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Abstract

Multiple substrate enzymes present a particular challenge when it comes to understanding their 

activity in a complex system. Although a single target may be easy to model, it does not always 

present an accurate representation of what that enzyme will do in the presence of multiple 

substrates simultaneously. Therefore, there is a need to find better ways to both study these 

enzymes in complicated systems, as well as accurately describe the interactions through kinetic 

parameters. This review looks at different methods for studying multiple substrate enzymes, as 

well as explores options on how to most accurately describe an enzyme’s activity within these 

multi-substrate systems. Identifying and defining this enzymatic activity should clear the way ro 

use in vitro systems to accurately predict the behavior of multi-substrate enzymes in vivo.
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 1. Introduction

It is common for one enzyme to be able to catalyze multiple substrates or interact with 

multiple sites, as has been found from various in vitro enzymatic studies (for example, 

cytochrome P450 enzymes [1, 2], lysine acetyltransferases [3], and kinases [4]). In in vivo 
systems, as a consequence, all these potential substrates/sites also have the potential to act as 

competitors. Enzyme preference is usually revealed by different rates or affinities for 

substrates. The preference of an enzyme for one specific substrate is defined as the 

specificity, and the preference for one substrate over another is its selectivity. Given these 

facts, single target substrates matched with a single enzyme is the most direct and simplest 

system for investigating enzyme specificity in vitro (i.e., classical steady-state approach). 

From the kinetic parameters obtained via this straightforward approach, one can determine 

the specificity (i.e., specificity constant, kcat/Km) of a substrate [5, 6]. The ratio of specificity 

constants from two different substrates with the same enzyme may then be used to interpret 

the preference of that enzyme for one substrate over the other: the selectivity [7]. These 

enzymatic kinetic parameters seem adequate for applications for in vitro systems, but it has 

been shown that some predictions of these parameters fail to match up with corresponding 

observations from in vivo assays [8–10]. The complexity of in vivo assays may lead to the 
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following potential factors being overlooked: protein-protein interactions [11–14], 

enzymatic structural/conformational changes [15–18], and internal inhibition [19–22]. Thus, 

recent research has utilized the method of internal competition (multiple substrates to one 

enzyme) to study the selectivity of an enzyme between substrates [23–26]. This 

experimental design can/may more closely simulate the in vivo environment. However, such 

assays also create difficulties in producing accurate detections for multiple targets, as signals 

from one target have to be independent of the others. Fortunately, advances in current 

technologies allow for the measurement of multi-substrates/products in a less labor-intensive 

and time-consuming manner.

In this review, we examine multiplexed, high throughput, and potentially even real-time 

methodologies applied on different enzymatic selectivity assays and we provide an overview 

of how to use the kinetic parameters from internal competition to interpret the potential 

selectivity in vivo. Using this approach, we also highlight the possible constraints of each 

method, such as choices of substrate concentrations, time frame selections (steady-state 

condition), and/or available cofactors/inhibitors.

 2. Techniques for multiplexed, high throughput measurements of multiple 

substrates/products

Internal competition is a method that has been used to investigate the differences of an 

enzyme for individual mixed substrates by measuring either the consumption rate of 

individual substrates or the generation rate of individual products. This method has also been 

extensively used in studying kinetic isotope effects [27–29]. Since the concentrations of 

multi-substrates and/or multi-products need to be monitored, a multiplexed analytical 

technique is required to measure all of the concentrations of each of these components for 

data analysis. This section will discuss the recent analytical techniques applied to study the 

kinetics of internal enzyme competition.

This simplest method for these approaches is liquid chromatography (LC), which relies on 

the separation of multiple substrates by hydrophobicity or cation/anion exchange, depending 

on what is being separated. This is often a reverse phase column with the accompanying 

detection as UV absorption, fluorescence, or radio chemical. An example of this approach is 

the analysis of multiple substances in the bioremediation of polycyclic aromatic 

hydrocarbons (PAHs) [30, 31]. In this case LC alone can separate various forms of PAHs; in 

other cases additional verification is needed, such as mass/charge.

Mass changes (either cleavage or addition/removal of functional groups) of a substrate are 

often the result of catalytic reactions. Thus, mass spectrometry (MS) is a common analytical 

technology that is utilized for these types of studies [32–35]. The coupling of LC or gas 

chromatography to MS provides separation of multiple substrates, and therefore more 

accurate quantification, for multiple target analysis [36, 37]. Furthermore, tandem MS 

(MS/MS) can be used to acquire more spatial or structural information of analytes. For 

example, LC-MS/MS has been used to quantitate the substrates and/or products from 

enzymatic kinetic assays [13, 38–40], and a detection resolution as small as a single amino 
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acid residue can be reached [7, 41, 42]. Recently, this kind of site-specific study has even 

been utilized for the investigation of non-enzymatic protein modifications [7, 14, 43].

Another technique used for these internal competition assays, nuclear magnetic resonance 

spectrometry (NMR), is used to determine the kinetic isotope effects between stable isotope 

labeled substrates and unlabeled substrates [27–29]. As more innovative methodologies have 

been developed to utilize this advanced technology, a very high degree of precision and 

accuracy can be obtained for the measurement of low abundance, stably isotope-labeled 

substrates [44–47]. Additionally, with the proper sample and safety controls, a method of 

radioactive remote labeling can be utilized to study internal competition. A scintillation 

detector with a multi-channel analyzer can record different radiation energy from different 

radioactive sources. With this technique, a high sensitivity and high accuracy of 

measurements can be achieved for the detection of various radioactively labeled substrates 

[48–50]. The study of hydrogen tunneling by using radioactive remote labeling is one 

example of the application of this technique [51, 52].

Internal competition assay are not limited to proteins. Substrates can also include DNA 

and/or RNA. Current biochemical and labeling techniques have been developed to 

effectively and efficiently measure the DNA/RNA kinetics of enzymatic catalysis [53–56]. 

For example, Goodman (et al.) used kinetic assays to investigate DNA polymerase fidelity 

by comparing the competition of right and wrong nucleotide incorporations [56]. As another 

example, substrate competition of endoribonucleases can occur in vivo because 

endoribonucleases can cleave multiple RNA substrates [57]. Harris (et al.) examined the 

internal competition between different tRNA precursors for ribonuclease P by radiolabelling 

substrates and directly quantifying the substrate specificity [58, 59]. Furthermore, it has been 

found that RNA sequence is very specific for ribonucleases (for example, RNase H) [60–

62]. To understand the substrate sequence specificity and site specificity, deep sequencing 

methods (for review see [63–65]) were used to investigate the frequency and locations of 

ribonuclease L cleavage sites of viral RNAs [66, 67]. Site-specific studies have also been 

carried out, using primer extension reactions to characterize ribonuclease L specific cleavage 

sites in hepatitis C virus RNA [68] and DNA damage sites [69]. Utilizing the 

aforementioned analytical technologies (i.e., MS) coupled with these types of assays can be 

useful for the detection of not only the DNA/RNA sequences [70–72] but also the 

modifications on the individual nucleosides [73–75]. Additionally, MS analysis has been 

used to investigate the substrate selectivity of artificial restriction enzymes [76], which can 

be applied to manipulating RNAs for biotechnology applications.

Finally, the concept of this internal competition method was also applied to developing 

quantitative competitive polymerase chain reaction techniques to quantitate target DNA [77]. 

By competing with internal DNA segment, Tompkins (et al.) demonstrated that the reverse 

transcription-quantitative competitive polymerase chain reaction technique can quantitate the 

expression of seven cytokine mRNAs in domestic mammals [78]. This approach can be 

extended to barcoded samples like those demonstrated by Nguyen (et al.) where they paired 

unique DNA sequences to specific histone modifications in nucleosomes [79]. While this 

would require a separation step, it would also allow simple quantitative PCR in place of 

expensive sequencing or other technology. Through these types of experiments, we have 
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seen the progress in adapting the knowledge gained from internal competition assays into 

the utilization in practical applications. All aforementioned methods that can be utilized to 

measure multiple substrates/products are summarized in Table 1.

 3. Analysis of enzyme kinetics for substrate selectivity

 3.1 Steady-state analysis of specificity and selectivity for multiple substrates/sites in 
simple systems

The enzyme kinetics of one substrate under multiple turnover steady-state conditions can be 

described by the Michaelis-Menten equation (eq. 1). The Michaelis-Menten equation 

describes a hyperbolic relationship when plotting the initial rate (v) versus substrate 

concentrations, [S]. Where [E] is the concentration of enzyme, and kcat and Km are steady-

state kinetic parameters, representing the catalytic constant and the Michaelis constant, 

respectively. Conceptually, kcat represents the number of turnover events occurring per unit 

time, and Km is a relative measure of substrate binding affinity.

eq. 1

Differences in substrate specificity by a single enzyme have been studied since the 1920s 

[80], but it wasn’t until the 1960s that a usable definition was articulated [81]. Specificity is 

“… defined as a higher rate of reaction with respect to some reference substrate or reaction 

… to measure the special contribution of the enzyme to the catalysis, we should compare the 

velocity of the enzymatic reaction to the velocity of a nonenzymatic reaction” [81]. From 

this point Brot and Bender use the term specificity constant to refer to kcat/Km [82], but it 

wasn’t until 1974 that Fersht linked specificity and selectivity together, by using (v/[E])1/(v/

[E])2, to show that induced fit and non-productive complexes are not represented in the 

specificity of an enzyme (in a simple system) [83]. From this point we can see specificity is 

linked to it ability to choose one substrate over another, or selectivity, and that kcat /Km, is 

the best description of specificity for a substrate because it will predict selectivity in a 

mixture of substrates in a simple system (eq. 2).

eq. 2

We can apply this foundation to modern methods to understand selectivity between larger 

numbers of substrates. To do this we need to keep the standard steady-state assumptions, 

namely that total substrate concentration should remain close to the free substrate 

concentration, that enzyme should be much less than the substrate concentration and that 

less than 10% of total substrate should be consumed [6]. This gets more complicated when 

you have either one substrate that can produce multiple products like we have with histone 

acetyltransferases [7, 14, 41] or multiple different substrates. In this simple system one 
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substrate will not impact the specificity or selectivity of another substrate or product (see the 

next section of complications). It is important to note that in this description we are 

assuming that all substrates are in equal concentrations or that we have one substrate and 

multiple products. We can solve for the steady-state rate (v/[E]) for one substrate in the 

presence of multiple substrates or products from one substrate, in eq. 3, here kx and Kx is 

rate and binding constant for the substrate we are monitoring, A and D are given by 

equations 4 and 5. Two important features come from this: 1) solving for kcat/Km we get 

kx/Kx [7]; and 2) this makes it obvious that if we divide the rate for any substrate in this 

system by any other we will return to eq. 2.

eq. 3

eq. 4

eq. 5

If your main concern in studying an enzyme is substrate preference then measuring substrate 

turnover in the presence of all possible substrates has an advantage over individual kinetic 

measurements because they are able to determine selectivity with fewer measurements. We 

have shown that while the apparent kcat/Km for any one substrate measured in a complex 

background is the same as measured independently the apparent kcat is not. However, if we 

solve for the ratio of kcat(s) to compare any two substrates (eq. 6) then we get the same value 

as we would for the ratio of kcat/Km(s).

eq. 6

This means that as long as we can be confident that substrate is at saturation then we can 

measure selectivity or substrate preference by comparing the ratios of the apparent kcat(s). 

With advancing technologies (e.g., deep sequencing and mass spectrometry, Table 1), which 

allow us to monitor multiple substrates in complex mixtures, this approach has potential to 

greatly increase our understanding of how enzymes function in a cell.
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 3.2 Steady-state analysis of specificity and selectivity for multiple substrates/sites in 
complex systems

In the previous section we assumed that all substrates are consumed in a hyperbolic 

dependence and the presence of once substrate would have little to no influence on the 

steady-state rate of another substrate. However, there are circumstances where the substrate 

binding can either positively or negatively influence catalytic activities [84–86], which can 

result in apparent cooperativity. This causes a deviation from the hyperbolic kinetics 

described by eq. 1. For example, the appearance of a sigmoidal curve in the plot of initial 

reaction velocity vs. substrate concentration indicates a potential event of positive 

cooperativity [84]. Thus, the Hill coefficient (nH) is used in eq. 7 to describe the kinetics of 

cooperativity [87]. In this case, Km is replaced by K1/2, which shows the substrate 

concentration where the reaction reaches half-maximal velocity. Sigmoidal kinetics might 

also be indicative of a slow transient conformational change seen in a monomeric single-site 

enzyme [88] or it could be a case of a random ordered mechanism of a two-substrate 

enzyme [89].

eq. 7

When the competing alternative substrates are considered in the steady-state conditions for a 

specific enzyme, the kinetics of individual substrates has been illustrated by eq. 7. From this 

equation you can see that the only difference is a Hill coefficient for every substrate and 

equilibrium constant, and that if we rewrite eq. 2, we get eq. 8, where we have added the Hill 

coefficients for each substrate. In this case we can only use the ratio of the apparent kcat(s) if 

we know the Hill coefficients, which prevent single rate measurements.

eq. 8

However, if the Hill coefficients are the same for all sites the substrate concentration still 

cancels out. While Cornish-Bowden orginally only consider substrate concentrations where 

they were beyond the inflection point of the enzyme [90], or that selectivity would not 

change as you move from low to high concentrations, we have seen this effect in lysine 

acetyltransferases p300 and CBP [41, 91].

In cases where different substrates have different Hill coefficients, understanding selectivity 

can be difficult. This is because at low substrate concentrations an enzyme could prefer A 

and at high concentrations it could prefer B; consider a enzyme where the K1/2 and kcat are 
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the same but one has a nH of 2 and the other is not cooperative. The substrate with a Hill 

coefficient of 1 will be preferred at low concentrations while the substrate with the Hill 

coefficient will be preferred as we move to the maximum rate (Figure 1). We have proposed 

to use the plot of catalytic proficiency as a function of substrate concentration to simplify the 

understanding the enzyme specificity and how it changes with concentration. Catalytic 

proficiency is the second order rate constant kcat/Km divided by the non-enzymatic rate of 

catalysis, and is consistent with the definition of specificity as set by Bender and Kizdy [81]. 

This value will not change as a function of substrate concentration unless there is a Hill 

coefficient that is not equal to one, in which case the value will respond up (nH>1) or down 

(nH<1) in response to substrate. When dealing with multiple possible products like we have 

with p300 and CBP, converting this to a ΔΔG can make this easier to understand. In this case 

the selectivity between any two sites is simply the difference between the ΔΔG.

In cases where there are multiple substrates and one substrate can influence the activity of 

another it can be extremely difficult to describe the possible selectivity in a cell. Under these 

conditions it is best to try and limit the possible conditions using any information that can be 

obtained from cellular studies. It may also be possible to build initial models and refine these 

by comparing them measured differences in cells. In these cases chemical biology 

approaches [91] such as inhibitors/activators and/or isotopic labeling of substrates or 

products can aid in the refining of proposed models.

 3.3 Progress curve assays

For practical reasons, the same concentrations for individual competing substrates may not 

always be achievable, especially when more than two substrates are being investigated. 

Thus, in eq. 4, the terms of substrate concentration cannot be canceled out, even when no 

cooperativity is observed. However, in the case of nH,1 = nH,2 = 1, a viable alternative is to 

estimate the ratio of specificity constants by eq. 9 via measuring either individual substrate 

concentrations ([S1] and [S2]) or individual product concentrations ([P1] and [P2]) at a 

specific time point [40, 59, 92]. [S1,0] and [S2,0] in eq. 9 represent the initial concentrations 

of S1 and S2, respectively, before the assay starts. Taken together, this approach has several 

advantages; for example, there is no need to provide identical concentrations for all 

competing substrates, and one set of progress curves from an internal competition assay can 

be used to estimate the ratios of the specificity constants. The parameters estimated from eq. 

9 are also in accordance with the calculations from eq. 7 or 8, without requiring the substrate 

concentrations to be the same. However, note that this approach can only be applied to cases 

where no cooperativity is observed. In addition, to obtain optimal estimations while 

maintaining a comparably competitive system, none of any substrate should be consumed 

either less than 30% or more than 70%.

eq. 9
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 4. Case studies

 4.1 Lysine acetyltransferases (KAT)

The majority of HATs can acetylate more than one residue on a single histone, and often 

multiple histones. Acetylation can have different biological outcomes depending on which 

residues are acetylated. This presents a unique problem in that every substrate could result in 

multiple products. Almost all substrates used in KAT assays contain more than one target 

residue, including even short peptide substrates [7].

For this reason our group has been interested in the challenge of finding meaningful ways to 

describe specificity through in vitro assays which have predictive power in cellular and in 

vivo models. Much of the mechanistic discussion covered above became clear to us during 

our studies with Gcn5 and Rtt109 [7, 14]. Gcn5 acetylates only H3K14 as an initial 

acetylation event but after H3K14 has been acetylated, Gcn5 can then acetylate multiple 

residues, while Rtt109-Vps75 will initially acetylate two residues. It is the ability to observe 

multiple products simultaneously that has allowed us to understand how these two enzymes 

function. Additionally, simultaneous detection of multiple histone residues enabled us to 

characterize the differences in selectivity between highly conserved KATs, p300 and CBP: 

these results included the observation that while both p300 and CBP target similar residues, 

CBP has a much stronger preference for H3K18 than p300, and that p300 is more efficient 

than CBP at targeting H3K9 [41].

After characterizing these two enzymes, our follow-up investigation [91] involved 

determining how the in vitro kinetics of p300 in response to drug treatment correlated with 

in vivo effects of that drug. p300 is a prolific KAT, which is able to acetylate multiple 

residues of the histone [41]. We had previously shown that some residues were acetylated by 

p300 with cooperative dependence on acetyl-CoA, where other residues were hyperbolically 

dependent on acetyl-CoA. We hypothesized that this cooperativity was monomeric and the 

result of a slow conformation change between two or more conformations. This was evident 

by the fact that, had it followed a classically cooperative model, the result would have been 

suppression of non-cooperative products, which was not observed. Modeling this type of 

kinetic mechanism based on the model for hexokinase (see below), we could show that 

competitive inhibitors are capable of actually stimulating activity by altering the distribution 

of enzyme conformations. We tested this hypothesis by looking at the kinetics of the p300 

response to the drug C646, a small molecule that competes for binding to the acetyl-CoA 

binding pocket of p300 [93]. One of the novel findings from this study was that while C646 

was originally classified as an inhibitor of p300, in vitro assays determined that there was 

actually a biphasic effect, with low concentrations of the drug able to stimulate p300 activity.

To test whether this effect could be seen in vivo, cells were treated with differing amounts of 

C646. The acetylation patterns of the cells were compared to the kinetic data obtained from 

the in vitro assays. It was found that the changes in histone acetylation at individual residues 

that were detected in vivo correlated well with the changes in kcat(app) at those residues in 
vitro. Specifically, looking at the ratio of the kcat(app) (eq. 8) of histone H3 lysine 18 

(H3K18) compared to H3K23 (or K18/K23) matched the increase in acetylation of K18 

compared to K23 in cells.
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These results help to support the usage of a multi-substrate in vitro system for determining 

enzyme selectivity. In the case of p300, the histone itself presents multiple potential targets 

for p300 binding and acetylation. As the findings of this study apply to multi-substrate 

enzymes in general, it would suggest that in a complex system with a multi-target enzyme, 

determining the kcat(app) of that enzyme using an assay which contains multiple potential 

substrates could serve as a strong indicator of that enzyme’s selectivity in vivo.

 4.2 Hexokinase

Hexokinase, originally called glucokinase was the first enzyme in which monomeric 

cooperativity was described: a sigmoidal dependence in the absence of a multiple substrate 

model. Hexokinase was shown to have a sigmoidal dependence on glucose but not on 2-

deoxyglucose [94, 95]. Early models for this type of cooperativity suggested that 

cooperativity is due to a slow conformational step between two enzyme conformations 

where only one state was active (Figure 2) [94, 95]. Decades later NMR confirmed an order-

disorder transition is responsible for the observed monomeric cooperativity [18]. This type 

of mechanism can also lead to difficulties in understanding the enzyme’s selectivity in a 

complex background. The presence of one substrate can affect the rate of another substrate’s 

turnover, by altering the concentration of the active enzyme complex [96]. In this model, 

anything that can bind in the active site could influence the conformational change and result 

in stimulation of enzyme activity, as modeled in Figure 2. These types of considerations 

highlight the difficulty in predicting enzyme selectivity in vivo that can act on multiple 

substrates, as their concentrations can vary independently of each other In this case, in order 

to accurately describe the selectivity between substrates for an enzyme displaying 

monomeric cooperativity, it becomes necessary to either know the free concentrations of all 

substrates or to know that at least one substrate is saturating. Without this information, the 

description of specificity becomes dependent on multiple substrates concentrations. Such a 

situation is problematic for analysis as a small amount of one substrate could increase the 

other substrate’s specificity, resulting in a decrease in its own selectivity.

 5. Conclusions and outlook

Advancing technologies have facilitated the detection and quantitation of multiple substrate/

product systems. Mass spectrometry, chromatography, NMR, and even DNA/RNA 

sequencing methods have all aided the advancement of this type of investigation. Using 

these systems, and carefully considering the conditions of the reactions, it is possible to 

obtain meaningful data from in vitro assays that can predict the behavior of enzymes in vivo. 

By understanding the caveats, as well as the kinetic analysis behind concepts like specificity 

and selectivity, we can continue to tailor multiple substrate and product experiments to more 

accurately model protein behavior in cellular systems.
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 Abbreviation

KAT lysine acetyltransferases

PAH polycyclic aromatic hydrocarbons

LC liquid chromatography

MS mass spectrometry

MS/MS tandem mass spectrometry

NMR nuclear magnetic resonance spectrometry

Gcn5 general control nonderepressible 5

Rtt109 regulator of Ty1 transposition 109

Vps75 vacuolar protein sorting 75

CBP CREB-binding protein
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Figure 1. Use of catalytic proficiency to describe substrate dependent changes in selectivity
We simulated v/E vs. substrate for two substrates both with the same kcat (100/sec) and Km 

(25μM) values, but one with a nH of 2 and one with a nH of 1. Right: is the standard v/E vs 

substrate and Left: is the ΔΔG of catalytic proficiency, or −RTln([S]nH-1(k/K1/2nH)/(knE).
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Figure 2. Simulations of monomeric cooperativity and the link between second substrate/
inhibitor activation
We used KinTek Explorer to simulate monomeric cooperativity based on hexokinase [97, 

98]. We then added an inhibitor to the simulation that binds one state of the enzyme and 

facilitates the conversation of enzyme conformation. Parameters are in the figure (enzyme 

concentration was 0.06 E and 0.04 E*, and 100 S). This simulation was used to calculate 

steady-state rate under kcat conditions as a function of inhibitor concentration [I]. This data 

demonstrated a biphasic profile with an activation and inhibition phase. Right panel was fit 

using v/E=((kinitial+(kactive*[I])/KactivenH)/(1+ [I]((KactivenH+KinhibitnH)−1)) using data 

generated form KinTek Explorer.
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