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ABSTRACT

BACKGROUND AND PURPOSE: Rabbit aneurysm models are used for the testing of embolization devices and elucidating the mecha-
nisms of human intracranial aneurysm growth and healing. We used RNA-sequencing technology to identify genes relevant to induced
rabbit aneurysm biology and to identify genes and pathways of potential clinical interest. This process included sequencing microRNAs,
which are important regulatory noncoding RNAs.

MATERIALS AND METHODS: Elastase-induced saccular aneurysms were created at the origin of the right common carotid artery in 6
rabbits. Messenger RNA and microRNA were isolated from the aneurysm and from the control left common carotid artery at 12 weeks and
processed by using RNA-sequencing technology. The results from RNA sequencing were analyzed by using the Ingenuity Pathway Analysis
tool.

RESULTS: A total of 9396 genes were analyzed by using RNA sequencing, 648 (6.9%) of which were found to be significantly differentially
expressed between the aneurysms and control tissues (P � .05; false-discovery rate, �0.01; fold change, �2 or �.5). Of these genes, 614
were mapped successfully, 143 were down-regulated, and 471 were up-regulated in the aneurysms as compared with controls. Using the
same criteria for significance, 3 microRNAs were identified as down-regulated and 5 were identified as up-regulated. Pathway analysis
associated these genes with inflammatory response, cellular migration, and coagulation, among other functions and pathologies.

CONCLUSIONS: RNA-sequencing analysis of rabbit aneurysms revealed differential regulation of some key pathways, including inflam-
mation and antigen presentation. ANKRD1 and TACR1 were identified as genes of interest in the regulation of matrix metalloproteinases.

ABBREVIATIONS: IPA � Ingenuity Pathway Analysis; miRNA � microRNA

Cerebral aneurysm biology is poorly understood in general,

with the mechanisms for formation, growth, healing, and

rupture all in need of further elucidation. Understanding the

underlying biology of aneurysms involves detailing the expres-

sion patterns of large clusters of genes and the microRNAs

(miRNAs) that regulate them, alongside other biologic consid-

erations such as hemodynamics, which involves computa-

tional modeling of the fluid dynamics of the aneurysm and

surrounding vessels and has been examined in a number of

recent studies.1-5 miRNAs are small noncoding RNAs (�20

bp) that bind messenger RNA and mediate its degradation or

repression (Fig 1). Therefore, miRNA is an important regula-

tory molecule, and it is known to play a role in a variety of

pathologies.6-12 There are only a handful of previous studies

that have profiled miRNA expression in either human intra-

cranial aneurysms or relevant animal models13-15 and a small

number of studies that have focused on the roles of particular

miRNAs.16,17 Already these studies are revealing potential bio-

markers13 and the importance of these regulatory molecules.

Rabbit elastase-induced experimental aneurysms have been

used to study aneurysm occlusion devices and underlying aneu-

rysm biology.2,18-22 These previous studies relied on detailed in-

formation about the biologic environment of experimental rabbit

aneurysms. Existing studies have used RNA microarray data to

quantify gene expression.18,23-25 Compared with microarrays,

next-generation RNA sequencing offers increased specificity and

sensitivity, broader dynamic range, and the ability to detect new

transcripts and isoforms.26 It also enables the detection of

miRNA. In this study, we used RNA sequencing to establish dif-
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ferential expression patterns of messenger RNA and miRNA in

experimental rabbit aneurysms.

MATERIALS AND METHODS
Aneurysm Creation and Tissue Harvest
The Institutional Animal Care and Use Committee approved all

procedures before initiation of the study. An elastase-induced sac-

cular aneurysm was created in each of 6 New Zealand white rab-

bits by using the rabbit elastase model.27 Aneurysm and contralat-

eral common carotid artery samples were harvested 12 weeks after

aneurysm creation. These tissue samples were then immediately

frozen in liquid nitrogen and stored at �70°C until they were

ready for messenger RNA/miRNA extraction.

Messenger RNA and miRNA Extraction
RNA was isolated from the frozen tissues by using an miRNeasy

mini kit (Qiagen, Valencia, California). The quantity of RNA was

measured by using spectrophotometry, and the integrity of the

RNA was confirmed by electrophoretic separation using the 2100

Bioanalyzer (Agilent Technologies, Palo Alto, California). The

quality of the samples was determined by RNA integrity num-

ber.28 An RNA integrity number of �6 is considered acceptable

for sequencing. One aneurysm sample that did not meet the re-

quired RNA integrity number was excluded, along with its paired

control from the study, so that paired analysis could be performed

on the other samples. The remaining samples (n � 5 each for the

controls and the aneurysms) were used for RNA-sequencing

analysis.

RNA Sequencing
RNA libraries were prepared according to the manufacturer’s in-

structions for the TruSeq RNA sample prep kit version 2 (Illu-

mina, San Diego, California). Then, the libraries were loaded onto

paired-end flow cells following Illumina’s standard protocol by

using the Illumina cBot and cBot paired-end cluster kit (version

3). The flow cells were sequenced on an Illumina HiSeq 2000

using a TruSeq SBS sequencing kit (version 3) and HCS (version

2.0.12) data-collection software. Base calling was performed by

using Illumina’s RTA (version 1.17.21.3).

NEBNext miRNA Sequencing
miRNA libraries were prepared according to the manufactur-

er’s instructions for the NEBNext Multiplex small-RNA kit

(New England Biolabs, Ipswich, Massachusetts). Then, the li-

braries were loaded onto paired-end flow cells following Illu-

mina’s standard protocol by using the Illumina cBot and cBot

paired-end cluster kit (version 3). The flow cells were se-

quenced on an Illumina HiSeq 2000 using a TruSeq SBS se-

quencing kit (version 3) and HCS (version 2.0.12) data-collec-

tion software. Base calling was performed by using Illumina’s

RTA (version 1.17.21.3).

Bioinformatics Analysis
Processing of the messenger RNA data was performed by using

MAP-RSeq (version 1.2.1.3).29 MAP-RSeq consists of the follow-

ing steps: alignment, quality control, obtaining genomic features

for each sample, and summarizing the data across samples. The

pipeline provides detailed quality-control data to estimate the dis-

tance between paired-end reads, evaluates the sequencing depth

for alternate splicing analysis, determines the rate of duplicate

reads, and calculates the read depth across genes by using RSeQC

software (version 2.3.2).30 Paired-end reads were aligned by

TopHat (version 2.0.6)31 against the April 2009 oryCun2 genome

build by using the bowtie132 aligner option. Gene counts were

generated by using HTSeq software (version 0.5.3p9),33 and the

gene-annotation files were obtained from Ensembl (ftp://ftp.

ensembl.org/pub/release-75/gtf/oryctolagus_cuniculus/Oryctolagus_

cuniculus.OryCun2.0.75.gtf.gz) and the University of California

Santa Cruz (http://hgdownload.soe.ucsc.edu/downloads.html#

rabbit). Differential expression in a sample’s aneurysm tissue

compared with that in the same sample’s normal tissue was com-

puted by using the edgeR algorithm (version 2.6.2)34 across all

samples. EdgeR (or empirical analysis of digital gene expression in

R, an open-source programming environment) is a Bioconductor

software package for examining differential expression of repli-

cated count data; it calculates the log fold change, the

P value, and the false-discovery rate between the control and ex-

perimental conditions. Human orthologs were assigned by using

FIG 1. Diagram of miRNA regulation of gene expression. mRNA indicates messenger RNA; ORF, open reading frame; Pol, polymerase; Pri-miRNA,
primary microRNA; RISC, RNA-induced silencing complex.
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ExoLocator.35 The pathway analysis leveraged the Ingenuity

Pathway Analysis (IPA)36 software to identify pathways enriched

with human ortholog targets.

Quantitative Real-Time Polymerase Chain Reaction
Analysis
First-strand complementary DNAs were synthesized from 500 ng

of total RNA by using Superscript III first-strand synthesis (Invit-

rogen, Carlsbad, California). Real-time polymerase chain reac-

tion assays were performed for osteopontin, von Willebrand fac-

tor, TIMP1, tyrosinase, and TACR1 with an iCycler (Bio-Rad,

Hercules, California).

Statistical Analysis
The t-test statistics and corresponding P values were used as a

measure of the mean change in expression between the aneu-

rysm and control groups relative to the variability. The t-test–

based P values were adjusted for multiple comparisons by us-

ing the false-discovery-rate multiple-correction approach.37

Compared with controls, genes in aneurysms with a significant

difference, determined by a P value of � .05, a false discovery

rate of �0.01, and a fold change of �2, were considered up-

regulated, whereas those with a P value of �.05, a false discov-

ery rate of �0.01, and a fold change of �.5 were considered

down-regulated.

RESULTS
Using the criteria discussed above for differential expression, 648

of 9396 (6.9%) genes were identified as being differentially ex-

pressed. Of these genes, 614 were mapped successfully; 143 were

down-regulated, and 471 were up-regulated (On-line Table). The

34 unmapped genes consisted of rabbit genes for which no or-

tholog could be determined. Of 211 miRNAs measured, 11

(5.2%) mature miRNAs were identified as being differentially ex-

pressed by using the same criteria as were used for messenger

RNA. Targeting information was available for 8 of them that tar-

get 230 genes that have been differentially expressed. Increased

expression was seen in 5 of the miRNAs, and decreased expression

was seen in 3 (Table 1).

Pathways
The most up-regulated pathways are shown in Table 2 and Fig 2.

The first 4 pathways, all related to immune response, have the

leukocyte antigen genes (HLA) in common. Another pathway of

interest in aneurysms is coagulation. When comparing aneurysm

tissue with control tissue, IPA identified 50 up-regulated and 12

down-regulated genes related to coagulation, which includes 9

types of collagen, with 8 being up-regulated and 1 (type 28 �1)

being down-regulated (0.29-fold).

Biologic Functions of Interest

Inflammatory Response. The inflammatory response is pro-

jected to be a pathway of major up-regulation (z score, 4.387; P �

Table 1: miRNA expression data
Mature miRNA Fold Change P Value FDR

hsa-miR-1 0.48 4.62E-05 1.01E-03
hsa-miR-9-5p 0.43 4.80E-05 1.01E-03
hsa-miR-10a-5p 2.66 8.83E-09 4.66E-07
hsa-miR-10b-5pa 2.45 3.47E-07 1.47E-05
hsa-miR-21-5p 3.51 4.43E-11 4.67E-09
hsa-miR-34a-5p 2.34 1.15E-04 2.02E-03
hsa-miR-34c-5pb 3.79 1.28E-06 4.38E-05
hsa-miR-146a-5p 3.68 1.45E-06 4.38E-05
hsa-miR-146b-5pc 3.32 9.08E-11 6.39E-09
hsa-miR-204-5p 0.48 7.32E-06 1.93E-04
hsa-miR-223-3p 3.95 6.79E-12 1.43E-09

Note:—FDR indicates false discovery rate.
a Grouped with miR-10a-5p by IPA for targeting purposes.
b Grouped with miR-34a-5p by IPA for targeting purposes.
c Grouped with miR-146a-5p by IPA for targeting purposes.

Table 2: Most up-regulated canonical pathways, determined by IPA

Canonical Biologic Pathway
No. of Genes
Up-Regulated Genes

No. of Genes
Down-Regulated Gene(s)

Dendritic cell maturation 25 CD80, CD83, CD86, CD1C, COL10A1, COL1A1,
COL1A2, FCGR1B, FCGR2A, HLA-A, HLA-DMA,
HLA-DMB, HLA-DOB, HLA-DQA1,
HLA-DRA, HLA-DRB1, HLA-DRB5, IL15,
IL1B, IL1RL2, IL1RN, PIK3CG, PIK3R5, PLCB2,
TREM2

3 CREB5, PLCB4, PLCL1

Role of NFAT in regulation of
the immune response

22 BLNK, BTK, CD80, CD86, FCER1A, FCGR1B,
FCGR2A, FOS, GNG2, HLA-DMA, HLA-DMB,
HLA-DOB, HLA-DQA1, HLA-DRA,
HLA-DRB1, HLA-DRB5, LCP2, LYN,
PIK3CG, PIK3R5, PLCB2, SYK

2 PLCB4, GNAO1

Antigen-presentation pathway 12 CD74, HLA-A, HLA-DMA, HLA-DMB, HLA-DOB,
HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQB2,
HLA-DRA, HLA-DRB1, HLA-DRB5

0 NA

Altered T-cell and B-cell
signaling in rheumatoid
arthritis

17 CCL21, CD80, CD86, HLA-DMA, HLA-DMB,
HLA-DOB, HLA-DQA1, HLA-DRA, HLA-DRB1,
HLA-DRB5, IL15, IL1B, IL1RN, SPP1, TLR1, TLR8,
TNFSF13B

0 NA

Atherosclerosis signaling 19 ALOX5, CCL2, CCR2, COL10A1, COL1A1,
COL1A2, CXCR4, IL8, IL1B, IL1RN, LYZ,
MSR1, PDGFB, PDGFC, PDGFD, PLA2G7,
PLA2R1, SELE, VCAM1

1 RBP4

Note:—NA indicates not applicable; NFAT, nuclear factor of activated T cells.
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1 � 10�31). IPA identified 65 genes with expression directions

consistent with increased activity of this pathway and 21 genes

with inconsistent expression directions. CC chemokine–related

molecules (ligands 2 [5.3-fold]), 13 [8.7-fold], 14 [2.4-fold], 19

[7.0 fold], and 21 [8.2-fold], and receptors type 1 [32.1-fold], 2

[13.1-fold], and 5 [24.1-fold]) were up-regulated in aneurysms

compared with the control arteries. The expression of interleu-

kins was increased over the controls (ie, 7 [3.6-fold], 8 [12.4-fold],

15 [3.9-fold], and 1� [23.1-fold]), with interleukin 1 receptor

type 1 also being up-regulated (2.1-fold). Caspase 1, involved in

cleaving interleukin 1� into its active form, also demonstrated

increased expression (11.6-fold). It is worth noting that the inter-

leukin 1 receptor antagonist, an inhibi-

tor of the interleukin 1 receptor, was also

up-regulated in the aneurysms com-

pared with the control (25.0-fold).

Cellular Migration. Cellular migration

is up-regulated (z score, 4.587; P � 8 �

10�43). One hundred eighteen genes

with regulation directions consistent

with increased migration were identi-

fied, and 61 genes with inconsistent ex-

pression directions were identified.

Those involved with endothelial cell mi-

gration, which were highly expressed in

aneurysms over that of the controls,

included osteopontin, neuregulin 1, and

fibroblast growth factor 1. Oxidized

low-attenuation lipoprotein receptor 1,

thrombospondin 1, and selectin E showed

expression directions inconsistent with in-

creased cellular migration in the aneu-

rysms compared with the controls.

Validation of Microarray Data. Verification of differential gene

expression in the aneurysm and control arteries was performed

for 5 selected genes. Microarray gene-expression levels were com-

parable with those obtained by real-time polymerase chain reac-

tions (Fig 3).

DISCUSSION

In our study we found differential expression in a large assortment

of genes in tissue from experimental aneurysms compared with

FIG 2. Top 10 canonical pathways identified by IPA. NFAT indicates nuclear factor of activated T cells.

FIG 3. Validation of RNA-sequencing results by real-time polymerase chain reaction assays. The
real-time polymerase chain reactions are indicated by blue bars, and RNA sequencing is indicated
by red bars. LCA indicates left carotid artery; OPN, osteopontin; TIMP1, TIMP metalloproteinase
inhibitor 1; TYR, tyrosinase; TACR1, tachykinin receptor 1; vWF, von Willebrand factor.
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the contralateral common carotid arteries. The differentially ex-

pressed genes included groups related to the inflammatory re-

sponse, cellular migration, and coagulation, which may provide

insight into the biologic environment of unruptured human in-

tracranial saccular aneurysms.

The pathways up-regulated in aneurysms are involved primar-

ily in the immune response. The top 4 pathways all center around

the major histocompatibility complex, which is in agreement with

literature on human intracranial aneurysms.38,39

Increased expression related to inflammation was noted in hu-

man intracranial aneurysms in a number of studies.38-43 In particu-

lar, the up-regulation of genes related to the major histocompatibility

complex,38,39 the complement system,41-43 interleukins,42 and

chemokines38,42,43 has been observed. These same inflammation

markers were found in our study to be up-regulated, indicating that

the rabbit saccular aneurysm model maintains fidelity to the human

aneurysm with respect to inflammation.

These inflammatory molecules may be up-regulated in re-

sponse to a decrease in regulatory miRNA. miR-1 and miR-

204 –5p were both down-regulated in the tissue. miR-1 is pre-

dicted to target CCL2 and CXCL6 and has been observed to target

CXCR4,44 among others. miR-204 –5p is predicted to target

CCR2, CCR5, CXCR4, and IL1B, among others. miR-1 was re-

ported to be down-regulated in human intracranial aneurysms

and associated with an increased inflammatory response,14 which

is in contrast to experimentally induced rat cerebral aneurysm

models, which have shown increased levels of miR-1.15

Previous studies reported down-regulation of inflammatory

response genes at 2 weeks in the rabbit model.24 The wider array

of genes accessible via RNA sequencing in our study revealed a

large number of genes with expressions consistent with increased

activity of this pathway. Our results are consistent with the previ-

ous results with respect to calcium-binding glycoprotein os-

teonectin, which was found to be up-regulated in both studies.

Although we observed a lack of histologic evidence for inflamma-

tion in the rabbit aneurysm model,45 the differential expression of

inflammation-related pathways noted in this study is in accor-

dance with that in other human studies.38-43

Krischek et al38 noted differentially regulated networks that had

functions including cellular movement. In the first network they

mentioned related to cellular movement, 9 of their 19 overexpressed

genes were found to be overexpressed in our study as well, with none

of the remaining 10 demonstrating underexpression.

ANKRD1 was the most up-regulated gene in our dataset,

which may indicate that aneurysms heal via a wound-healing

pathway. A dramatic increase in the expression of this gene is

associated with tissue damage, and it plays an important role in

the following wound-healing process.46,47 One of its modes of

action is to regulate matrix metalloproteinases 13 and 10, which

are involved in extracellular matrix remodeling.48 ANKRD1 has

yet to receive attention in the context of aneurysm growth and

healing, but its connection with matrix metalloproteinases and

the wound-healing pathway, and that it was strongly up-regulated

in our model, suggest that it should be a gene of interest.

TACR1 is the most down-regulated gene in our dataset, and it also

relates to matrix metalloproteinase regulation. It is associated with

increased expression of matrix metalloproteinase 2,49 which our

group previously reported as being differentially expressed early after

aneurysm formation.45 The fact that the most up-regulated and most

down-regulated genes are involved in matrix metalloproteinase reg-

ulation is reflective of the fact that the role of matrix metalloprotei-

nases in aneurysm growth, healing, and rupture is complex, being

involved both for the weakening of the aneurysm wall and also the

migration of endothelial cells to the neck of the aneurysm.

Our study was limited. A rabbit RNA database was used for

messenger RNA expression, whereas human databases were used

for miRNA because a rabbit miRNA database is not available. The

RNA collected was not from a single cell type, and bias may have

been introduced by the presence of cells in the aneurysm different

than those in the left common carotid artery. We used IPA for

pathway analysis; different software can yield different results re-

garding the determination of a pathway as having been up- or

down-regulated. Also, “canonical” is essentially a meaningless

designation, though it is the term used in the IPA software.

CONCLUSIONS
Rabbit saccular aneurysms show differential expression in a num-

ber of pathways previously reported to play roles in aneurysm

biology. This expression is dominated by antigen presentation

and the inflammatory response. TACR1 and ANKRD1 are genes

with regulatory functions over matrix metalloproteinase activity,

and their roles in aneurysm biology require further elucidation.
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