences based on the

GTRmodel. The congeneric species Styela gibbsii was used as an outgroup. (B) Detail of the Styela plicata

branch (�) in (A) with bootstrap values indicated when > 50%.
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datasets, and the former was more informative than the latter. However, changes in

low frequency COI haplotypes were detected in Pineda et al. (2016) after die-off episodes,

suggesting that mitochondrial sequence information alone is enough to detect substantial

temporal changes in genetic structure.

Two major clades of COI have been described for Styela plicata (Pineda, López-

Legentil & Turon, 2011) and most of our sequences belonged to haplogroup 1. The

divergent haplotype 5 was the only representative of haplogroup 2, confirming its

presence in the Mediterranean Sea (Maltagliati et al., 2015). Overall, some

geographically close localities displayed very different haplotype composition

2009 2014 09-14
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Figure 4 Mean population differentiation. Mean values of population differentiation (FST in red;

Dest in grey) between population pairs in 2009, 2014 and between both years. Error bars correspond

to SE.

Figure 5 Population differentiation correlations. Correlation of both population differentiation estimators (FST (A) and Dest (B)) between 2009

and 2014 for all population pairs. Correlation coefficients and associated p-values are indicated.
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(e.g., Vilanova i la Geltrú and Arenys de Mar), while some widely separated

populations were genetically similar. Other localities, like Carboneras, exhibited a

haplotype composition completely different from all other populations. Therefore, the

spatial pattern was complex and heterogeneous, albeit with a tendency towards the

dominance of haplotype 1 in the North and haplotype 2 in the South of the studied

area. This tendency explains the marginally significant Mantel tests, as North-South

comparisons were also the most distant ones.

The dominance of a few haplotypes resulted in populations being relatively similar

or highly differentiated, depending on whether they shared one or several of these

common haplotypes, with few populations showing intermediate levels of variability

(Fig. 5). The analysis of statistics based on spatial distribution of alleles showed more

subtle patterns. For instance, the spatial analysis of shared alleles indicated a geographic

span of allele co-occurrences smaller than expected, which suggested some degree of

stepping stone dispersal among localities (Kelly et al., 2010). The inference based on

Figure 6 Results of the spatial analysis of shared alleles. The geographic distances observed between

co-occurring alleles and those expected under panmixia are given in (A) in the form of histograms and in

(B) as cumulative frequency plots. The observed and expected mean distances are indicated in the upper

graph.

Table 4 Analysis of molecular variance (AMOVA) for the COI gene.

Source of variation df Sum of squares Variance components % variation p-value

Between years 1 0.347 -0.02415 Va -7.90 0.848

Between populations

within years

16 81.256 0.22693 Vb 74.26 < 0.001

Within populations 377 38.762 0.10282 Vc 33.64 < 0.001

Total 394 120.365 0.30560
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private alleles, on the other hand, showed a small but non-negligible estimate of migration

between localities, and changes in private alleles were also detected between years.

Thus, the genetic composition of the populations may in fact change over time, but likely

at temporal scales much larger than the one studied here.

The results concerning spatial variability in ascidians inhabiting harbours and

artificial substrates showed a diversity of outcomes. Our finding of a significant spatial

component is consistent with results obtained in previous studies (e.g., Styela clava,

Dupont et al., 2009; Dupont et al., 2010; Botryllus schlosseri, López-Legentil, Turon &

Planes, 2006), while other introduced ascidians did not show spatial differentiation

at regional scales (e.g., Ciona spp., Zhan, Macisaac & Cristescu, 2010, Microcosmus

squamiger, Rius, Pascual & Turon, 2008; Ordóñez et al., 2013). In Styela plicata,

previous studies have shown significant spatial structure between harbour populations

(Torkkola, Riginos & Liggins, 2013; Maltagliati et al., 2015), although the degree of

differentiation could vary latitudinally as a function of temperature (David, Marshall &

Riginos, 2010).

Haplotype richness (1–4 haplotypes) and gene diversity values (mean Hd of ca. 0.2)

were generally low in the sampled populations and lower than reported for the same

marker in other introduced ascidians in harbours (e.g., Botryllus schlosseri, López-Legentil,

Turon & Planes, 2006; Lejeusne et al., 2010;Microcosmus squamiger, Rius, Pascual & Turon,

2008; Diplosoma listerianum, Pérez-Portela et al., 2013). In other cases, evidence for

bottlenecks and low genetic diversity was found associated with introduction events

(e.g., Corella eumyota, Dupont et al., 2007a; Didemnum vexillum, Stefaniak et al., 2012;

Perophora japonica, Pérez-Portela, Turon & Bishop, 2012). In further instances, a wide

range of genetic diversities has been found among introduced populations of some species

(e.g., Styela clava, Goldstien et al., 2011). In Styela plicata, low values of diversity, similar

to those found here, were reported for populations from Australia and New Zealand

(Torkkola, Riginos & Liggins, 2013), while in a study of 15 harbours in Italy (including

some big ports with international traffic), widely different values of haplotype diversity

were found (Maltagliati et al., 2015). The low genetic diversity observed here is consistent

with the idea that the studied populations are seeded by small number of individuals,

likely associated to local boating activities. However, the lack of significant changes in the

genetic structure of all investigated populations over time is unexpected and suggests

that interchange with other populations is sparse in time, and that genetic drift alone

in inherently small populations does not suffice to modify allele frequencies, at least at

the temporal scale surveyed (5 years).

In conclusion, our results confirm the stochastic nature of colonization of small

harbours and marinas by introduced species traveling as ship fouling. Recurrent

introductions do not seem to be frequent in these harbours, preventing genetic

homogenization over space and enabling the persistence of haplotypes in a given location

over time, barring major perturbations that result in die-offs (Pineda et al., 2016). Our

study area is representative of many highly urbanized coasts with dense harbours. In these

environments, the episodic chance arrival of early colonisers appears to determine the

structure of the harbour populations and the genetic composition of these early colonising
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individuals persists in the respective harbours, at least over moderate time frames

encompassing tens of generations.
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