
When and Where to Transfer for Bayes Net Parameter Learning

Yun Zhoua,b,*, Timothy M. Hospedalesa, and Norman Fentona

aRisk and Information Management (RIM) Research Group, Queen Mary University of London

bScience and Technology on Information Systems Engineering Laboratory, National University of 
Defense Technology

Abstract

Learning Bayesian networks from scarce data is a major challenge in real-world applications 

where data are hard to acquire. Transfer learning techniques attempt to address this by leveraging 

data from different but related problems. For example, it may be possible to exploit medical 

diagnosis data from a different country. A challenge with this approach is heterogeneous 

relatedness to the target, both within and across source networks. In this paper we introduce the 

Bayesian network parameter transfer learning (BNPTL) algorithm to reason about both network 

and fragment (sub-graph) relatedness. BNPTL addresses (i) how to find the most relevant source 

network and network fragments to transfer, and (ii) how to fuse source and target parameters in a 

robust way. In addition to improving target task performance, explicit reasoning allows us to 

diagnose network and fragment relatedness across BNs, even if latent variables are present, or if 

their state space is heterogeneous. This is important in some applications where relatedness itself 

is an output of interest. Experimental results demonstrate the superiority of BNPTL at various 

scarcities and source relevance levels compared to single task learning and other state-of-the-art 

parameter transfer methods. Moreover, we demonstrate successful application to real-world 

medical case studies.
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1 Introduction

Bayesian networks have proven valuable in modeling uncertainty and supporting decision 

making in practice (Pearl, 1988; Fenton and Neil, 2012). However, in many applications it is 

hard to acquire sufficient examples to learn BNs effectively from data. For example, in a 

small hospital or country there may be insufficient data to learn an effective medical 

diagnosis network. However, directly applying a network learned in another domain may be 

inaccurate or impossible because the underlying tasks may have quantitative or qualitative 

differences (e.g., care procedures vary across hospitals and countries). In this paper we 
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investigate leveraging BNs in different but related domains to assist learning a target task 

with scarce data. This is an important capability in at least two distinct scenarios: (i) those 

where the source tasks are the same as the target, but have different specific statistics (e.g., 

due to different demographic statistics in another country), and (ii) those where the source 

tasks are related to the target in a piecewise way, (the target and source tasks are not the 

same, but share common sub-graphs, e.g., two hospitals share a subset of procedures; or two 

diseases share a subset of symptoms).

The proposed contribution falls under the topical area of transfer learning (Torrey and 

Shavlik, 2009; Pan and Yang, 2010) (also known as domain adaptation), which aims to 

significantly reduce data requirements by leveraging data from related tasks. Transfer has 

been successfully applied in a variety of machine learning areas for example, 

recommendations (Pan et al., 2012), classification (Li et al., 2012; Ma et al., 2012) and 

natural language processing (Collobert and Weston, 2008). Central challenges include 

computing when to transfer (transfer or not depending on relevance), from where (which of 

multiple sources of varying relevance) (Eaton et al., 2008; Mihalkova and Mooney, 2009) 

and how (how to fuse source and target information). These are crucial to ensure that 

transfer is helpful, and avoid ‘negative transfer’ risk (Pan et al., 2012; Seah et al., 2013a). 

Despite the popularity of transfer learning, limited work (Luis et al., 2010; Niculescu-mizil 

and Caruana, 2007; Oyen and Lane, 2012) has been done on transfer learning of BNs. 

Outstanding challenges in BN transfer include dealing automatically with from where to 

transfer, transferring in the presence of latent variables and transferring between networks 

with heterogeneous state spaces. In this paper we introduce the first framework that resolves 

these issues in a BN context, leveraging the structured nature of BNs for piecewise transfer, 

so multiple sources of partial relevance and potentially heterogeneous state spaces can be 

exploited.

In this paper we assume the target and source domain structures are provided1 and 

concentrate on the challenges of learning the target network parameters in the presence of 

latent variables and from multiple sources of varying – continuous and/or piecewise – 

relevance. Importantly, we do not require that the source and target networks correspond 

structurally, or that node names are shared. Our novel solution involves splitting the target 

and source BNs into fragments (sub-graphs) and then reasoning explicitly about both 

network-level and fragment-level relatedness. Reasoning simultaneously about both is 

important, because pure fragment-level relatedness risks over-fitting if there are many 

sources. We achieve this via an Expectation Maximization (EM) style algorithm that 

alternates between (i) performing a Bayesian model comparison to infer per-fragment 

relatedness and (ii) updating a source network relatedness prior. This solves when and from 

where to transfer at both coarse and fine-grained level. Finally, the actual transfer is 

performed per-fragment using Bayesian model averaging to robustly fuse the source and 

target fragments, addressing how and how much to transfer. In this way we can deal robustly 

with a variety of transfer scenarios including those where the source networks are: (i) highly 

relevant or totally irrelevant, (ii) have the same or heterogeneous state spaces and (iii) 

1This is easiest to elicit from experts, and is moreover required in many domains such as medicine where the structure must be 
semantically meaningful to be acceptable to end users.
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uniform or piecewise (varying per sub-graph) relevance. Our explicit network and fragment 

relatedness reasoning also provides a diagnostic of which networks/domains are similar, and 

which sub-graphs are common or distinct. This is itself an important output for applications 

where quantifying relatedness, and uncovering the source of heterogeneity between two 

domains is of interest (e.g., revealing differences in treatment statistics between hospitals). 

To evaluate our contribution, we conduct experiments on six standard networks from a BN 

repository, comparing against various single task baselines and prior transfer methods. 

Finally, we apply our method to transfer learning in two real-world medical networks.

2 Related Work

Expert Elicitation. An advantage of BNs is their interpretable nature means that experts can 

define variables, structure and parameters in the absence of data. Nevertheless, learning BNs 

from data is of interest because there are many situations for which there is no available 

expert judgment, or where it may not be possible to elicit the conditional probability tables 

(CPTs). Studies have therefore tried to bridge the gap between these two paradigms. Most 

typically, experts specify a semantically valid network structure, and CPTs are learned from 

data. Recently, expert specified qualitative constraints on CPTs have been exploited to 

improve parameter learning. This is done, for example, via establishing a constrained 

optimization problem (Altendorf, 2005; Niculescu et al., 2006; de Campos and Ji, 2008; 

Liao and Ji, 2009; de Campos et al., 2009) or auxiliary BNs (Khan et al., 2011; Zhou et al., 

2014a,b). In this study we exploit the ability of experts to easily specify a network structure 

and focus on transfer to improve quantitative estimation of parameters.

CPTs combination. When there is limited training data, researchers have attempted to 

construct CPTs from different relevant sources of information. Given a set of CPTs 

involving the same variables, conventional methods to aggregate them are linear aggregation 

(i.e., weighted sum) and logarithmic aggregation (Genest and Zidek, 1986; Chang and Chen, 

1996; Chen et al., 1996). Based on this, the work of (Luis et al., 2010) introduced the DBLP 

(distance based linear pooling) and LoLP (local linear pooling) aggregation methods by 

considering the CPTs’ confidences and similarities learnt from the original datasets. This 

method highlighted the importance of measuring the weights/confidences of different CPTs. 

However, the method is a too simplistic heuristic: confidence values depend only on the CPT 

entry size and dataset size, without considering the fit to the target training data.

Transfer Learning. Transfer learning in general is now a well studied area, with a good 

survey provided by (Pan and Yang, 2010). Extensive work has been done on transfer and 

domain adaptation for flat machine learning models, including unsupervised transfer and 

analysis of relatedness (Duan et al., 2009; Seah et al., 2013b,a; Eaton et al., 2008). However, 

these studies have generally not addressed one or more of the important conditions that arise 

in the BN context addressed here, notably: transfer with heterogeneous state space, piece-

wise transfer from multiple sources (a different subset of variables/dimensions in each 

source may be relevant), and scarce unlabeled target data (thus precluding conventional 

strategies that assume ample unlabeled target data, such as MMD (Huang et al., 2007; Seah 

et al., 2013b)).
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Transfer Learning in BNs. In the context of transfer learning in BNs, the multi-task 

framework of (Niculescu-mizil and Caruana, 2007) considers structure transfer. However, it 

assumes that all sources are equally related and simply learns the parameters for each task 

independently. Kraisangka and Druzdzel (2014) construct BN parameters from a set of 

regression models used in survival analysis. However, this method cannot be generalized to 

transfer between BNs. The transfer framework of (Luis et al., 2010) covers a more similar 

parameter transfer problem to ours and proposes a method to fuse source and target data. 

However, the heuristic CPT fusion used assumes every source is both relevant and equally 

related. It is not robust to the possibility of irrelevant sources and does not systematically 

address when, from where, and how much to transfer (as shown by our experiments where 

this method significantly underperforms ours). The study (Oyen and Lane, 2012) considers 

multi-task structure learning, again with independently learned parameters. They investigate 

network/task-level relatedness, showing transfer performs poorly without knowledge of 

relatedness. However, they address this by using manually specified relatedness. Finally, a 

recent study (Oates et al., 2014) improves this by automatically inferring the network/task-

level relatedness. However, they do not consider information sharing of parameters. In 

contrast, we explicitly learn about both network and fragment-level relatedness from data. 

None of these prior studies cover transfer with latent variables or heterogeneous state spaces.

A related area to BN transfer is transfer in Markov Logic Networks (MLNs) (Mihalkova et 

al., 2007; Davis and Domingos, 2009; Mihalkova and Mooney, 2009). In contrast to these 

studies, our approach has the following benefits: We can exploit multiple source networks 

rather than exactly on each; we automatically quantify source relevance and are robust to 

some or all irrelevant sources (rather than assuming a single relevant source); these MLN 

studies use the transferred clauses directly rather than weighting the resulting transfer by 

estimated relevance.

3 Model Overview

3.1 Notation and Definitions

In a BN parameter learning setting, a domain 𝓓 = {V, G, D} consists of three components: 

variables V = {X1, X2, X3, …, Xn} corresponding to nodes of the BN, associated data D, 

and a directed acyclic graph G encoding the statistical dependencies among the variables. 

The conditional probability table (CPT) associated with every variable specifies the 

probability p (Xi|pa(Xi)) of each value given the instantiation of its parents as defined by 

graph G. Within a domain 𝓓, the goal of parameter learning is to determine parameters for 

all p(Xi|pa(Xi)). This is conventionally solved by maximum likelihood estimation (MLE) of 

CPT parameters  We denote this setting Single Task Learning 

(STL). The related notation in this paper are listed in Table 1.

In this paper, we have one target domain 𝓓t, and a set of sources  The target 

domain and each source domain have training data  and 

 For transfer learning we are interested in the case where target 

domain data is relatively scarce: 0 < N ≪ Ms, and/or N is small relative to the 
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dimensionality of the target problem N ≪ n2. Following the definition of transfer learning in 

(Pan and Yang, 2010), we define BN parameter transfer learning (BNPTL).

Definition 1 BNPTL. Given a set of source domains {𝓓s} and a target domain 𝓓t, BN 

parameter transfer learning aims to improve the parameter learning accuracy of the BN in 𝓓t 

using the knowledge in {𝓓s}.

This task corresponds to the problem of estimating the target domain CPTs θt given all the 

available domains:

(1)

If the networks correspond (Vt = Vs, Gt = Gs) and relatedness is assumed, then this could be 

simple MAP or MLE with count-aggregation. In the more realistic case of 𝓓s ≠ 𝓓t due to 

different training data sets with different statistics and thus varying relatedness; and 

potentially heterogeneous state spaces V, then the problem is much harder. More 

specifically, we consider the case where dimensions/variables in each domain do not 

correspond Vs ≠ Vt. They may be disjoint  or partially overlap 

However any correspondence between them is not assumed given (variable names are not 

used). In the following we describe an algorithm to maximize Eq (1) by proxy.

3.2 BN Parameter Transfer Learning

Typically, transfer learning methods calculate relatedness at domain or instance level 

granularity. However, in real-world applications, that relevance may vary within-domain – 

such that different subsets of features/variables may be relevant to different source domains. 

In order to learn a target domain 𝓓t leveraging sources {𝓓s} with piecewise relatedness, or 

heterogeneity Vt ≠ Vs and Gt ≠ Gs, we transfer at the level of BN fragments.

Definition 2 BN fragment. A Bayesian network of domain 𝓓 can be divided into a set of 

sub-graphs (denoted fragments) 𝓓 = {𝓓f} by considering the graph G. Each fragment 𝓓f = 

{Vf, Gf, Df} is a single root node or a node Xi with its direct parents pa(Xi) in the original 

BN, and encodes a single CPT from the original BN. The number of fragments is the 

number of variables in the original BN.

To realize flexible BN parameter transfer, the target domain and source domains are all 

broken into fragments  . Assuming for now no latent variables in 

the target domain, then each fragment j can be learned independently 

 To leverage the bag of source domain fragments 

 in learning each  we consider each source fragment  as potentially relevant. 

Specifically, for each target fragment, every source fragment is evaluated for relatedness and 

the best fragment mapping is chosen. Once the best source fragment is chosen for each 

target, a domain/network-level relatedness prior is re-estimated by summing the relatedness 
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of its fragments to the target. The knowledge from the best source fragment for each target is 

then fused according to its estimated relatedness.

To realize this strategy, four issues must be addressed: (1) which source fragments are 

transferable, (2) how to deal with variable name mapping, (3) how to quantify the 

relatedness of each transferrable source fragment in order to find the best one and (4) how to 

fuse the chosen source fragment. We next address each of these issues in turn:

Fragment Compatibility For a target fragment j and putative source fragment k with 

continuous sate spaces, we say they are compatible if they have the same structure. For 

fragments with discrete and finite state spaces, we say they are compatible if they have the 

same structure2 and state space. That is, the same number of states and parents states3, so

This definition of compatibility could be further relaxed quite straightforwardly (e.g., 

allowing target states to aggregate multiple source states) at the expense of additional 

computational cost. However, while relaxing the condition of compatibility would improve 

the range of situations where transfer can be exploited, it would also increase the cost of the 

algorithm by increasing the number of allowed permutations, as well as decreasing 

robustness to negative transfer (by potentially allowing more ‘false positive’ transfers from 

irrelevant sources). This is an example of pervasive trade-off between maximum exploitable 

transfer and robustness to negative transfer (Torrey and Shavlik, 2009).

Fragment Permutation Mapping For two fragments j and k determined to be compatible, 

we still do not know the mapping between variable names. For example if j has parents [a, b] 

and k has parents [d, c], the correspondence could be a − d, b − c or b − d, a − c. The 

function permutations  returns an exhaustive list of possible mappings Pm that map 

states of k to states of j.

Here we provide an illustrative example of fragment-based parameter transfer: the target is a 

three node BN shown in the left part of Figure 1 (a), and the source is a eight node BN 

shown in the right part of Figure 1 (a). In Figure 1 (b), there are two source fragments ({Ts, 

Ls, Es} and {Es, Bs, Ss}) which are compatible with target fragment. Thus, there are four 

permutations of compatible source fragments (assuming binary parent nodes). All four of 

these options are then evaluated for fitness, and the best fragment and permutation is picked 

(shown with dashed triangle in Figure 1 (b)). Finally, this selected fragment and permutation 

will be fused with target fragment via our fusion function.

2Note, that transfer at the level of compatible edges rather than fragments is based on the ICI (Independence of Causal In uences) 
assumption, and would be a straightforward extension of this algorithm. However we do not consider it here in order to constrain the 
computational complexity, and to avoid “by chance” false positive transfer matches that can lead to negative transfer.
3This assumes that the number of parameters is proportional to the number of rows in the conditional probability table, and no 
parametric dimension reduction is used.
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We next discuss the more critical and challenging questions of how a particular target 

fragment Gj and specific permuted source fragment  are evaluated for relevance, and 

how relevant sources are fused.

3.3 Fitness Function

To measure the relatedness between compatible target and source fragments  and , we 

introduce a function fitness , where p(Hs) is a domain-level relatedness 

prior. Here we consider a discrete random variable indexing the related source s among S 
possible sources. So p(Hs) is a S-dimensional multinomial distribution encoding the 

relatedness prior. In this section, for notational simplicity we will use t and s to represent the 

jth target and kth source domain fragments under consideration.

A systematic and robust way to compare source and target fragments for relevance is to 

compute the probability that the source and target data share a common CPT (hypothesis4 

) versus having distinct CPTs (hypothesis ). This idea was originally proposed in a 

recent work (Zhou et al., 2015), which is called as Bayes model comparison (BMC) for 

hypotheses  is:

(2)

where we have made the following conditional independence assumptions: , 

 and 

For discrete likelihoods p(D|θ) and Dirichlet priors p(θ|Hs), integrating over

Algorithm 1: BNPTL

INPUT : Target domain 𝓓t, Sources {𝓓s}

OUTPUT:  and p(Hs)

1 Initialize the domain-level relatedness p(Hs) (uniform);

2 repeat

3        for target fragment j = 1 to J do

4             for source network s = 1 to S and fragment k = 1 to K do

5                  if compatible  then

6                       P = permutations ;

4Consistent with the simplification of fragment notation, here  only refers the dependent hypothesis between  and .
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7                      for permutation m = 1 to M do

8                          measure relatedness:

                          

                          

9                    end

10            end

11      end

12   end

13  for source network s = 1 to S do

14        Re-estimate network relevance: 

15  end

16 until convergence;

17 for target fragment j = 1 to J do

18       Find the best source and permutation:

          

19      

20 end

21 return  and p(Hs)

the unknown CPTs θ, the required marginal likelihood is the Dirichlet compound 

multinomial (DCM) or multi-variate Polya distribution:

(3)

where c = 1 …C index variable states,  is the number of observations of the cth target 

parameter value in data Dt, and  indicates the aggregate counts from the 

source domain and distribution prior, and 

Maximal fitness(·) is achieved when the target data are most likely to share the same 

generating distribution as the source data. As we can see, previously proposed fitness 

function (Zhou et al., 2015) only addresses discrete data with Dirichlet conjugate priors. In 
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this paper, we derive the analogous computations for continuous data with Gaussian 

likelihood with Normal-Inverse-Gamma conjugate priors.

(4)

where  the hyperparameters µm, km, αm and βm are updated based on the 

source data  which contains M samples with center at :

(5)

Transfer Prior: The final outstanding component of BMC is how to define the transfer prior 

p(Hs). We assume that transfer is equally likely a priori within a given source domain, but 

that different source domains may have different prior relatedness. Thus we set the transfer 

prior for a particular fragment pair to the prior for the corresponding source network, i.e., 

 The fragment transfer prior  is then normalised as 

3.4 Fusion Function

Once the best source fragment  is found for a given target fragment , the next challenge 

is how to optimally fuse them. Our solution (denoted BMA) is to infer the target CPT, 

integrating over uncertainty about whether the selected source fragment is indeed relevant or 

not (i.e., if they share parameters or not –  and  in last section).

We perform Bayesian model averaging, summing over these possibilities. Specifically, we 

ask  which turns out to be:

(6)

where p(Hs|Dt, Ds) comes from Eq (2). This means the strength of fusion is automatically 

calibrated by the estimated relevance. Since there is no closed form solution for the sum of 

Dirichlets, we approximate Eq (6) by moment matching. For conditional Gaussian nodes, 

the weighted sum is also approximated by moment matching.
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Moment matching (also known as Assumed Density Filtering (ADF)) is to approximate a 

mixture such as Eq (6) by a single distribution whose mean and variance is set to the mean 

and variance of the weighted sum. The estimated relatedness provides the weights 

, . Assuming the posterior mean and variance of the 

parameters in the related and unrelated condition are u1, v1 and u0, v0 respectively. Then the 

approximate posterior mean is u = w1u1 + w0u0, and variance is v = w1(v1 +(u1 − u)2 + 

w0(u0 − u)2 (Murphy, 2012). For Gaussian distributions we can use this directly. For 

Dirichlet distributions with parameter vector α, the variance parameter , and the 

mean parameter vector is u = vα.

3.5 Algorithm Overview

An overview of our BNPTL framework is given in Algorithm 1. Each target fragment is 

compared to all permutations of compatible source fragments and evaluated for relevance 

using BMC fitness. The most relevant source fragment and permutation is assigned to each 

target fragment. The network-level relevance prior is re-estimated based on aggregating the 

inferred fragment relevance for that source:  This way of 

updating the source network prior reflects the inductive bias that fragment should be 

transferred from fewer distinct sources, or that a source network that has already produced 

many relevant fragments is more likely to produce further relevant fragments and should be 

preferred.

Finally, the most relevant source fragment for each target is fused using BMA. If there are 

missing or hidden data in the target domain, we start by running the standard EM algorithm 

in the target domain, to infer the states of each hidden variable. We use these expected 

counts to fill in Dt when applying BNPTL.

Properties. Our BNPTL has a few favorable properties worth noting: (i) If there is no related 

source fragment, then the most related source fragment will have estimated relatedness near 

zero and no transfer is performed  in Eq (6)). This provides some 

robustness to irrelevant sources (as explored in Section 4.7–4.8). (ii) Although we rely on an 

EM procedure to estimate fragment and source relatedness, starting from a uniform prior 

p(Hs), our algorithm is deterministic and we use only one run to get results, (iii) Explicitly 

reasoning about both fragment and network level relatedness allows the exploitation of 

heterogeneous relevance both within and across source domains.

Computational Complexity. The computational complexity of this algorithm lies in the total 

number of relatedness estimates. We treat a relatedness calculation as an elementary 

operation O(1). Assuming there are J target fragments, S′ compatible source fragments 

(typically much less than total number of source fragments S), and each fragment has v 
parent nodes. Then the time complexity of each EM iteration in BNPTL is: O(JS′v!). Where 

v! is the total number of permutations searched to transfer a compatible fragment pair. In 

practice it always converged in 10-30 EM iterations. For example, I took 0.47 seconds to 

process Asia network (see Table 4, row 7) on our computer (Intel core i7 CPU 2.5 GHz).
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4 Experiments

We first evaluate transfer learning on 6 standard networks from the BN repository5 before 

proceeding to real medical case studies. Details and descriptions of these BNs can be found 

in Table 2

4.1 Baselines

We compare against existing strategies for estimating relatedness and fusing source and 

target data. For relatedness estimation, we introduce two alternative fitness functions to 

BMC:

Likelihood: The similarity between the fragments is the log-likelihood of the target data 

under the ML source parameters 

MatchCPT: The dis-similarity between the fragments is the K-L divergence between their 

ML parameter estimates  (Dai et al., 2007; Selen and Jaime, 2011; Luis et al., 

2010).

For fusing source and target knowledge, we introduce two competitors to our BMA:

Basic: Use the estimated source parameter directly . A reasonable strategy if relevance is 

perfect and the source data volume is high, but does not exploit target data and it is not 

robust to imperfect relevance.

Aggregation: A weighted sum reflecting the relative volume of source and target data (Eq 

(12) in (Luis et al., 2010)), it exploits both source and target data, but is less robust than 

BMC to varying relevance.

Neither Basic nor Aggregation is robust to varying relevance across and within sources (they 

do not reflect the goodness of fit between source and target), or situations in which no 

source node at all is relevant (e.g., given partial overlap of the source and target domain).

The algorithms implemented in MATLAB are based on functions and subroutines from the 

BNT6 and Fastfit/Lightspeed7 toolboxes. All the experiments were performed on an Intel 

core i7 CPU running at 2.5 GHz and 16 GB RAM.

4.2 Overview of Relatedness Contexts

Before presenting experimental results, we first highlight the variety of possible network-

relatedness contexts that may occur. Of these, different relatedness scenarios may be 

appropriate depending on the particular application area.

Structure and Variable Correspondence: In some applications, the source and target 

networks may be known to correspond in structure, share the same variable names, or have 

5http://www.bnlearn.com/bnrepository/
6https://bnt.googlecode.com/
7http://research.microsoft.com/en-us/um/people/minka/software/lightspeed/
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provided variable name mappings. In this case the only ambiguity in transfer is which of 

multiple potential source networks is the most relevant to a target. Alternatively, structure/

variable name correspondence may not be given. In this case there is also ambiguity about 

which fragment within each source is relevant to a particular target CPT.

Cross-network relevance heterogeneity: There may be multiple potential source networks, 

some of which may be relevant and others irrelevant. The most relevant source should be 

identified for transfer, and irrelevant sources ignored.

Continuous versus discontinuous relevance: When there are multiple potential source 

networks, it may be that relevance to the target varies continuously (e.g., if each network 

represents a slightly different segment of demographic of the population), or it may be that 

across all the sources some some are fully relevant and others totally irrelevant. In the latter 

case it is particularly important not to select an irrelevant source, as significant negative 

transfer is then likely.

Piecewise Relevance: Relevance may vary piecewise within networks as well as across 

networks. Consider a target network with two sub-graphs A and B: A may be relevant to a 

fragment in source 1, and B may be relevant to a fragment in source 2. For example, in the 

case of networks for hospital decision support, different hospitals may share different 

subsets of procedures – so their BNs may correspond in a piecewise way only. A target 

hospital network may then ideally draw from multiple sources. Note that this may happen 

either because (i) subgraphs in the target are structurally compatible with different sub-

graphs in the multiple sources (which need not be structurally equivalent to each other), or 

(ii) in terms of quantitative CPT fit, fragments in the target may each be better fit to different 

sources.

Our BNPTL framework aims to be robust to all the identified variations in network 

relatedness. In the following experiments, we will evaluate BN transfer in each of these 

cases.

4.3 Transfer with Known Correspondences

In this section, we first evaluate transfer in the simplest setting, where structure/variable 

name correspondence is assumed to be given. This setting is same as (Luis et al., 2010): the 

transfer only happens between target/source nodes with the same node index 

 and Vt = Vs, Gt = Gs. (In our framework this is easily 

modelled by providing the prior  and hence  for non-corresponding 

pairs j ≠ k.) This setting has the least risk of negative transfer, because there is less chance of 

transferring from an irrelevant source CPT.

We use six standard BNs (Weather, Cancer, Asia, Insurance, Alarm and Hailfinder) to 

compare our approach (BMC fitness with BMA (BNPTL)) to the state-of-art (MatchCPT 

fitness with Aggregation fusion (CPTAgg) (Luis et al., 2010)). In this case we use “soft 

noise” to simulate continuously varying relatedness among a set of sources. The specific soft 

noise simulation procedure is as follows: For each reference BN three sets of samples are 

drawn with 200, 300 and 400 instances respectively. These sample sets are used to learn 
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three different source networks. Because the source networks are learned from varying 

numbers of samples, they will vary in degree of relatedness to the target, with the 400 and 

200 sample networks being most and least related respectively. Subsequently, 100 samples 

of each source copy are drawn and used used as the actual source data. Because node 

correspondences are known in this experiment, another baseline is simply to aggregate all 

target and source data. This method is referred as ALL, and also will be compared. Results 

are quantified by average KLD between estimated and true CPTs. In each experiment we run 

10 trials with random data samples and report the mean and standard deviation of the KLD.

The results are presented in Table 3, with the best result in bold, and statistically significant 

improvements of the best result over competitors indicated with asterisks * (p ≤ 0.05). 

Compared with CPTAgg, BNPTL achieves 60.9% average reduction of KLD compared to 

the ground truth. These results verify the greater effectiveness of BNPTL even in the known 

correspondence setting, where the assumptions of CPTAgg are not violated. To demonstrate 

the value of our network-level relevance prior p(Hs), we also evaluate our framework 

without this prior (denoted BNPTLnp). The comparison between BNPTL and BNPTLnp 

demonstrates that the network-level relevance does indeed improve transfer performance. In 

this case it helps the model to focus on the higher quality/more relevant 400-sample source 

domain: even if for a particular fragment a less relevant source domain may have seemed 

better from a local perspective.

The ALL baseline also achieves good results in Cancer and Weather networks. We attribute 

this to these being smaller BNs (node ≤ 5), so all the source parameters are reasonably well 

constrained by the source samples used to learn them, and aggregating them all is beneficial. 

However in large BNs with more parameters, the difference between the 200 and 400 sample 

source networks becomes more significant, and it becomes important to select a good source 

instead of aggregating everything including the noisier less related sources. In real-world 

settings, we may not have node/structure correspondence. Thus we do not assume this 

information is available in all the following sections.

4.4 Dependence on Target Network Data Sparsity

In this section, we explore the performance for varying number of target samples, focusing 

on the Asia and Alarm networks. Here the target and source domain are both generated from 

the Asia or Alarm networks, and the relatedness of the source domain varies (soft noise). For 

relatedness, we consider 2 conditions for the source domains: (i) two Asia/Alarm networks 

learned from 200 and 300 samples respectively, this results 16 source fragments in Asia 

network (Row 1 of Figure 2) and 74 source fragments in Alarm network (Row 3 of Figure 

2), and (ii) three Asia/Alarm networks learned from 200, 300 and 400 samples respectively, 

this results 24 source fragments in Asia network (Row 2 of Figure 2) and 111 source 

fragments in Alarm network (Row 4 of Figure 2). The latter condition potentially contains 

stronger cues for transfer – if a good decision is made about which source network to 

transfer from. To unpack the effectiveness of our contributions, we investigate all 

combinations for different fitness methods and fusion methods under these settings.

In each sub chart of Figure 2, the x-axis denotes the number of target domain training 

instances, and the y-axis denotes the average KLD between estimated and true parameter 
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values. The blue line represents standard MLE learning, green denotes transfer by 

MatchCPT fitness, purple shows transfer with likelihood fitness, and red line the results 

using our BMC fitness function. The columns represent Basic (source only), Aggregation 

and BMA fusion. As we can see from the results, the performance of transfer methods with 

BMC fitness function improves with more source fragments, especially in Asia network. 

Furthermore, algorithms with our BMC fitness function (red) achieve the best results in 

almost all situations. Even the simple basic fusion method gets reasonable learning results (< 

0.50) using the BMC fitness function to choose among the 24 source fragments in Asia 

network. Also, our BMA fusion (right column) significantly outperforms other fusion 

methods. For instance, when there are 16 source fragments in Asia network (top row), the 

average performance of BMC fitness function in BMA fusion increased 25.4% and 29.3% 

compared with the same fitness function in Basic fusion and Aggregation fusion settings. 

Although these margins decrease with increasing source fragments, our BNPTL (BMC

+BMA) is generally best.

4.5 Illustration of Network and Fragment Relatedness Estimation

To provide insight into how network and fragment relatedness is measured in BNPTL, we 

continue to use the Asia network and its three sources (soft noise). Network Relatedness: 
Figure 3 shows the estimated relatedness prior p(Hs) for each source s over EM iterations. 

As we can see the network-level relatedness converges after about 10 iterations, with the 

relatedness estimates being in order of the actual source relevance.

Fragment Relatedness: To visualize the inferred fragment relatedness, we record the 

estimated relatedness between every fragment in the target and every fragment in source 3 of 

the Asia network. This is plotted as a heat map in Figure 4(a), where the y-axis denotes the 

index of target fragment, and x-axis denotes the index of source fragment. Darker color 

indicates higher estimated relatedness  between two fragments j and k. Some 

incompatible source fragments have zero relatedness automatically. For each target 

fragment, the most related (darkest) source fragment is selected for BMA fusion. Although 

there is some uncertainty in the estimated relatedness (more than one dark cell per row), 

overall all but one target fragment selected the correct corresponding source fragment 

(Figure 4(b).

4.6 Robustness to Hidden Variables

In this section, we evaluate the algorithms on six standard BNs. We use the same sampled 

target and sources as in Table 3, but we introduce additional hidden variables in the target. 

We learn the target parameters by: conventional single task BN learning (EM with MLE), 

MatchCPT fitness with Aggregation fusion (CPTAgg) (Luis et al., 2010) (note that CPTAgg 

does not apply to latent variables, but we use their fitness and fusion functions in our 

framework), and our BNPTL. Three conditions are considered: (i) fully observed target data, 

(ii) small number of hidden variables and (iii) medium number of hidden variables. (In the 

hidden data conditions, the specified number of target network nodes are chosen uniformly 

at random on each trial, and considered to be unobserved, so the data for these nodes are not 

used.)
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Table 4 summarises the average KLD per parameter. In summary, the transfer methods 

outperform conventional EM with MLE (STL) in all settings. Compared with the state-of-

the-art CPTAgg, BNPTL also improves performance: improvement on 15 out of 18 

experiments, with an average margin of 53.6% (the average reduction of KLD). Of the total 

set of individual target CPTs, 84.3% showed improvement in BNPTL over CPTAgg.

4.7 Exploiting Piecewise Source Relatedness

Thus far, we simulated source relevance varying smoothly at the network level – all nodes 

within each source network were similarly relevant. So all fragments should typically be 

drawn from the source estimated to be most relevant. In contrast for this experiment, we 

investigate the situation where relatedness varies in a piecewise fashion. In this case, to 

effectively learn a target network, different fragments should be drawn from different source 

networks. This is a setting where transfer in Bayesian networks is significantly different 

from transfer in conventional flat machine learning models (Pan and Yang (2010)).

To simulate this setting, we initialise a source network pool with three copies of the network, 

before introducing piecewise “hard noise”, so that some compatible fragments are related 

and others are totally unrelated. Specifically, we choose a portion (25% and 50%) of each 

source network’s CPTs uniformly at random and randomise them to make them irrelevant 

(by drawing each entry uniformly from [0,1] and renormalizing). This creates a different 

subset of compatible but (un)related fragments in each network. Thus piecewise transfer - 

using different fragments from different sources is essential to achieve good performance.

We consider two evaluation metrics here: the accuracy of the fragment selection - whether 

each target fragment selects a (i) corresponding and (ii) non-corrupted fragment in the 

source, and accuracy of the learned CPTs in the target domain. Table 5 presents the results, 

where our model consistently outperforms CPTAgg in Weather, Cancer and Asia networks. 

Although the fragment selection accuracy of BNPTL failed to outperform the CPTAgg in 

Insurance, Alarm and Hailfinder networks due to the greater data scarcities in their target 

networks, the general good performance (KLD) of BNPTL verifies that the framework still 

can exploit source domains with piecewise relevance. Meanwhile the fragment selection 

accuracy of BNPTL explains how this robustness is obtained (irrelevant fragments (Eq (2)) 

are not transferred (Eq (6))). In addition to verifying that our transfer framework can exploit 

different parts of different sources, this experiment demonstrates that it can further be used 

for diagnosing which fragments correspond or not (Eq (2)) across a target and a source – 

which is itself of interest in many applications.

4.8 Robustness to Irrelevant Sources

The above experiments verify the effectiveness of our framework under conditions of 

varying source relatedness, but with homogeneous networks Vt = Vs. In this section we 

verify robustness to two extreme cases of partially and fully irrelevant heterogeneous 

sources.

Partially irrelevant In this setting, we use the same six networks from the BN repository, 

and consider each in turn as the target, and copies of all six networks as the source (thus five 
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are irrelevant and one is relevant). Therefore the majority of the potential source fragments 

come from 5 irrelevant domains. Table 6 presents the results of transfer learning in these 

conditions. We evaluate performance with two metrics: (i) percentage of fragments chosen 

from the correct source domain, and (ii) the usual KLD between the estimated and ground 

truth parameters in the target domain.

As shown in Table 6, our BNPTL clearly outperforms the previous state-of-the-art CPTAgg 

in each case. This experiment verifies that our framework is robust even to a majority of 

totally irrelevant source domains, and is achieved via explicit relatedness estimation 

in Algorithm 1 and Eq (2)).

Fully irrelevant In this setting, we consider the extreme case where the source and target 

networks are totally different Gt ≠ Gs, Vt ∩ Vs = ∅. Note that since the source and target are 

apparently unrelated, it is not expected that positive transfer should typically be possible. 

The test is therefore primarily whether negative transfer (Pan and Yang, 2010) is 

successfully avoided in this situation where all source fragments may be irrelevant. Note that 

since the sources are totally heterogeneous, prior work CPTAgg (Luis et al., 2010) does not 

support this experiment. We therefore compare our algorithm to a variant using BMC fitness 

and Basic fusion function (denoted BMCBasic) and target network only STL.

The results are shown in Table 7, from which we make the following observations. (i) 

BNPTL is never noticeably worse than STL. This verifies that our framework is indeed 

robust to the extreme case of no relevant sources:  is correctly inferred in Eq 

(2), thus preventing negative transfer from taking place (Eq (6)). (ii) In some cases, BNPTL 

noticeably outperforms STL, demonstrating that our model is flexible enough to achieve 

positive transfer even in the case of fully heterogeneous state spaces. (iii) In contrast, 

BMCBasic is worse than STL overall demonstrating that these properties are unique to our 

approach.

5 Real Medical Case Studies

The previous section demonstrated the effectiveness of our BNPTL under controlled data 

and relatedness conditions. In this section we explore its application to learn BN parameters 

of two medical networks, where the “true” relatedness is unknown, and data volume and 

relatedness reflect the conditions of real-world medical tasks.

The Indian Liver Patient (ILP) (Bache and Lichman, 2013) has 583 records about liver 

disease diagnosis based on 10 features. This dataset is publicly available. Because the BN 

structure for this dataset is not provided. We follow previous work (Friedman et al., 1997) to 

apply a naive BN structure for this classification problem. To enable transfer learning, this 

dataset is divided into 4 subsets/domains by grouping patient age, following common 

procedure in medical literature (Jain et al., 2000). To systematically evaluate transfer, we 

iteratively take each group in turn as the target, and all the others as potential sources.

The AUC (area under curve) for the target variable of interest is calculated. This is repeated 

for each of 100 random 2-fold cross-validation splits, and the results averaged (Table 8). 
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Here STL denotes single task learning from target domain data, ALL indicates the baseline 

of concatenating all the source and target data together before STL. Although we are 

primarily interested in the case of unknown correspondence, we investigate both the 

conditions of known and unknown target-source node correspondence (denoted by suffix KC 

and UC respectively). Note that the ALL baseline needs to know node correspondence, so 

should be compared with BNPTL (KC) for a fair comparison. The results show that 

predictive performance can be greatly improved by leveraging the source data. Our BNPTL 

(UC) outperforms STL and state-of-the-art transfer algorithm CPTAgg in each case. As we 

can see, ALL also achieves good performance based on the strong assumption of known 

correspondence. Nevertheless, it is still outperformed by our BNPTL (KC).

Trauma Care (TC) dataset (Yet et al., 2014) has a BN structure designed by trauma care 

specialists, and relates to procedures in hospital emergency rooms. The full details of the 

network and datasets are proprietary to the hospitals involved, however it contains 18 

discrete variables (of which 3 are hidden) and 11 Gaussian variables. It is important because 

rapid and accurate identification of hidden risk factors and conditions modeled by the 

network are important to support doctors’ decision making about treatments which reduce 

mortality rate (Karaolis et al., 2010). The relevance of this trauma model to our transfer 

algorithm is that there are two distinct datasets for this model. One dataset is composed 

primarily of data from a large inner city hospital with extensive data (1022 instances) and 

the second dataset is composed of data from a smaller hospital and city in another country 

(30 instances). The smaller hospital would like an effective decision support model. 

However, using their own data to learn the model would be insufficient, and using the large 

dataset directly may be sub-optimal due to (i) differences in statistics of injury types in and 

out of major cities city, (ii) differences in procedural details across the hospitals and (iii) 

differences in demographic statistics across the cities/countries.

We therefore apply our approach to adapt the TC BN from the inner city hospital to the 

small hospital. We perform cross-validation in the target domain of the small hospital, using 

half the instances (15) to train the transfer model, and half to evaluate the model. To evaluate 

the model we instantiate the evidence variables in the target domain test set, select one of the 

variables of interest (Death), and query this variable. AUC values are calculated for the 

query variable, and shown in Table 8. Every method is better than using the scarce target 

data only (STL). Our BNPTL significantly outperforms the alternatives in each case. 

BNPTL (UC) also matches the performance of BNPTL (KC) demonstrating the reliability of 

the fragment correspondence inference.

6 Conclusions

6.1 Summary

When data is scarce, BN learning is inaccurate. Our framework tackles this problem by 

leveraging a set of source BNs. By making an explicit inference about relatedness per 

domain and per fragment, we are able to perform robust and effective transfer even with 

heterogeneous state spaces and piecewise source relevance. Our approach applies with latent 

variables, and is robust to any degree of source network relevance, automatically adjusting 

the strength of fusion to take this into account. Moreover, it is able to provide estimated 
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domain and fragment-level relatedness as an output, which is of interest in many 

applications (e.g., in the medical domain, to diagnose differences in procedures between 

hospitals). Experiments show that BNPTL consistently outperforms single task STL and 

former transfer learning algorithms. Finally, experiments with a real-world trauma care 

network show the practical value of our method, adapting medical decision support from 

large inner city hospitals with extensive data to smaller provincial hospitals.

6.2 Discussion of Limitations and Future Work

An assumption made by our current framework is that transfer is only performed from the 

single most relevant source fragment. An alternative would be to transfer from every source 

fragment estimated to be relevant. This would be a relatively straightforward extension of Eq 

(6) to sum up multiple potential relevant sources. However, by increasing the number of 

source fragments used, the risk of negative transfer may be increased. If any irrelevant 

source is transferred as a ‘false positive’ (i.e.,  for irrelevant source 

fragment  then it may negatively affect the target in Eq (6). This eventuality is more likely 

if many sources can be fused. In contrast, our current framework just needs to rank a 

irrelevant sources below a relevant source in order to be robust to negative transfer. This is 

an example of a general tradeoff between flexibility/amount of information possible to 

transfer, and robustness to negative transfer (Torrey and Shavlik, 2009).

A second limiting assumption is that the underlying relatedness is binary (i.e., sources are 

relevant or irrelevant). Clearly sources may have more continuous degrees of relatedness to 

the target. In our framework this is only supported implicitly through the fact that a 

somewhat related source will have an intermediate probability of relatedness (Eq (2)), and 

thus be used but with a smaller weight Eq (6). In future continuous degrees of relatedness 

could be modelled more explicitly.

Finally, in this paper we have addressed relatedness inference in an entirely data-driven way. 

In future we would like to integrate expert-provided priors and constraints to guide transfer 

parameter learning, and transfer structure learning.
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Figure 1. 
A simple example to show the fragment compatibility measurement, and the permutations of 

all possible parental nodes in a fragment. (a) The dashed triangle represents source 

fragments {Ts, Ls, Es} and {Es, Bs, Ss}, which are compatible with the target fragment. (b) 

All the permutations of compatible source fragment, and the most fit one {Ls, Ts, Es}.
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Figure 2. 
Transfer performance of varying target data volume and source relatedness (soft noise) in 

Asia and Alarm BNs. Top two rows: transfer learning with 16 and 24 source fragments in 

Asia BN. Bottom two rows: transfer learning with 74 and 111 source fragments in Alarm 

BN. Columns: Basic, Aggregation and BMA fusion.
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Figure 3. 
The estimated network relatedness p(Hs) between target Asia network and its three source 

copies of varying quality/relatedness.
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Figure 4. 
Fragment relatedness experiment in Asia network. (a) The inferred fragment relatedness 

between target and source fragments. (b) The final selected source fragment for each target.
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Table 2

Descriptions of Weather, Cancer, Asia, Insurance, Alarm and Hailfinder BNs

Name Nodes Arcs Paras† M-ind‡ Descriptions

Weather 4 4 9 2 Models factors like rain and sprinkler, which can be affected by the weather condition and 
all determine the presence of wet grass (Russell and Norvig, 2009)

Cancer 5 5 10 2 Models the interaction between risk factors and symptoms for diagnosing lung cancer 
(Korb and Nicholson, 2010)

Asia 8 8 18 2 Used for a patient entering a chest clinic to diagnose his/her most likely condition given 
symptoms and risk factors (Lauritzen and Spiegelhalter, 1988).

Insurance 27 52 984 3 Used for estimating the expected claim costs for a car insurance policyholder (Binder et 
al., 1997).

Alarm 37 46 509 4 This network is a medical diagnostic application for patient monitoring and is classically 
used to explore probabilistic reasoning techniques in belief networks. (Beinlich et al., 
1989).

Hailfinder 56 66 2656 4 Prediction of hail risk in northern Colorado (Abramson et al., 1996).

†
Total number of parameters in each BN.

‡
The maximum edge in-degree, the maximum number of node parents in each BN.
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