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Abstract

Lying at the intersection between neurobiology and epigenetics, Rett syndrome (RTT) has 

garnered intense interest in recent years, not only from a broad range of academic scientists, but 

also from the pharmaceutical and biotechnology industries. In addition to the critical need for 

treatments for this devastating disorder, optimism for developing RTT treatments derives from a 

unique convergence of factors, including a known monogenic cause, reversibility of symptoms in 

preclinical models, a strong clinical research infrastructure highlighted by an NIH-funded natural 

history study and well-established clinics with significant patient populations. Here, we review 

recent advances in understanding the biology of RTT, particularly promising preclinical findings, 

lessons from past clinical trials, and critical elements of trial design for rare disorders.

 Progress in Identifying Potential RTT Therapeutics

RTT is a severe neurodevelopmental disorder resulting from mutations in the X-linked gene 

encoding methyl-CpG-binding protein 2 (MeCP2) [1]. Progress in understanding the 

pathophysiology of RTT and in identifying potential therapies has outpaced that in many 

other neurodevelopmental disorders due, in part, to the availability of rodent models with 

good construct and face validity [2–4]. These include strains of mice carrying either Mecp2-

null or hypomorphic alleles or human disease-causing mutations [2, 4], as well as an Mecp2-
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null rat model (SAGE Labs). In addition, some of the core symptoms of RTT, such as 

abnormal breathing, are more readily quantifiable and translate more directly from mice to 

humans compared with the complex behavioral abnormalities that define more prevalent 

disorders, such as nonsyndromic autism. Over the past few years, studies of the biology of 

MeCP2 (Box 1) and the consequences of MeCP2 loss for neural circuit function and 

behavior have led to the identification of potential therapeutic strategies [3–8], including: (i) 

molecular genetic approaches that target MECP2 itself, ranging from gene and protein 

replacement therapy to development of novel tools for activating the wild-type allele on the 

inactive X chromosome; (ii) pharmacologic approaches that target mechanisms downstream 

of MECP2 to restore excitatory–inhibitory synaptic balance in specific neural circuits, 

including some drugs that are now in early-stage clinical trials in patients with RTT (Figure 

1; see Table S1 in the supplemental information online for the figure references).

 Genetics and Clinical Features of RTT

The MECP2 gene is X linked and RTT mutations arise predominantly in the paternal germ 

line. Given that the gene is subject to X chromosome inactivation, most affected individuals 

are female heterozygotes who are somatic mosaics for normal and mutant MECP2. In rare 

cases, males can be born with an MECP2 mutation derived from the mother who either has 

favorable X chromosome inactivation patterns or gonadal mosaicism. However, because 

males have only one X chromosome, many such individuals are more severely affected than 

females and die, often early [9]. The prevalence of RTT is estimated at 1 in 10 000 live 

female births [10], corresponding to approximately 15 000 affected children and women in 

the USA and 350 000 worldwide. The disorder is diagnosed based on history and clinical 

presentation, and approximately 95% of individuals with a RTT diagnosis have a confirmed 

mutation in MECP2 [10]. While hundreds of mutations in MECP2 have been identified, 

eight hotspot mutations account for more than 60% of all cases [11].

Girls affected with RTT exhibit apparently typical early postnatal development followed by 

stagnation of developmental milestones and regression of skills, usually during the second 

year of life [12]. The hallmark symptoms of RTT include significant verbal and nonverbal 

communication deficits and the loss of motor skills, including purposeful hand use, which is 

replaced by almost constant stereotypical movements. Approximately half of affected 

individuals cannot walk and those who do have a wide-based and unsteady gait that becomes 

more pronounced with age. Particularly challenging, especially for families, is loss of 

speech. Autonomic and respiratory problems are frequent and include dysregulation of 

breathing with periods of hyperventilation, breath-holding, and abnormal cardiorespiratory 

coupling, gastrointestinal dysfunction, including severe constipation, and cardiac electrical 

problems, such as a prolonged QT interval. Seizures, anxiety, and orthopedic problems, such 

as scoliosis, contractures, and fractures, are common. Most individuals affected with RTT 

live well into adulthood and require total, round-the-clock care.

During the period of neurological regression, it is not uncommon for girls with RTT to 

exhibit autistic-like behaviors, such as social withdrawal [13]. However, as they get older, 

they often become very social and interactive. In fact, as noted by Andreas Rett, when he 

first described the disorder in 1966 [14], many girls with RTT have a penetrating gaze that 
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they use effectively for communication purposes. Despite the fact that RTT is no longer 

classified as an autism spectrum disorder (ASD) in the latest (5th) edition of the Diagnostic 
and Statistical Manual of Mental Disorders, an individual with RTT can also receive a 

diagnosis of ASD if she meets the behavioral criteria.

Although RTT has historically been described as a cognitive disorder, recent data suggest 

that the girls have strong receptive language [15]. Without the ability to speak or to adeptly 

use their hands for pointing, typing, or sign language, expressive language is difficult. 

Evolving strategies in teaching and augmentative communication technologies have resulted 

in fresh perspectives and attitudes about what individuals with RTT can achieve [16].

 Neural Circuit Defects Resulting from Loss of MeCP2

Despite ongoing questions about the normal function of MeCP2, the effects of MeCP2 

deficiency on many aspects of brain structure and function are now clear. Histopathological 

evidence from patients with RTT and Mecp2 mutant mice shows that loss of MeCP2 does 

not result in neuronal cell death, axonal degeneration, or other irreversible deficits [17], 

consistent with the finding that neurological dysfunction in conditional Mecp2 mutants is 

largely reversible upon reactivation of silent Mecp2 alleles [18]. By contrast, numerous 

structural and functional abnormalities have been identified at the level of brain 

microcircuits, all of which are potentially reversible. For example, reduced dendritic 

complexity and spine density are consistent findings in Mecp2 mutant mice and in 

postmortem material from patients with RTT [2, 19–21]. Mecp2 mutants also exhibit 

decreased expression of multiple neurotransmitters, neuromodulators, transmitter receptors, 

and transporters required for normal synaptic function [2, 3, 6, 9]. To the degree that these 

endpoints have been analyzed in human samples, similar deficits have been found, including 

decreased levels of brain monoamines and their metabolites, decreased cholinergic markers 

and abnormal patterns of NMDA receptor expression [22–25] (also see references in [9]). 

These changes may arise in large measure from the failure of activity-dependent 

mechanisms that depend on intact MeCP2 function and are required to maintain fully 

differentiated neuronal and synaptic phenotypes [26]; this view is supported by the fact that 

loss of MeCP2 at any stage of life is deleterious [27, 28]. In addition, abnormal glial 

function may also have a role [29]. As a result of these molecular and cellular abnormalities, 

brain microcircuits in Mecp2 mutants exhibit shifts in excitatory–inhibitory synaptic balance 

[19], defects in homeostatic synaptic scaling [30], excitatory or inhibitory connectivity [31], 

and/or changes in intrinsic neuronal excitability compared with controls [32, 33].

Of particular interest is the topology of changes in neural circuit function in the MeCP2-

deficient brain. Studies in Mecp2-null and heterozygous mice demonstrated that loss of 

MeCP2 results in a regional pattern of dysfunction characterized by excitatory 

hypoconnectivity in many forebrain structures and hyperconnectivity in the caudal brainstem 

compared with wild-type mice [34] (Figure 2). For example, shifts in excitatory–inhibitory 

synaptic balance towards reduced excitation and/or increased inhibition have been 

documented in all cortices examined thus far, including somatosensory, visual, motor-

frontal, and medial prefrontal (mPFC) [35–38]. These regions also exhibit marked 

reductions in the expression of the immediate early gene product Fos, a surrogate marker of 
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neuronal activity [34]. By contrast, brainstem structures, including the locus coeruleus, 

nucleus tractus solitarius, and ventrolateral medulla, exhibit shifts towards synaptic or 

intrinsic hyperexcitability [32, 39], increased Fos expression [34], and enhanced excitatory 

activity in respiratory motor nerves [40]. An exception to this dichotomy between forebrain 

and brainstem is the hippocampus, which is hyperexcitable in Mecp2 mutants due, at least in 

part, to a loss of excitatory synaptic drive to inhibitory interneurons [41] and increased 

network synchrony [42].

This regional pattern of functional hypo- and hyperconnectivity accords well with the 

clinical picture of RTT; that is, cognitive and behavioral deficits consistent with cortical 

hypofunction coupled with paroxysmal events in brainstem control of respiratory and 

autonomic outflow. However, the prevalence of seizures in RTT seems at odds with the fact 

that excitatory synaptic drive onto pyramidal neurons is reduced in cortical circuits in 

MeCP2-deficient mice. On the other hand, increased network synchrony, even in the face of 

reduced excitatory connectivity may be a key factor driving epileptiform discharges in RTT 

[42]. Given the importance of the forebrain in regulating brainstem autonomic, respiratory 

and somatomotor outputs, the interplay between cortical hypofunction and brainstem 

hyperactivity likely has a key role in the pathophysiology of RTT. Thus, a major goal, and 

challenge, in therapy development for RTT is to redress excitatory–inhibitory imbalance not 

only in particular neuronal cell groups, but also across the neuraxis as a whole.

 MECP2 and MeCP2 as Therapeutic Targets

 Gene Dosage Concerns

The ultimate goal of strategies that target MECP2 directly would be to normalize expression 

without affecting the levels of other genes. However, these treatment approaches must 

carefully consider the consequences of MeCP2 dosage. An excess of MeCP2 in both 

humans and mice impairs neuronal development and causes severe neurological dysfunction. 

For example, mice overexpressing MeCP2 display seizures and hypoactivity [42, 43], and 

boys with MECP2 duplication syndrome exhibit some phenotypes that are similar to RTT 

[44–46]. Recent investigations in mice have shown that the syndrome associated with 

MeCP2 doubling requires two functional gene copies [47]. Accordingly, both gene therapy 

and small-molecule strategies to normalize MECP2 gene expression levels must take care to 

provide enough MeCP2 per cell to impart a therapeutic benefit, while limiting MeCP2 

overexpression.

 Activating MECP2 on the Inactive X Chromosome by Small-Molecule Approaches

Most mutations in MECP2 prevent production of functional MeCP2 protein, rather than 

producing a partially functional or dominant-negative protein [47], suggesting that 

reactivating the wild-type copy of MECP2 on the inactive X (Xi) may be a viable approach 

for treating most forms of RTT. The therapeutic value of reactivating disease genes has been 

previously demonstrated in the case of the neurodevelopmental disorder Angelman 

syndrome, in that a dormant but intact copy of the Ube3a gene can be pharmacologically 

activated to replace the mutated active copy of Ube3a in a mouse model [48, 49]. Thus, the 

technology and procedures for identifying gene unsilencing agents are already established. 
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Towards this goal, Mecp2-GFP fluorescent reporter mice offer a valuable tool for assessing 

allelic activation of Mecp2 (Figure 3). One can use high-content imaging of neurons from 

these mice to assess changes in GFP expression in a high-throughput, small-molecule 

screen. This approach is unbiased and is only limited by cost and the availability of drug-

screening libraries. This screening approach cannot discriminate on first pass between 

compounds that are specific to de-inactivating Mecp2 or that produce global X de-

inactivation, but these possibilities could be easily distinguished with secondary screens and 

experiments. It will be essential to validate activities in patient iPSC-derived neurons to 

verify their applicability to humans.

Rather than specifically targeting MECP2, some therapeutic approaches might involve 

reactivating the entire inactive X (Xi). While this approach may seem intuitively less 

attractive, recent work has shown that the loss of a protein hormone, Stanniocalcin 1 (Stc1) 

[50], perturbs silencing at a handful of X-linked genes, including Mecp2, and produces X 

reactivation without grossly affecting chromosome-wide gene expression [51]. Thus, 

approaches that specifically reactivate MECP2 or that produce more widespread X 

chromosome reactivation might help to restore normal MeCP2 protein levels and treat RTT. 

Successful translation from screening to the clinic will depend on whether active compounds 

are safe, can be easily administered, are diffusible across the blood–brain barrier, and 

achieve relatively stable MeCP2 restoration broadly across relevant cell types.

 Gene Therapy and/or Genome Editing

Another possible therapeutic approach to restoring MeCP2 function is a gene replacement or 

gene-editing strategy. The recent discovery of adeno-associated virus (AAV) vector designs, 

such as AAV9, that can achieve widespread gene transfer across the nervous system has 

opened up the possibility of a translatable gene therapy approach for RTT [52–54]. Two 

groups have independently demonstrated the potential of gene replacement therapy in RTT 

model mice, showing that intravenous delivery of an AAV9/MeCP2 vector prolonged the 

lifespan of MeCP2 knockout mice as well as partially normalized behavioral phenotypes of 

male and female RTT mice [55, 56]. The challenge of gene therapy is to deliver and express 

MeCP2 within a narrow range of expression that is therapeutic without resulting in 

detrimental overexpression. For example, although the AAV9 vector can deliver the MECP2 
gene across the blood–brain barrier to the brain, approximately 100-fold higher gene transfer 

occurs to the liver, resulting in some liver toxicity [55]. Thus, the greatest challenge for gene 

therapy is the ability to homogenously deliver the MECP2 gene, but to avoid overexpression 

in the context of a mosaic mixture of wild-type and affected cells in RTT females.

In theory, gene or mRNA editing could circumvent problems associated with MeCP2 

dosage, since only the mutant MECP2 would be targeted and MeCP2 would retain all of its 

endogenous regulation [57, 58]. However, development of a translatable gene-editing 

approach is confounded by the following unresolved issues: (i) the ability to deliver the 

nuclease and editing template broadly to all cells; (ii) the relatively low efficiency of gene 

editing in vivo in postmitotic cells; (iii) potential nonspecific nuclease cleavage elsewhere in 

the genome, especially upon chronic expression of the editing nuclease; and (iv) potential 

immune responses against the editing nuclease, which would be a nonhuman protein.

Katz et al. Page 5

Trends Neurosci. Author manuscript; available in PMC 2016 June 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Protein replacement is another approach that could conceptually offer the ability to titrate 

appropriate MeCP2 levels, but this would need to overcome the following obstacles: (i) 

ensuring the proper post-translational modifications are present; (ii) homogenous and 

ongoing delivery of the appropriate levels across the blood–brain barrier; and (iii) adequate 

cell penetration and localization of the supplied MeCP2 to the nucleus. In addition, 

pharmaceutical compounds have been developed that allow the read through of premature 

stop codons [59]. Conceptually, this could provide functional MeCP2 from the endogenous 

active allele, retaining native regulatory elements and circumventing any risk of 

overexpression-related toxicity. This treatment would only apply to disease-causing MECP2 
mutations that introduce in-frame premature stop codons, representing approximately 35% 

of patients. Such a strategy was able to provide some full-length MeCP2 in cultured R168X 

mouse fibroblasts [60]; however, this has not yet been shown to be effective in in vivo 
models.

 Therapeutic Targets Downstream of MECP2

By using clinically relevant outcome measures, preclinical studies of potential RTT 

therapeutics have, in a relatively short period of time, produced compelling evidence that 

signaling pathways well downstream of Mecp2 can be effectively targeted to ameliorate 

specific disease symptoms. In general, the pathways that have been targeted fall into three 

categories: (i) classical neurotransmitter and neuromodulator systems, including 

noradrenergic, serotonergic, glutamatergic, GABAergic, and cholinergic signaling; (ii) 

growth factor signaling, including brain-derived neurotrophic factor (BDNF) and insulin-like 

growth factor 1 (IGF-1); and (iii) metabolic signaling, including the cholesterol biosynthesis 

pathway and mitochondrial function [3, 4, 6, 61].

Given that loss of MeCP2 results, to varying degrees, in dysregulation of all of these 

pathways, it is generally thought that pharmacological strategies focused on targets 

downstream of Mecp2 will likely require multiple drugs to effectively treat the full spectrum 

of RTT symptoms. By contrast, patients’ quality of life (QoL) would be significantly 

improved by treatments that ameliorate or reverse even one of the core symptoms of the 

disease. In this regard, pharmacological improvement of breathing abnormalities is a 

particularly good example of preclinical findings with high translational potential. 

Dysregulation of breathing is a core feature of RTT in up to 93% of patients, significantly 

impacts QoL, and is thought to contribute to early mortality in some patients [62]. In human 

RTT and mouse models, respiratory dysfunction is characterized by periods of 

hyperventilation and prolonged respiratory pauses, including breath holds and apneas [62], 

which can be rigorously quantified using noninvasive plethysmography. Several laboratories 

have now shown that respiratory abnormalities in RTT mice can be significantly improved 

by manipulating diverse transmitter or neuromodulatory systems, including glutamatergic, 

GABAergic, noradrenergic, serotonergic, and neurotrophin signaling, either with 

experimental molecules or drugs already approved by the US FDA for other indications [62, 

63].

Of particular interest are drugs that improve function across multiple symptom domains. 

One such example is the nonselective NMDAR antagonist ketamine (2-O-chlorophenyl-2-
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methyl-amino cyclohexanone), which has been independently validated in two different 

laboratories in two different strains of Mecp2 mice and is now in a clinical trial with RTT 

patients (Table 2). The therapeutic potential of ketamine for treating RTT was first 

demonstrated by Katz and colleagues, who found that treatment of heterozygous female 

Mecp2 mutant mice with a subanesthetic dose of ketamine (8 mg/kg) acutely reversed 

abnormalities in Fos expression and sensorimotor function [34]. More recently, chronic 

administration of ketamine was also found to improve symptoms and extend lifespan in null 

male Mecp2 mutants [64]. The ability of low-dose ketamine to improve function across a 

broad range of symptoms may be related to its ability to increase cortical network activity, 

presumably by selective inhibition of GABAergic interneurons [65], as well as to decrease 

synaptic excitability in brainstem networks important for respiratory and autonomic control 

[66]. Thus, ketamine and related molecules may be ideally suited to redress the imbalance 

between cortical and brainstem activity that characterizes the MeCP2-deficient brain (Figure 

2). Moreover, in addition to its acute effects on circuit function, work in other disease 

models has shown that ketamine also rapidly stimulates dendritic growth, BDNF translation, 

and expression of key synaptic proteins [67, 68], at least in part through activation of mTOR 

signaling, which is deficient in Mecp2 mutants [69]. These findings suggest that, in addition 

to acute rescue of neurological function, ketamine also has the potential to effect long-term 

synaptic repair in RTT by enhancing structural and functional connectivity, as previously 

shown in animal models of depression and stress [70].

 Clinical Trials: Resources, Possibilities and Challenges

 The United States RTT Natural History Study

Clinical trials in rare diseases are confounded by the limited, often heterogeneous, pool of 

affected individuals, and difficulty selecting endpoints with a large effect size [71–75]. 

However, observational natural-history studies have been useful to understand the range of 

manifestations and progression of other rare diseases, and to establish valid and reliable 

short-term and long-term outcome measures or biomarkers [76, 77]. Therefore, the United 

States RTT Natural History Study (USNHS) was conceived in 2003 to acquire longitudinal 

baseline data in preparation for clinical trials. The objectives of the USNHS are to evaluate 

the current RTT diagnostic criteria, to examine phenotype–genotype correlation, and to 

understand the evolution of developmental milestones and associated features, such as 

seizures, scoliosis, gastrointestinal issues, and breathing dysfunction. At each visit, 

physicians administer two commonly used RTT instruments (the Clinical Severity Score, 

and the Motor-Behavioral Assessment [78, 79]) and health-related QoL measures for both 

caregivers and, by proxy, RTT participants. Several lessons have been learned from the 

USNHS that can now help inform clinical trial design. For example, the study revealed some 

phenotype–genotype correlations [11, 80] that could aid in stratifying patients into more 

homogenous subgroups for clinical trials. The study also showed that most RTT sequelae are 

not static over time [81, 82], presenting a significant challenge for crossover trials conducted 

over several months.

Katz et al. Page 7

Trends Neurosci. Author manuscript; available in PMC 2016 June 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



 Lessons from Past Trials

Over the past three decades, 16 studies of treatment effect have been conducted in RTT 

(Table 1). Nine others are either underway or in prerecruitment status (Table 2). Many of the 

completed studies were handicapped by critical design flaws, which can serve as lessons and 

warnings for future trial design. Remarkably, only three were parallel, randomized, double-

blind, placebo-controlled trials (RCT). Five others were crossover studies, a design in which 

subjects initially receive either the active drug or a placebo, and then switch to the opposite 

group. Although most studies reported improvement in some outcome measures (Table 1), 

these have not been independently validated and none have resulted in the use of these 

treatments in clinical practice.

The crossover design can be problematic in RTT, as highlighted by the naltrexone study 

[83]. The researchers tested the hypothesis that a period-by-treatment interaction existed 

before and after the 30-day washout period. Although the half-life of naltrexone is less than 

1 day, the researchers found a carryover effect that confounded analysis. Changes, 

particularly in behavioral outcome measures, may outlast the drug in an unpredictable 

manner. The same authors conducted the folate-betaine study, a balanced allocation, parallel 

RCT, which is the largest and longest RCT to date in RTT [84]. The authors recognized 

methodological issues in their naltrexone study; accordingly, they altered the design to 

exclude young participants, who are in a period of rapid change, and selected a longer, 

parallel design, as opposed to a crossover design. Also recognizing the strong placebo effect 

in parent reporting of outcome measures, they implemented numerous objective measures, 

including laboratory, polygraphic, neurophysiological, anthropometric, nutritional, and 

clinical assessments. The only objective finding was improved head growth in the treatment 

group; however, this effect apparently reflected the overrepresentation of a ‘mild’ MECP2 
mutation in the active treatment group, highlighting the need for balanced allocation based 

on genetic characteristics.

In an attempt to shorten the clinical trials process, a recent IGF-1 study in patients with RTT 

[85] used the highest dose of IGF-1 already approved for other indications, rather than 

applying to the FDA for permission to use higher doses. However, this study concluded that, 

due to the complex pharmacokinetics of IGF-1, the FDA-approved maximum dosing 

regimen was inadequate for a Phase II study [85], highlighting the need for rigorous dose 

exploration in both preclinical and clinical trials.

 Trial Designs

Given that the standard clinical trial process requires thousands of subjects and many years 

to complete, rare disease researchers have attempted to streamline this process. Open-label 

designs require fewer participants, all of whom are guaranteed to receive the medication, and 

have been used for most studies in RTT. However, this model is confounded by multiple 

sources of bias, most notably the placebo effect, which was 63% in one RTT clinical trial 

[86]. Consequently, the results of these studies can be uninterpretable. In rare diseases, 

historical controls have been sufficient for FDA approval of an investigational drug. Since 

the placebo effect can be large, an objective historical control with good reliability must be 

chosen if it is to be used in lieu of a placebo group. Another strategy, the adaptive design, 
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incorporates participant covariate values and prior responses to treatment. Response-

adaptive trials and sequential designs offer the ability to recruit fewer participants overall, 

and minimize the number who receive placebo [87]. Crossover designs necessitate longer 

trials and pose the risk of carryover effect; as an alternative, Bayesian statistics can help 

incorporate previous information (e.g., from natural history studies) into the clinical trial 

design, improving statistical power and limiting the number of subjects needed for a trial 

[88]. Alternative trial designs can increase the possibility of type 1 error and, thereby, the 

approval of medications that are not in fact safe and efficacious. However, systematic 

postmarketing studies (i.e., additional clinical trials of safety and effectiveness after a drug 

has been approved for use) can attenuate this risk in a rare disease.

 Concluding Remarks and Future Directions

This is a promising time for the RTT field as researchers move closer to understanding the 

basic biology of MeCP2 and there are more and more examples of interventions that 

improve or reverse symptoms in mouse models. By definition, therefore, this is also a time 

for caution, because the expectations of families affected by RTT must be managed 

appropriately (see Outstanding Questions). Based on a wealth of experience with other 

disorders, the chance that any particular treatment will translate from preclinical RTT 

models to humans is predicted to be low. However, with increased attention to rigorous 

preclinical trial design in RTT [2], it is hoped that success in translation will improve. 

Although streamlining the clinical trials process could result in more drugs being brought to 

market, the great risk is that many will lack true efficacy unless adequate safeguards are in 

place. The RTT field will also face the challenge of which trials to run, given a relatively 

small patient pool and funding limitations. Fortunately, with recent incentives from the FDA 

for companies to invest in drug development for orphan indications, there is new hope that 

the RTT field will be able to attract the kind of large-scale funding that is required to run 

clinical trials. Nonetheless, as preclinical studies generate more and more promising results, 

the need to prioritize clinical trials will become increasingly important and will require a 

high degree of coordination within the RTT community and with industry partners. If a 

concerted global effort can be made in optimizing preclinical research, clinical trial design, 

and prioritization goals, pooled resources and shared methodology could result in efficacious 

treatments for RTT in the near future.
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Trends

Studies of RTT mouse models have convincingly demonstrated that neurological 

disability caused by loss of methyl-CpG-binding protein 2 (MeCP2) function is reversible 

to a significant degree.

Recent insights into the biology of MeCP2 and its role in regulating interactions between 

DNA and repressor protein complexes seemed poised to resolve longstanding 

controversies about the role of MeCP2 in transcriptional control.

The knowledge that reintroduction of Mecp2 can restore circuit functionality in mouse 

models of RTT has spurred the investigation of gene replacement and gene reactivation 

strategies as comprehensive and potentially transformative treatment approaches for RTT.

Pharmacologic strategies targeting neurotransmitter and neuronal growth factor signaling 

pathways have proven highly effective at improving neurological function in mouse 

models of RTT.

The natural history of RTT is becoming increasingly well defined, facilitating the 

identification of clinically measurable endpoints for therapeutic trials.
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Box 1. Function of MeCP2

MeCP2 is a basic nuclear protein that is highly expressed in the brain [89]. Its amino acid 

sequence is conserved in vertebrate evolution, being 95% identical between humans and 

mice. Functional studies have identified a DNA-binding domain (MBD) as the major 

determinant of chromosome binding through its affinity for short sequences in the 

genome that contain 5-methylcytosine (mC) [90]. Methylation of the cytosine pyrimidine 

ring follows DNA synthesis and primarily affects the two base-pair sequence CG, which 

becomes a major target of MeCP2 binding [91, 92]. However, other methylated sites are 

now known and some of these also bind MeCP2. In particular, the sequence mCA, which 

is abundant in neurons but rare in other cell types, is established as a target for MeCP2 

[93, 94]. In addition, the oxidized derivative of mC, hydroxymethylcytosine (hmC), is 

also abundant at CG sites in the brain and is elevated at transcriptionally active genes and 

their regulatory regions [95]. MeCP2 does not bind to hmCG, suggesting that this 

chemical change switches the mCG site to a form that cannot interact with the protein 

[94, 96]. In the genome, both mCG and mCA are broadly distributed, but are absent at 

CpG islands, which surround the promoters of most genes [97]. Accordingly, MeCP2 

binding to the brain genome is relatively uniform, but dips sharply at CpG islands [91, 

98].

Binding to DNA is evidently an essential part of MeCP2 function, because mutations that 

compromise MBD function cause RTT [99]. MeCP2 interacts with other partner 

macromolecules, but so far only one such protein–protein interaction has been 

experimentally linked to RTT. A discrete domain within the C-terminal half of the protein 

binds to the two closely related co-repressor complexes NCoR and SMRT (hence ‘NCoR/

SMRT Interaction Domain’ or NID) [100] and mutations that disrupt binding cause RTT. 

The importance of DNA and co-repressor interactions is highlighted by the mutational 

spectrum underlying RTT. Of the many documented disease-causing mutations, missense 

mutations are particularly informative because they accurately pinpoint important 

functional domains. The distribution of RTT missense mutations is strikingly nonrandom, 

being largely confined to regions of the gene that encode the MBD and the NID [101]. A 

simplistic explanation for this observation is that MeCP2 forms a bridge between 

methylated DNA and the co-repressor complexes, and disruption of the bridge at either 

end results in RTT [100].

While there is a depth of biochemical and genetic evidence favoring the idea that MeCP2 

represses transcription [100, 102, 103], analysis of gene expression in MeCP2-deficient 

brains does not reveal simple derepression of genes [104, 105]. Instead, large numbers of 

modest transcriptional changes are observed, both positive and negative. Analysis of 

multiple published and novel gene expression data sets uncovered a subtle but consistent 

upregulation of long genes in the MeCP2-deficient brain [94]. Given that many brain-

specific genes are long, it is possible that modestly deregulated expression of thousands 

of such genes compromises brain function. By contrast, a separate study suggests that 

genes with more bound MeCP2 are either up- or downregulated in its absence [98]. 

However, both studies agree that non-CG methylation (e.g., mCA) makes a 

disproportionately large contribution to this effect.
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Several other hypotheses have been advanced to explain MeCP2 function. For example, it 

has been proposed, based on functional studies, that MeCP2 is an activator of 

transcription [105–107], a regulator of miRNA processing or splicing [108, 109], a 

facilitator of chromosome looping or compaction [110, 111], or a regulator of several 

other aspects of cellular metabolism. A way of unifying these disparate potential 

functions is to propose that MeCP2, similar to some other relatively unstructured protein 

molecules, serves as a coordinating platform for multiple different interactions. In other 

words, MeCP2 might be an important ‘multifunctional hub’ for many pathways that 

support brain function [112].
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Outstanding Questions

Can the apparent imbalance between cortical hypoconnectivity and brainstem 

hyperexcitability in the MeCP2 deficient brain be addressed by pharmacological 

strategies aimed at restoring the excitatory–inhibitory synaptic balance? Will this require 

combination therapies targeting multiple neurotransmitter and/or neuromodulator 

signaling pathways?

Can gene replacement or MECP2 reactivation strategies be developed that are effective 

and safe for human translation? In particular, will it be possible to titrate MeCP2 levels 

within the relatively narrow range required for healthy brain function?

What criteria will be used to prioritize the selection of candidate therapeutics that 

advance to clinical trials in patients with RTT? Presently, candidate molecules are being 

proposed at a rate that exceeds the patient population and resources needed to study them 

using the traditional clinical trial model.

What is the optimal clinical trial design to study a rare neurological disease? An optimal 

design would incorporate expected delays between improved neuronal function and 

measurable changes in clinical symptoms or behavior, the likelihood of effect outlasting 

treatment cessation, and patient-specific data, such as genotype.
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Figure 1. Therapeutic Targets and Potential Pharmacological Strategies Currently Being 
Explored in Animal Models for the Treatment of Rett Syndrome
Underlined headings indicate therapeutic targets; compounds that have been reported in the 

literature to be effective in improving behavioral outcome measures or physiological 

function in vivo are shown in italics (see Table S1 in the supplemental information online for 

the figure references).
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Figure 2. Neural Circuit Dysfunction in the Methyl-CpG-Binding Protein 2 (Mecp2) Mutant 
Brain
Colors indicate brain regions in which Mecp2 mutant mice exhibit a shift in either neuronal 

or synaptic activity towards decreased (blue) or increased (red) excitation compared with 

wild-type controls. This schematic summarizes findings from numerous laboratories and is 

based on electrophysiological recordings of intrinsic neuronal activity, synaptic activity, 

and/or population activity, as well as Fos mapping of neuronal activity. Abbreviations: 3 V, 

third ventricle; 4 V, fourth ventricle; CA1, cornu ammonis; cc, corpus callosum; Cg, 

cingulate; DG, dentate gyrus; IL, infralimbic cortex; LC, locus coeruleus; LSN, lateral septal 

nuclei; M, motor cortex; nAC, nucleus accumbens; nTS, nucleus of the solitary tract; OB, 

olfactory bulb; PAG, periaqueductal gray; Pir, piriform nucleus; PrL, prelimbic cortex; RS, 

retrosplenial cortex; S, somatosensory cortex; V, visual cortex; VLM, ventrolateral medulla.
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Figure 3. High-Content Small-Molecule Screening Strategy to Detect Methyl-CpG-Binding 
Protein 2 (Mecp2) Reactivation
Neurons harvested from Embryonic day (E)15.5 embryos produced in matings between 

hemizygous Mecp2-GFP males and wild-type females are used to screen for Mecp2 de-

inactivating compounds. Of the neurons derived from female embryos, approximately 50% 

will be GFP+ due to random X chromosome inactivation (XCI). Positive hits result in an 

increase in the proportion of GFP-labeled neurons. Neurons derived from nontransgenic 
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male embryos serve as negative controls. GFP reporter mice are available from Jackson 

Laboratories (Mecp2tm3.Bird/J; Reference #014610).
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