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Abstract

In recent years, the knowledge about the control of tumor microenvironment has increased and 

emerged as an important player in tumorigenesis. The role of normal stromal cells in the tumor 

initiation and progression has brought our vision in to the forefront of cell-to-cell communication. 

In this review, we focus on the mechanism of communication between stromal and tumor cells, 

which is based on the exchange of extracellular vesicles (EVs). We describe several, evergrowing, 

pieces of evidence that EVs transfer messages through their miRNA, lipid, protein and nucleic 

acid contents. A better understanding of this sophisticated method of communication between 

normal cancer cells may lead to developing novel approaches for personalized diagnostics and 

therapeutics.
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One form of intercellular communication is through the exchange of secreted cell membrane 

fragments known as extracellular vesicles (EVs) into the extracellular space., The interest in 

understanding the role of EVs in cancer started in the late 1970s, when studies showed the 

secretion of EVs in both normal and cancer cells–. A correlation between elevated blood 

EVs levels in cancer patients– and other studies implicated EVs as potential diagnosis 

markers for cancer.– This has shifted recent research to focus on whether EVs play a 

supportive role in cancer pathology, including effects associated with cancer initiation, 

progression, angiogenesis and metastasis.

An important factor in the support of the tumor microenvironment is the cell–cell 

communication between stromal cells and transformed cancer cells. The role of gap 

junctions in transport of cellular communicators and juxtacrine regulation based on direct 

communication is well documented., Recently, Tsuyada et al. demonstrated the cancer-

stroma signaling circuit, in which breast cancer cells stimulate the expression of chemokine 
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CCL2 in normal fibroblasts that become cancer activated fibroblasts. In turn, this stimulates 

the stemness of breast cancer cells constituting the cancer-stroma-cancer signaling circuit.,

Recent studies have demonstrated that EVs exchange cargo of small RNA, mRNA, proteins, 

lipids and other regulatory molecules, between breast cancer cells and stromal cells., They 

are recognized as being involved in regulating a variety of extracellular signals and paracrine 

signaling,, including breast cancer invasiveness., A dynamic interaction between stromal 

cells, cancer cells and the tumor microenvironment facilitates tumor progression (Figs 1 and 

2)

 Tumor Microenvironment

Stromal cells in the tumor microenvironment play a very important role in tumor 

progression. This microenvironment includes untransformed cells surrounding the tumor, 

which is composed of extracellular matrix (ECM) and numerous stromal cell types, 

including endothelial and inflammatory immune cells, fibroblasts, adipocytes and tumor-

associated vasculature. Tumor malignancy is highly dependent on interactions between 

tumor cells and the tumor microenvironment. Studies on comprehensive gene expression and 

genomic profile study of epithelial, myoepithelial and stromal cells have revealed diverse 

microenvironments between normal breast tissue and breast carcinomas. Stromal elements 

secrete chemokines that act as paracrine factors that could induce ECM remodeling, enhance 

tumor cell proliferation and invasion., As an example of paracrine signaling in the tumor 

microenvironment, overexpression of the chemokines CXCL14 and CXCL12 in 

myoepithelial cells and myofibroblasts can enhance the proliferation, migration and invasion 

of breast cancer epithelial cells. Tumor stroma is also associated with therapeutic resistance 

and relapse—a main reason for breast cancer treatment failure.,

 Mesenchymal Stem/Stromal Cells in Cancer

Mesenchymal stem/stromal cells (MSCs) are multipotent cells of nonhematopoietic origin 

and constitute a minor population (0.01%) of nucleated cells in bone marrow.– MSCs are 

subsets of stromal cells and are known for their active mobilization from bone marrow and 

migration to sites of injury.– Various reports suggested that bone marrowderived MSCs are 

preferentially recruited to the tumor surrounding stroma when compared to normal stroma,

mainly by the inflammatory factors in the tumor microenvironment. These reports increased 

interest in understanding the potential role of MSCs in tumor progression. The MSCs 

recruited to the tumor microenvironment by various cytokines– act as precursors for 

pericytes and cancer associated fibroblasts.– MSCs promote tumor cell proliferation through 

their immunosuppressive properties and direct cell supportive properties., Earlier studies 

suggest that under nutrient-deprived conditions the MSCs associated with tumor stroma 

undergo autophagy, thereby facilitating tumor support through an anti-apoptotic secretome 

made of cytokines, growth factors and secreted vesicles such as EVs.
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 Extracellular Vesicles—Definition

The word “extracellular vesicle” is actually a generic term that refers to a series of 

membrane-bound organelles, which are commonly distinguished by their size range. More 

specific nomenclature for EVs include exosomes (40–100 nm diameter), ectosomes (50–

1,000 nm), argosomes and apoptotic bodies (50–5000 nm). There are problems in 

establishing a standard terminology in this field of research that have led to uncommon 

words such as “microparticles,” and even organ-specific classifications such as 

“prostasomes” used in literature. Any discrepancies between the characteristics of specific 

types of EVs is largely subject to debate, mainly due to the way these organelles are isolated 

(e.g., ultracentrifugation, use of a sucrose gradient, by biological markers), the precise 

context of study, or vesicle-specific properties. For the purposes of this review, EVs will be 

used for all organelles in this general category between 40 and 1,000 nm in diameter unless 

explicitly noted.

EVs are evolutionarily conserved, which suggests that they carry out important biological 

functions. Cells are known to secrete EVs due to factors such as environmental stress, 

cellular activation or apoptosis., The composition of EVs varies between cell types and 

environmental conditions, and a formal classification based on vesicles components is still 

being actively debated., As an example, exosomes can be characterized by membrane 

markers (CD63, CD81, CD9, TSG101 and Alix) though these markers are not exclusive to 

this type of EVs., Review article by van der Pol et al. elegantly describes other commonly 

used techniques to characterize exosomes, which include size distribution assays using 

optical microscopy and nonoptical microscopy based assays.,

 Extracellular Vesicles—Genesis

At least three mechanisms for EVs generation have been proposed: (i) decay of dying cells 

into apoptotic bodies, (ii) cellular cell membrane blebbing ectosomes and (iii) inward 

budding of endosomal limiting membrane followed by emission of cell membrane into 

EVs.,,– The result is outward budding and fission of vesicles from the tumor cell surface 

(Fig. 3). Some observations have also described a direct formation and release of EVs from 

cytoplasmic membrane budding of immune cells., The genesis of EVs that fall in the size of 

exosomes have been shown to occur both through inward budding of the endosomal limiting 

membrane to form multivesicular bodies (MVBs), which can fuse with the cell membrane 

and/or by budding off plasma membrane. The early stages of EVs synthesis starts with 

inward budding of the endosome membrane; such enriched endosomes are referred to as 

MVBs. A fraction of such MVBs can fuse with the plasma membrane releasing EVs into the 

extracellular milieu as exosomes or alternatively the exosomes can be directly secreted into 

extracellular fluid.

 Extracellular Vesicles—Isolation

Several methods of isolation have been described ranging from ultracentrifugation, density 

gradient centrifugation, immunoaffinity capture using magnetic beads and commercially 

available precipitation methods. Comparative studies using these techniques demonstrated 
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that the purity and the quality of preparations is dependent on the source of exosomes.–

Reports of EVs isolation, size, density and morphology should be interpreted with caution. 

Due to their small size and heterogeneity, conventional methods of classification for this 

type of biomolecule have proven to be difficult., EVs are hard to detect with basic light 

microscopy and flow cytometry because they are generally less than 200 nm in size. Several 

methods have been in use for isolation and purification of EVs, ranging from centrifugation 

techniques to antibody precipitation., Most commonly used is a differential 

ultracentrifugation including a sucrose density gradient.,, A recent study demonstrated that 

the g force and time of centrifugation significantly affect the quality of preparation. In 

addition, techniques such as these have been shown to change the size and morphology of 

EVs. For instance, while exosomes are frequently described as cupshaped in literature,,–

Thery et al. demonstrated that this morphology was actually an artifact caused by the 

fixation process for transmission electron microscopy. In another study by Connor et al., 
repeated freeze-thaw cycles of plasma rich in platelets caused a considerable increase of 

annexin-V in EVs. The EVs count in a sample can vary with storage time, temperature, 

buffer composition and agitation. Moreover, the presence of fetal bovine serum (FBS) in 

culture media has many limitations with issues of contamination from EVs of foreign 

species. Such variability warrants a systematic and detailed methods section be 

supplemented with every publication.

 Extracellular Vesicles—Cargo

Recent evidence shows that EVs can act as a unique vehicle for the release of soluble and 

insoluble molecules, including lipids, proteins and nucleic acids., EVs uptake by target cells 

may allow the exchange of these molecules from EVproducing cells. Such a mechanism 

would affect the target cell phenotype. EVs are enriched in lipids like ceramides, cholesterol 

and sphingomyelin, which promote vesicle release and play important roles in cell 

communication.– More than 300 different proteins have been detected within EVs. The 

proteins reportedly belong, but are not limited, to families of surface receptors, signaling 

molecules and cell adhesion molecules., Nucleic acids such as DNA, mRNA and noncoding 

RNA (long noncoding RNA, tRNA and microRNA) have been reported in EVs.– The 

mechanisms for EVs loading is unclear, however, a few types of proteins have been shown to 

be associated with MHC-II proteins that may play a role in protein sorting. For example, 

chaperones such as Hsc70, Hsp90, 14-3-3 epsilon and PKM2., Most proteins detected in 

exosomes are a class of proteins that lack secretory signal peptides, which are secreted 

through the ER-golgi pathway.,

MicroRNAs (miRNA) are noncoding small RNA (19–22 nucleotides in length) that play a 

wide spectrum of roles on both pre and post-transcriptional gene expression. miRNA are 

thought to regulate at least a third of the human genome by targeting mRNAs for 

degradation by the RISC complex, principally by targeting the 3’UTR coding mRNA,. 

Circulating miRNAs have been detected in various body fluids including serum, plasma, 

amniotic fluid, saliva, sweat, urine and milk. Data compilation shows that circulating 

miRNA are found both inside EVs secreted by all kind of cells or circulating miRNAs found 

bound to proteins. One example is miRNAs directly bind to Argonaute 2 (Ago2) proteins 

and form a very stable complex. Because of the high stability of the miRNA-Ago2 complex, 
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it is challenging to trace the original source of these circulating miRNAs since these protein 

bound miRNA can be co-isolated in exosomal preparation making it difficult to interpret the 

data from plasma or serum derived exosomes.

Single miRNAs have been identified to regulate the balance between normal and cancer 

cells. For example, the transfer of secreted miR-143 from normal prostate cells induces the 

growth inhibition of prostate cancer cells where miR-143 is downregulated. In another study, 

the EVs secreted by different cancer cell lines contain specific miRNAs (e.g., miR-9) that 

promote endothelial cell migration. A more recent study showed miR-23 inhibited 

metastasis and increased dormancy. The presence of miRNA into cancer cell-derived EVs 

seems to be driven selectively. For example, it has been shown that breast cancer cell lines 

secrete a variety of EVs containing more abundant and more diverse miRNA species 

compared to those secreted by normal epithelial cells., A recent study on quantitative 

analysis of miRNA content in exosomes suggest that most standard preparations of 

exosomes carry less than one miRNA molecule per exosome of any given miRNA. 

Therefore, standard preparations may not carry biologically significant numbers of miRNAs.

Furthermore, Kalluri lab demonstrated that the exosomes from cancer cells are capable of 

synthesizing miRNA independent of originating cell.

Horizontal transfer of mRNA and miRNA has been reported in numerous studies between 

normal cells,,– between embryonic stem cells,, from MSCs to cancer cells, between cancer 

cells,, from cancer to normal cells and from normal to cancer cells., This phenomenon 

indicates that transferred RNA may play a role in the regulation of gene expression in 

recipient cells. The ratio of RNA fragments found within EVs varies depending on the cell 

type from which the EVs originated.

Evidence that the loading of miRNAs into EVs may not in fact be random, but instead 

controlled by specific proteins involved in the miRNA network, was demonstrated by 

Gibbings et al. in 2009, by demonstrating the presence of Ago2 protein and a noticeable 

enrichment of GW182 in purified EVs. A recent study also demonstrates that sumoylation of 

the ribonucleoprotein hnRNPA2B1 controls the sorting of miRNAs to exosomes.

 Extracellular Vesicles—Transfer

EVs secretion by most of the normal cell types is a regular physiological phenomenon and a 

mode of intercellular communication for cell growth and activation. The evidence that EVs 

were involved in cancer was first documented in patients with Hodgkin disease in the late 

1970s. Since then, various studies have revealed the active involvement of EVs in different 

stages of cancer progression. In human breast cancer cell lines, there is a positive correlation 

between the amount of EVs released and the in vitro invasiveness of the cells. Similar results 

were observed in in vivo studies on ovarian cancer fluids. EVs secretion can provide either 

favorable or unfavorable features to cells depending on the contents of the EVs. Cancer cells 

can use EVs to evade protective mechanisms of the organism by inducing immune tolerance, 

expression of pro-apoptotic signals, extracellular matrix remodeling, drug resistance and in 

other various ways. EVs derived from antigen-presenting cells favor T cell activation.

However, EVs secreted by cancer cells induce apoptosis in T cells, thereby promoting tumor 
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cell survival., Cancer cells dispense caspase-3 through EVs, preventing its accumulation in 

cells that leads to apoptosis. EVs derived from cancer cells contain proteases and thereby 

increase the invasiveness of the cancer cells. Furthermore, EVs are shown to play a role in 

drug resistance in cancer cells through the transportation of multidrug resistant efflux pumps 

to other cancer cells in the surrounding environment, thus spreading drug resistance among 

cancer cells., In lung cancer models, an increased secretion of EVs containing VEGF and 

sphingomyelin under hypoxia conditions facilitates angiogenesis thereby rescuing the cancer 

cells from nutrient and oxygen deprivation.

 Extracellular Vesicles—Stromal Cell-Cancer Cell Crosstalk

Cancer cells actively interact with stromal cells through EVs. One study on invasive prostate 

cancer cell lines showed that cancer cells could not only activate fibroblasts in tumor stroma 

by secreting EVs, but also promote EVs release from these activated fibroblasts to advance 

their own migration and invasion. EVs contribute to the transformation of normal cells into 

cancer cells, as studies on breast carcinoma and glioma cells showed that EVs transfer tissue 

transglutaminase from cancer cells to both normal fibroblasts and epithelial cells. Similar to 

cancer cells, normal cells secrete EVs. Their function depends on the phenotype of the 

parent cells and the context. For example, EVs secreted by MSCs in breast cancers have 

been shown to be tumor supportive in primary tumor models and metastasis inhibitory in a 

metastatic model.

 Extracellular Vesicles—Regulatory Packages

Recent studies on miRNA sorting in EVs have indicated that the mature miRNA and its 

complementary miRNA are regulated. During active miRNA generation, the initial miRNA 

transcripts are processed by Drosha to produce miRNA hairpin precursors. Once exported 

from the nucleus by exportin-5, the primary miRNA hairpin precursors are cut by the 

endonuclease Dicer and released as short double stranded RNA molecules. Based on 

thermodynamic analysis of Watson-Crick terminal base pairs, one strand has generally been 

thought of as the active miRNA and the other strand is just a “passenger” (miRNA* also 

designated miRNA-3p or -5p depending on the context). Typically, the miRNA* strand is 

degraded, but recent analysis of nucleotide substitutions has implicated some miRNA* 

strands have a regulatory role. A recent publication demonstrating the presence of miRNA 

processing enzymes such as Dicer in exosomes further emphasizes the role of regulatory 

role of exosomes. Taken together, the evidence demonstrates a miRNA mediated regulatory 

role of EVs. However, other related studies demonstrate that functional properties vary 

significantly with the method of exosome preparations and the quantity of regulatory 

molecules loaded in exosomes should be factors of consideration.

Further studies demonstrating the regulation induced by the uptake of secreted miRNA in 

the recipient cells have been reported. Rat gliosarcoma cells expressing an miRNA that lacks 

homology in rat cells were co-cultured with cells expressing a luciferase reporter encoding 

the target mRNA. The decrease in luciferase reporter activity that was observed was reversed 

with the addition of carbenoxolone, indicating that gap junction communication regulates 

intercellular transfer of miRNA. Other studies suggest the same miRNA transfer mechanism 
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via gap junctions between cardiomyocytes in culture and between bone marrow stromal cells 

and a breast cancer cell line. Furthermore, transfer of functional miRNA from immune cells 

involving EVs was found to be a unidirectional and antigen-dependent driven mechanism. 

Targeting neutral sphingomyelinase-2 inhibited this transfer., miRNAs are well described to 

bind to the RISC protein complex but some miRNA have been reported to directly bind to 

other proteins, acting as a decoy and preventing the miRNA from blocking translation of 

mRNA. Fabbri et al. showed that EVs contain miRNAs that can reach and bind to Toll-like 

receptors (TLR)-containing endosomes in recipient cells, triggering a TLR-mediated 

prometastatic inflammatory response that may lead to tumor growth and metastasis. Thus, 

the role of transferred miRNAs secreted by donor cells can be not limited to post-

transcriptional effects in the recipient cells but can also act as a paracrine signal.

 Extracellular Vesicles—Metastasis

Metastasis is the leading cause of cancer death, yet it has been an enigma for researchers. It 

is considered a mechanistically inefficient process because of its dependence on very 

regulated and controlled systemic fueling. This premetastatic niche is presumed to play a 

role in dormancy, relapse and development of metastasis. An emerging role of EVs is 

formulating the premetastatic niche. Ghasemi et al. have termed these EVs “metastasomes” 

and hypothesized that they may aid foundation of the secondary lesions via a “malignant 

trait” spreading system that regulates the interactions between tumor tissue-specific RNA 

and the cell-type/tissuespecific RNA within the target organ, thus serving as tumororgan 

matchmakers. Recent studies have shown that these EVs are actually “customized” to the 

cancers. In studies comparing EVs from cancer cells and normal cells, the selectively 

exported miRNAs, whose release is increased in malignant cells, are packaged in structures 

that are different from those that carry neutrally released miRNAs.,

In closing, the recent discoveries on the study of tumor-derived EVs reveal new insights into 

the cellular basis of tumor stromal support. There is potential to translate this information 

into developing novel innovative approaches for cancer diagnostics and personalized 

therapy. The complexity and variety of the EV cargo implicates them in a multipronged 

approach toward tumor support, and hijacking their functions to engineer tumor-inhibitory 

EVs seems plausible. Most of the current knowledge is on the molecular profiling of the 

circulating EVs as biomarkers for cancers, which induces multiple platforms for 

personalized diagnostics. Recent literature demonstrates several possibilities of EVs as to 

whether the preparatory methods and studies performed are specific to the model system 

used. The debate is not easily resolved, but it stresses the importance of requiring in-process 

data for preparations and developing models to reconcile the differences in the observations 

related to the role of EVs in intercellular communication.
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Figure 1. 
Schematic representation of cellular cross talk in tumors: EVs are secreted by both cancer 

and normal cells either by budding directly from the plasma membrane or through 

invagination of the cellular membrane. This results in formation of EVs that contain 

cytoplasmic components like proteins, mRNA and other small noncoding RNA. Exchange 

of information between stem and cancer cells leads to proliferation of tumor at primary site 

but inhibits metastasis. [Color figure can be viewed in the online issue, which is available at 

wileyonlinelibrary.com.]
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Figure 2. 
Schematic representation of interactions between bone marrow niche (top) and cancer 

stroma (bottom). Bone marrow MSCs self-renew and also differentiate to various cell types 

that exhibit tumor supportive properties. MSCs are recruited from bone marrow to the tumor 

site through tumor derived soluble factors. MSCs secrete EVs containing various factors that 

support tumor progression. [Color figure can be viewed in the online issue, which is 

available at wileyonlinelibrary.com.]
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Figure 3. 
Schematic representation of formation and release of EVs: in response to cell stimulus EVs 

are shed from cytoplasm by budding of plasma membrane of the cell. Inset 1 & 2 represents 

electron microscopy showing shedding and budding EVs, respectively. EVs generated 

through invagination of plasma membrane accumulated in the MVBs and are released by 

exocytosis. Inset 3 represent an electron microscopic image showing MVBs. [Color figure 

can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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