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Introduction
Poliovirus has been a subject of intense study for more than six 
decades due to its importance as a public health threat reach-
ing as far back as antiquity.1–3 Many factors identify the diffi-
culties encountered in a global eradication initiative, including 
the high rates of genetic mutation and recombination during 
virus replication, as well as observations that vaccination pro-
grams have resulted in the evolution of genetic variants that 
resemble wild-type poliovirus with respect to pathogenicity 
and neurovirulence.2–4 Several studies have examined the spe-
cific nucleotide substitutions that result in phenotypic changes 
associated with disease in viruses isolated from previously vac-
cinated populations or individuals.3,5–11 Because genetic vari-
ants can persist, continue to evolve, and be shed by individuals 
for many years, and because the oral vaccine can itself cause 
disease outbreaks, it is likely that eradication of polio will 
remain an uncertainty, and continued research is imperative.

Several attempts to model replication in poliovirus and related 
quasispecies viruses have contributed to a better understanding 
of virus evolution.12–17 Modeling efforts can focus attention on 
key biological mechanisms and can inspire hypothesis generation 
to promote further experimentation.18,19 Whereas all models are 
abstractions and simplifications of reality, they begin as an attempt 

to capture the most salient features of a biological system, upon 
which additional complexity can be built, given experimentation, 
validation, model refinement, and further development.

This article describes a stochastic simulation model, called 
“S2M”, that can be used to simulate genetic state transition 
from the Sabin-1 (vaccine) strain of poliovirus to intermediate 
states resembling the Mahoney wild type at specified nucleotide 
positions. The model simulates mechanisms of genetic varia-
tion and tracks genetic changes at nucleotide positions that dis-
tinguish Sabin-1 from Mahoney (Fig. 1). Nucleotide positions 
that resemble neurovirulent or Mahoney sequence are assigned 
higher values of fitness, thus providing the driving forces for 
state transition. Values for various default parameters that define 
constraints on genetic variation were based roughly on values 
from the literature8 in order to construct a model that would 
display realism, to the degree that such may be feasible in a 
limited modeling experiment. Although several reports have 
investigated mutations5–10 in poliovirus vaccine strains (ie, Sabin 
genotypes), the data from the study by Georgescu et al.8 were 
selected due to completeness with respect to a set of mutations 
that could potentially revert Sabin-1 to a vaccine-derived pheno-
typic state, perhaps resembling that of the Mahoney wild type. 
The utility of the model is demonstrated by means of simulation 
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experiments in which the values of several parameters affecting 
genetic state change are varied, and outcomes are compared.

Materials and Methods
Model structure. The S2M model code comprises a library of 

modules that define data and functionality. Behavior of the model 
is governed by a set of input parameters (Table 1). A genotype was 
defined as the 56 nucleotide positions that distinguish the Sabin-1 
vaccine strain from the Mahoney wild type or that otherwise con-
fer neurovirulence.8 Limiting the model to 56 positions afforded 
simulation of the most relevant genetic changes that represent a 
well-defined genetic state transition, while maintaining constraint 
on computer memory usage. A population was defined as a set 
of genotypes replicating within the same cell. Progeny genomes 
are produced during successive replication cycles within a cell, 

terminating when the burst size (ie, the sum of parent plus progeny 
virus particles that have exhausted resources and have filled a cell) 
(b) is reached (Fig. 2). The initial inoculum is defined as the num-
ber of copies (multiplicity) of a fixed-state genotype (eg, Sabin-1). 
Upon entry, the inoculum genotype set is replicated, with a subset 
being subjected to homologous (copy-choice)27,28 recombination, 
according to the recombination rate (r). Each genotype position 
is subject to random mutation based on the mutational error rate 
(e). The generational growth rate (g) determines the number of 
progeny that will be produced from an initial set of replication 
templates; as such, S2M follows the “geometric replication mode” 
(progeny in early replication cycles become templates for further 
replication, thus increasing mutation likelihood), as opposed to the 
“stamping mode” (all progeny are derived from the original viral 
RNA that first infected the cell).17 For each subsequent round of 
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Figure 1. High-level view of S2M process flow and mechanisms modeled.

Table 1. Configurable parameters (command-line arguments) and their default values.

Argument Default Configurable Feature Reference

-e 0.001 Replication error rate 12,20–25

-g 1.0 Generational growth rate 16,17

-r 0.3 Homologous recombination rate 24,26

-b 1000 Burst size 25

-i 100 Multiplicity of reinfectiona

-p 5 Number of passages

-c 1 Generations to consolidate (for memory management)

-P 5 Number of populations

-a 2.0 Fitness accelerator

-t 60% Mahoney threshold

-s 2.0 Mahoney mutation synergy

-I true Retain lethal mutants throughout replication

-f true Filter lethal mutants prior to infection

Notes: References were consulted in assigning default parameter values, although default values do not necessarily match values found in the literature (“Materials 
and methods” section). aMultiplicity of reinfection refers to the number of particles infecting cells beginning with the second cell infection cycle.
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replication within a cell, a set of template genotypes is randomly 
selected from the existing pool (population) of genotypes. Rep-
lication proceeds until resources are exhausted (ie, the burst size 
is reached). Upon burst, all (parent and progeny) genotypes are 
consolidated within each population to eliminate sequence redun-
dancy in the model; genotypes with identical sequence are com-
bined and the individual counts are summed, and populations (P) 
are consolidated to yield a super-population (ie, cloud). The sub-
sequent infection cycle (or cell passage) is mediated by random 
selection of a set of genotypes from the super-population accord-
ing to the multiplicity of reinfection (i). The “i” parameter attempts 
to simulate a limitation on the number of cell receptors that enable 
virus particle entry or the number of initial sites of replication.17 
Infection cycles continue until the number of passages (p) has 
been reached, or until a super-population goes extinct. Extinction 
is defined to occur when no viable genotype can be selected for 
subsequent infection. By default, the model replicates defective 
genotypes (defined as having at least one lethal mutation) and 
selects them for subsequent infection, but eliminates them from 
the inoculum (set of infecting particles), thereby simulating inabil-
ity to infect a cell. These behaviors are controlled by input param-
eters “l” (to retain lethals throughout in-cell replication) and “f ” 
(filter lethals from infection set). Figure 1 shows an overview of the 
model structure and summary of the process flow. Randomization 
is performed using the Mersenne Twister method.29 A simula-
tion experiment may be constructed by specifying in a kernel pro-
gram (eg, Qspp_main.cpp) an inoculum consisting of a defined 
initial genotype set and by specifying at the command line any of 
the parameters listed in Table 1. Numerous statistical measures 
are recorded and periodically updated throughout the simulation 
(see Supplementary Files 1, 2, and 3 for sample simulation trace, 
report, and statistical files, respectively; generation of these files is  
described below).

Replication mechanisms and constraints. For each rep-
lication cycle, the number of candidate progeny genotypes is 
calculated as the integer value of n*g*l, where n is the number of 
genotypes, g is the generational growth rate, and l is a limiting 
factor, computed as [(b − n)/b], the fraction of remaining cellu-
lar resources. If the sum of genotypes plus progeny exceeds the 
burst size, then the number of candidate progeny is adjusted to 
the burst size minus the number of genotypes. Figure 2 shows 
how in-cell genotype population grows with each replication 
cycle. The number of parent genotype sequences to undergo 
homologous (copy-choice) recombination27,28 is calculated as 
the number of candidate progeny times the recombination 
rate (r), and the number of simple replications is calculated as 
the number of progeny minus the number of recombinants. 
Homologous recombination is achieved by selecting a random 
position from which to join the 5′ segment of a first genotype 
to the 3′ segment of a second genotype to form a recombi-
nant candidate progeny genotype. The number of positions to 
undergo random mutation is based on the replication muta-
tion rate (e), and the candidate progeny genotype positions 
to be mutated are randomly selected; some or most candidate 
progeny genotypes may not incur any mutation, whereas some 
may incur multiple mutations. The genome fitness values for 
each candidate progeny genotype are then recalculated (ie, 
updated). Fitness is defined, calculated, and implemented 
during the replication cycle as described in the “Fitness” sec-
tion (below). The ultimate set of progeny genotypes is gener-
ated from the candidate pool based on relative fitness using 
two algorithms guided by input parameters “a” (fitness accel-
erator) and “s” (Mahoney synergy) and is then added to the 
population’s genotype set. First, the Mahoney fitness factor 
is calculated for each candidate progeny genotype (“Fitness” 
section). Then, the final selection of progeny genotypes is cal-
culated by selecting genotypes from a geometric distribution 
governed by the fitness accelerator (a). The number of copies 
of each candidate genotype (to be incorporated into the evolv-
ing genotype set) is calculated as the rounded integer value 
of Pi = P*fa/SUM1.n(fia), where Pi is the number of copies of 
a candidate genotype, P is the total number of progeny to be 
produced, f is the genotype Mahoney fitness factor raised to 
the power a (conferring exponential fitness gain)30, where a is 
the fitness accelerator (a) and the denominator is the sum of 
each candidate genotype Mahoney fitness factor raised to the 
power a. By dynamically calculating relative replication fitness 
in this way, the most “fit” genotypes will tend to add more 
members to the population than those lesser fit, and the least 
fit will tend to be eliminated. The “Mahoney boost” (fitness 
adjustor) or the fitness accelerator can be rendered null by set-
ting the respective input parameter to −99.0 or 1.0.

Fixed-state genotypes. Three fixed-state genotypes (in 
code file FixedState.h) are defined to guide the model in deter-
mining the genotype states comprising Sabin-1-initial geno-
type, Mahoney resemblance, and neurovirulence. Positions 
that distinguish the Sabin-1 vaccine strain from the Mahoney 
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Figure 2. In-cell replicative growth. To illustrate the change in genotype 
numbers during in-cell replication, a single replication cycle (ie, 
no passage) was run under default conditions. X-axis is the in-cell 
replication cycle number (beginning state at 1), and Y-axis is the 
cumulative number of genotypes (blue), new progeny genotypes (red), 
and remaining resources represented as potential genotypes (green), at 
each replication cycle. The inoculum contained 10 genotypes, and the 
burst size was 1000.
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wild-type virus or that confer neurovirulence were taken from 
the study by Georgescu et al.8

Fitness. Genotype fitness is calculated as the sum of fitness 
values at each position. Two fitness grids are defined in code in 
the FixedState.h file based on the notion that Mahoney repre-
sents a relatively fit genotype, whereas Sabin-1, being an atten-
uated virus, has reduced fitness. Fitness grid 1 defines relative 
fitness values at each of the 56 defined positions. Nucleotides 
with identity in the corresponding position in Mahoney were 
assigned a fitness value of 0.8, whereas those corresponding to 
Sabin-1 were assigned 0.2. Neurovirulence positions, having 
identity in positions corresponding to known neurovirulence 
mutations, were assigned fitness value 1.0. Remaining nucle-
otides were assigned “neutral” fitness value 0.5. Fitness grid 2 
defines the same fitness values as defined in fitness grid 1, with 
the exception that in any given position for which there are two 
nucleotides with neutral fitness, one was assigned a fitness value 
of 0.0, indicating that the nucleotide at that position confers a 
lethal mutation. Note that a relatively fit genotype can harbor a 
lethal mutation, as Boolean lethality is computed separately from 
quantitative fitness. The Mahoney genotype has fitness 45.5, and 
the Sabin-1 genotype has fitness 12.2. Based on the notion that 
Mahoney mutations may be synergistic, upon replication, a geno-
type Mahoney boost (Mahoney-synergy fitness factor) is calcu-
lated as, Fb = 1 + F(ms/n), where F is the genotype fitness, m is 
the number of Mahoney mutations, s is the Mahoney synergy 
parameter (s), and n is the number of positions in the genotype 
(ie, constant 56 in the model). The genotype replication fitness is 

then calculated as F*Fb, where F is the genotype fitness and Fb 
is the Mahoney boost.

Model parameters. Table 1 shows the parameters that may 
be configured by the user. Default settings for certain parameters 
were set after consulting references listed in Table 1. Mahoney 
reversion for a population is defined as the decimal fraction of 
positions in the population (across all genotypes) that are iden-
tical to Mahoney sequence. Upon update of genotype statistics, 
the model assigns the value “neurovirulence = true” if any neu-
rovirulence position has attained neurovirulence identity, and 
“Mahoney = true” if the genotype has attained 60% (by default) 
Mahoney identity. Lethal mutants (ie, defective interfering 
particles) were defined as having at least one position with 
fitness = 0.0. A “viable” genotype has no position with a lethal 
mutation (ie, all nucleotide fitness values . 0.0).

Report statistics. Population health was defined as the 
percentage of genotypes that do not confer a lethal mutation. 
Population (or cloud) diversity was calculated as the proportion 
of distinct genotype sequences to the total number of genotypes, 
expressed as a percentage. Additional statistics relating to in-
cell replication, diversity, neurovirulence, and Mahoney resem-
blance that are provided by the model are listed in Table 2.

Memory management. Because only 56 nucleotide posi-
tions (which distinguish the Sabin-1 and Mahoney strains or 
confer neurovirulence) were included in the model, a simple 
approach to memory management was adequate for running 
simulations on the hardware used for this work. Following 
cell burst, S2M eliminates redundant genotypes by merging 

Table 2. Output data values and abbreviations.

Data Value Description Abbreviation

Cloud census Count of genotypes in the cloud Pgentyps

No. of distinct genotypes No. of non-redundant genotype sequences Distinct

Range of redundant genotypes Minimum and maximum genotype counts among non-redundant genotypes PMinMax

Mean genotypes per sequence Mean number of copies per distinct genotype PopMean

Median genotypes per sequence Median number of copies per distinct genotype PopMedn

Population diversity Measure of population diversity (1.100) Divrsty

Population health Percent of total genotypes without lethal mutation Health

No. of defective genotypes Number of genotypes with at least one position with zero fitness Defctvs

Average genotype fitness Fitness averaged over all genotypes AveFitn

Population viability Viable if population has at least one genotype without a lethal mutation; 
Extinct if population is empty or all genotypes have at least one lethal mutation

Viablty

Generations to burst Number of replication cycles that occurred in a cell Gnratns

No. of neurovirulent genotypes Number of genotypes that have at least one neurovirulence mutation Ngentps

Average neurovirulence score Average neurovirulence score among neurovirulent genotypes Nscore

Average neurovirulence indexa Average neurovirulence indexa among neurovirulence genotypes AvNindx

No. of Mahoney revertants Number of genotypes that have attained cutoff percentage of Mahoney 
mutations (default is 60%)

Mgentyps

No. of Mahoney mutations Total number of Mahoney mutations among genotypes in the population Mutns

Mahoney reversion index Proportion of Mahoney mutations in the population as a decimal fraction of 1.0 Revrsn

Notes: Abbreviation comprises column headers in simulation report files. aNeurovirulence index is a sum of phenotype contributions per position, as determined by 
the relative strength of the neurovirulence phenotype (see Configurable.h file and Ref. 8).
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statistics over the replicate values for each output data value 
(Table  2), and write these statistics to separate report files. 
Supplementary File 3 comprises a sample file containing mean 
values over multiple replicate simulation runs. Unless other-
wise indicated, all data shown in plots in this article are mean 
values computed over 10 replicates.

Code execution. C++ codes were compiled using Xcode 
v. 6.2 and executed at the command line in a Linux inter-
face on an Apple Macbook computer running OSX v. 10.9.5. 
Command strings were of the form, “./Qspp_main.exe [, 
parameter. ,value  .  ]n. simulation.out”, where n repre-
sents the number of arguments passed to the kernel program, 
“parameter” is an argument symbol provided at the command 
line to modify the defaults (Table 1), and “value” is the over-
ride for that parameter. Simulation output files were post
processed on the same machine, and mean values were plotted 
using Microsoft Excel.

Results
Single-parameter simulations. Lethal mutations. The 

effects of the presence versus absence of genotypes with at 
least one lethal mutation were studied. Figure 3 shows that the 
presence of lethal mutant genotypes (fitness 2) did not affect 
fitness or the accumulation of Mahoney reversion mutants 
compared to the simulation in which lethal genotypes were 
absent altogether (fitness 1) and had a small effect on the 
accumulation of neurovirulent genotypes. Initially, lethal 
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Figure 3. Simulations using default parameters and fitness grids 1 and 2. X-axis indicates the passage numbers. Graph titles indicate quantities shown 
along the Y-axis. Fit1: fitness grid 1; Fit2: fitness grid 2. Grids 1 and 2 are specified in the kernel program (Qspp_main.cpp).

identical sequences and updating the distinct genotype counts 
accordingly. This step is called “consolidation” in the model.

Simulations and data processing. The kernel that was 
written to conduct the study, Qspp_main.cpp, was used to 
create simulations in which five populations were tracked 
through 200 cell-to-cell passages. Initially, a simple test of 
virus replication was performed using fitness grid 1, and all 
default parameters to track the increase in virus progeny in a 
single-cell simulation and verify that virus population would 
increase as expected (ie, exponential growth followed by 
tapering; Fig.  2). Single-parameter simulation experiments 
involving five virus populations comprised examinations of 
the presence versus absence of defective interfering particles 
(using default Boolean variables) (Fig. 3), variation in the rate 
of replication error (Fig.  4), variation in the recombination 
rate (Fig. 5), variation in the fitness accelerator (Fig. 6), and 
variation in the degree of Mahoney synergy (Fig.  7). Two-
parameter simulation experiments examined the dual effects of 
varying the rates of mutational error and (copy-choice) recom-
bination (Fig. 8A–D). Text output by S2M allows the user to 
trace in detail the process flow of a simulation (Supplementary 
File 1 for sample trace). Summary data (Supplementary File 2) 
were collected from each of the simulation output trace files by 
saving the text produced by grepping “Report” on the output 
file (ie, at the command line, type: “grep ‘Report’ S2M.out-
put . myReportFile.tab”). Python code (calculateStats_S2M.
py) was used to parse the replicate output report files, compute 
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mutations appeared to increase the number of neurovirulent 
genotypes, but over time this difference resolved, and after 
passage 140, the number of neurovirulent genotypes was 
greater in the simulations using fitness 1 (no lethals). Cloud 

diversity was observed to be slightly greater in the simulation 
using fitness 1, indicating that the effect that lethal muta-
tions had on diversity was small but detectable under the 
simulation conditions.
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Figure 6. Simulations using fitness grid 1, varying the fitness acceleration parameter (“a”). X-axis indicates the passage numbers. Graph titles indicate 
quantities shown along the Y-axes. Colored lines indicate results generated by the model run with command-line arguments: a1 = −a 1.0; a2 = −a 2.0; 
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Replication error rate. The rate at which mutations were 
to be generated at each replication cycle was varied over four 
orders of magnitude. Although this range of replication error 
rates was in exaggeration, its purpose was to detect behavioral 
differences of the model based on significant changes in this 
parameter within 200 passages. Behaviors regarding Mahoney 
reversion, neurovirulence, and genotype fitness were similar in 
that in all three cases the greatest replication error rate resulted 
in a rapid increase in the phenotype being detected, but the 
long-term frequencies of each phenotype differed, being lower 
for larger values of replication error rate (Fig.  4). For each 
mutation rate, cloud diversity rose rapidly and stabilized early 
in the simulation. Cloud diversity was greatly influenced by 
the rate of replication error, with the highest rate yielding the 
greatest diversity, and the lowest yielding little diversity over 
200 passages.

Homologous (copy-choice) recombination rate. The recom-
bination rate was varied from 0.0 (no recombination) to 
0.9 (90% of replicating templates undergo recombination). 
Increasing the rate of recombination resulted in an increase 
in the number of passages required to achieve end-state val-
ues for Mahoney reversion, neurovirulence, and fitness, up to 
r = 0.6, but initial and end-state values did not differ greatly 
upon increasing the recombination rate to r  =  0.9 (Fig.  5). 
Cloud diversity rose rapidly at all levels of positive recombina-
tion rate, but quickly stabilized following an initial oscillation 
(approximately passages 25–115).

Fitness acceleration. Increasing the fitness acceleration 
was expected to enhance the rates at which genotypes with 
neurovirulent and Mahoney resemblance phenotypes would 
accumulate in a population. Figure 6 illustrates that the high-
est accelerator yielded the most rapid accumulation of both 
phenotypes. However, even though the factors for these fit-
nesses increased at greater than linear degrees (“Materials and 
Methods” section), the greatest increases were seen between 
the lower and middle values; there was a tapering of the effect 
as the value of the parameter was increased. However, extrap-
olation of the curves suggested that end states of Mahoney 
reversion and neurovirulence were equivalent. Genotype fit-
ness also followed these patterns. However, in the long term, 
diversity decreased with increasing fitness acceleration.

Mahoney mutational synergy. Mahoney synergy (Fig.  7) 
had small, but detectable, effects on Mahoney reversion, neu-
rovirulence, and genotype fitness, following the patterns of 
fitness acceleration (Fig. 6), with the most pronounced effect 
being on Mahoney reversion. Lower values of Mahoney syn-
ergy resulted in increases in end-state diversity.

Two-parameter simulations: replication error rate and recom-
bination rate. The effects on genotype fitness (Fig. 8A) of simul-
taneously varying the replication error (e) and recombination 
(r) rates revealed that both mechanisms had similar contri-
butions in that increasing either resulted in increases in the 
rates at which steady-state fitness was achieved. For con-
stant e  =  0.0001 or e  =  0.001, higher values of r produced 

a more rapid rise in fitness (Fig. 8A dark olive and medium 
orange lines). However, at constant e = 0.01 (Fig. 8A, lightest 
lines), increases in r had little or no effect on the rate of fit-
ness increase. Similarly, steady-state cloud diversity (Fig. 8B) 
increased markedly with each increase in either e or r, as these 
mechanisms worked synergistically to increase cloud diver-
sity; the highest values for both e (0.01) and r (0.6) (Fig. 8B, 
lightest lines) resulted in the highest degrees of cloud diver-
sity achieved at steady state. However, unlike the fitness test 
shown in Figure  8A, steady-state cloud diversity at high 
e (0.01) (Fig.  8B, light lines) was markedly influenced by 
increasing r. Transitions toward increased neurovirulence were 
accelerated with increasing values of either r or e (Fig. 8C1), 
although oscillations introduced by recombination caused the 
curves to cross over at several points (eg, passage 70, dark red 
and dark green lines in Fig.  8C1). Measures of neuroviru-
lence were observed to be highly oscillatory in single-replicate 
tests (Fig. 8C2), with the greatest degree of oscillation being 
observed at values of e = 0.0001 and r = 0.6. Although aver-
ages computed over 10 replicates showed that neurovirulence 
progressed toward a common steady-state value (Fig.  8C1), 
potential for delayed or sudden and sustained increases in neu-
rovirulence could be achieved within individual simulations 
(Fig.  8C2, r6e0001). In addition, within 200 passages, the 
highest value (approximately 6.9) was observed at the highest 
rate of recombination (r = 0.6) and lowest rate of replication 
error (e = 0.0001). The Mahoney reversion test (Fig. 8D1) was 
qualitatively similar to the genotype fitness test (Fig. 8A) in 
all respects: increasing values for e and r increased the rates at 
which steady-state Mahoney reversion indexes were achieved, 
with r influencing Mahoney reversion more strongly at lower 
values for e (Fig.  8D1, darkest lines). Unexpectedly, for 
Mahoney reversion and genotype fitness measures that were 
averaged from 10 replicates over 200 passages, the most rapid 
movement toward steady state was observed at r values of 0.4 
when e was fixed at 0.0001 (red lines in Fig. 8A and 8D1).

Discussion
Model parameters and fitness grids. Default model 

parameters for the replication error rate, recombination rate, 
and burst size (Table  1) were assigned after consulting lit-
erature values, but with additional considerations. Because 
in all cases these values vary greatly in the literature among 
quasispecies viruses, including polio,12,20–23,25,26 it would be 
unreasonable to insist upon specific values for any of them. 
Thus, S2M’s default replication and recombination rates were 
set at relatively high levels for convenience in conducting tests 
that would produce meaningful output within 200 cell-to-cell 
infection cycles, or passages (“p” parameter). However, default 
parameter values can be changed by modifying constants 
defined in the Configurable.h file of S2M. Although fitness 
values were defined arbitrarily and scaled from 0.0 to 1.0 based 
on the notion that neurovirulence and Mahoney mutations 
confer greater fitness than do other nucleotide substitutions, 
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the user could use alternate fitness values by defining addi-
tional fixed-state genotypes in file FixedState.h. Nucleotide 
positions that distinguish Sabin from Mahoney were taken 
from the work by Georgescu et al.8 due to the thoroughness 
with which these mutations had been described, although, 
likewise, alternate positions and associated fitness values could 
be modified by defining additional fixed-state genotypes in 
file FixedState.h. The default generational growth rate was 
set at 1.0, and a smooth increase in genotypes was observed 
during the first cell infection cycle at initial infection using 
10 initial genotypes (Fig. 2). A multiplicity of reinfection of 
100 (ie, 100 genotypes are selected for each subsequent cell 
infection) yielded on average an approximately 5-generation 
separation of progeny from initial templates (data not shown), 
as was observed experimentally in a study by Schulte et al.17

Fitness grids 1 and 2 were compared (Fig. 3) in order to 
study outcomes between simulations involving the presence 
(fitness2) versus absence (fitness1) of lethal mutations. Few 
or no differences were observed for genotype fitness, neuro-
virulence, or Mahoney reversion between tests using each of 
the two fitness grids. Because genotypes conferring at least 
one lethal mutation were eliminated prior to each subsequent 
cell-to-cell infection cycle, they were absent from the initial 
pool of candidate replicating genotypes. In this way, each cell 
cycle initially involved only nonlethal parent genotypes. The 
lower degree of cloud diversity observed for fitness grid 2 sug-
gests that the removal of lethal-mutation-containing geno-
types decreased the diversity of replicating genotypes, which 
affected the cloud diversity at the end of each cell cycle.

Simulations. Single-parameter simulations (Figs.  4–7) 
illustrate the dynamics of varying four parameter settings 
[replication error rate (e), homologous recombination (r), fit-
ness acceleration (a), and Mahoney mutational synergy (s)] on 
short-term and steady-state values of genotype fitness, cloud 
diversity, neurovirulence, and Mahoney reversion. As one 
might expect, increasing e (0.1, purple line in Fig. 4, Geno-
type Fitness graph), resulted in a rapid increase in genotype 
fitness, followed by a steady-state value that was relatively 
low (approximately 35) compared to values achieved at lower 
values for e (40 or greater). It stands to reason that outcomes 
will be attained more quickly at higher e, but that genotype 
fitness would be constrained by back mutation (instability) 
in the genotype sequence. Similar effects were observed in 
the tests involving neurovirulence and Mahoney reversion 
(Fig.  4). Cloud diversity was driven and maintained simi-
larly at increasingly higher levels by increasing e (Fig.  4) or 
r (Fig.  5). The work by Vignuzzi et  al.31 demonstrates that 
genomes expressing the G64S mutant polymerase, compris-
ing high-fidelity replicating genomes (ie, low mutation rate), 
yield descendent populations with lower diversity even after 
prolonged passaging, which is in agreement with the simulated 
results from S2M (Fig. 4). Further comparing the behaviors of 
increasing r versus e, steady-state values for genotype fitness 
and neurovirulence converged to common values (within 200 

cell-to-cell cycles) for r (Fig. 5) but not for e (Fig. 4), suggest-
ing that high replication error rates contributed to long-term 
sequence instability, whereas recombination events generally 
did not.

Fitness acceleration was devised in this work as a means 
by which a genome of greater fitness could be favored dur-
ing replication, and its prominence in the population “acceler-
ated”, leveraging the notion that cumulative mutations that 
confer fitness should promote more efficient replication. Rep-
licative (ie, dynamically calculated) fitness gain was thus mod-
eled in S2M as exponential increases, which are supported by 
observations of virus replication.30 The results in Figure  6 
demonstrate that increasing levels of fitness acceleration 
drove populations toward steady-state endpoints more rapidly, 
excepting for cloud diversity, in which case the rates to achieve 
steady state differed little, and diversity was apparently dimin-
ished by overrepresentation of the genotypes with the greatest 
fitness. This implies that maximal consensus genotype fitness 
may be achieved at the expense of cloud diversity.

Mahoney mutational synergy was devised in this work 
as a means by which a population could be driven toward an 
end-state consensus sequence by a hypothetical environmental 
constraint. By simulating synergy among Mahoney mutations 
in a given genotype, Mahoney synergy increased the likeli-
hood that a genotype would undergo replication (“Materi-
als and Methods” section). Because the Mahoney genotype 
was considered highly fit (“Materials and Methods” section), 
and because it included most (five of seven) of the neuroviru-
lence mutations included in this work (see FixedState.h file), 
the genotype fitness and neurovirulence simulations (Fig. 7) 
showed (not unexpectedly) that these outcomes tracked 
closely with increases in Mahoney synergy. As was observed 
with fitness acceleration (Fig.  6), steady-state cloud diver-
sity was diminished at higher levels of Mahoney mutational 
synergy, likely due to overrepresentation of Mahoney-like 
genotypes (Fig. 7).

Two-parameter simulations (Fig.  8) enabled a study of 
the combined effects of two mechanisms of genetic diversity: 
replication error rate and recombination rate. Not surprisingly, 
neurovirulence increased in an oscillatory manner, especially at 
lower values of replication rate (Fig. 8C2), due to the relatively 
few positions that conferred neurovirulence and to their distri-
bution along the genotype sequence; sudden jumps in neuro-
virulence were presumed to have been caused by the uniting of 
neurovirulent genome segments during a recombination event, 
which in turn would create a more highly fit progeny geno-
type, which would then be favored in the ensuing replication 
cycles. When the replication error rate was set to its lowest 
value (0.0001), recombination was assumed to have been the 
dominant force of genetic variation. Thus, recombination could 
on occasion (ie, by random chance) be a mechanism for rapidly 
driving a population toward neurovirulence. As discussed in a 
study by Duggal et al.24, genetic recombination is an important 
strategy for eliminating detrimental (or in this case, perhaps, 
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increasing favorable) mutations and ensuring greater genetic 
diversity. That the combined effects of simultaneously increas-
ing the rates of replication error and recombination yielded 
little or no synergy in producing long-term (passage 200) fit-
ness (Fig. 8A) or Mahoney reversion (Fig. 8D1) at the highest 
levels for both parameters implies that at some point neither 
mechanism had increased influence on the increases in levels 
of genetic diversity, and the highest rates of genetic variabil-
ity tended to reduce long-term fitness and Mahoney reversion. 
The observation that the middle value for rate of recombina-
tion (r = 0.4) yielded higher measures of Mahoney reversion 
(Fig. 8D1) and genotype fitness (Fig. 8A) than did the highest 
(r = 0.6) or lowest (r = 0.2) at the lowest replication error rate 
(e = 0.0001) was unexpected, and it may suggest that 10 repli-
cates were too few to ensure adequate averaging of these mea-
sures, arising from stochastic processes. However, when the 
number of passages was increased to 1000, the middle (r = 0.4) 
Mahoney reversion measure approached a steady-state value 
lower than either the highest (r = 0.6) or the lowest (r = 0.2), 
as shown in Figure 8D2. This suggests that long-term genetic 
outcomes may be influenced by early recombination events.

Fitness. A discussion of fitness as defined in S2M is war-
ranted, given that “fitness” is a variously interpreted concept. In 
S2M, fitness at the nucleotide level reflects the degree to which a 
nucleotide individually contributes to the tendency for a genome 
to compete in replication. This tendency is an indirect represen-
tation of environmental conditions that favor certain mutations: 
Mahoney sequence is presumed to be more fit than is the Sabin-
1, and neurovirulence mutations are considered to be more fit 
than nonvirulence-associated mutations (as vaccine-derived 
polio viruses often are neurovirulent). The naïve assumption was 
that each nucleotide behaves independently, and the “simple” fit-
ness of a genome (or “genotype” in the model) was calculated as 
the sum of the fitness values of its nucleotide positions. Similarly, 
the fitness of a population or cloud was calculated as the mean of 
the simple fitness values of its member genomes. Thus, popula-
tion fitness reflected the degree to which the virus had transi-
tioned toward a more fit state as defined in S2M.

But a definition of genome fitness with more utility for 
modeling the state transition involves the notion that indi-
vidual mutations with greater than average fitness are syn-
ergistic when they occur on the same genome. In S2M, the 
fitness accelerator was a dynamic recalculation of a genome’s 
fitness based on additional considerations. One characteris-
tic that accelerated a genome’s fitness was the accumulation 
of mutations each with relatively high individual fitness. 
Although the model considered each nucleotide to behave 
independently, the accumulation of nucleotides with greater 
than average fitness resulted in a greater than linear increase 
in a genome’s ability to compete with respect to replication. 
In a sense, this is a simulation of mutations working in con-
cert (ie, not independently) to push a genome toward a more 
fit state. This is distinct, however, from compensating muta-
tions, which comprise pairs or small groups of mutations, or 

“second-site mutations”, that are functionally linked, which 
were not modeled in S2M. Likewise, the Mahoney synergy 
was based on the notion that the nucleotides that comprise 
Mahoney sequence will behave in concert to increase overall 
genome fitness and hasten transition toward a more fit state by 
means of increased propensity to replicate.

In a real biological system, one could not discuss total fit-
ness without considering other biological characteristics, such 
as replicase processivity, cell receptor attachment, ability to be 
internalized into the host cell, efficiency of genome packag-
ing, or durability of virus particles in an extracellular envi-
ronment. The definition of fitness in a computational model 
would necessarily be expanded upon implementation of any of 
these additional biological considerations.

Model limitations and extension. S2M is a simple 
model for studying outcomes driven by factors that influence 
genome replication and genetic variability. S2M specifically 
addresses genetic state transition, simulating transition of 
the Sabin-1  genotype to intermediate Mahoney-like states 
representing vaccine-derived poliovirus, although the code 
library could be adapted to model other genomic state transi-
tions, or used as a general model of picornavirus replication, 
given appropriate fitness constraints. S2M simulates cell inva-
sion, in-cell genome replication, genetic variation afforded by 
random single-nucleotide mutation and homologous (copy-
choice) recombination, resource limitation, cell lysis, release 
into the medium, and subsequent reinfection (Fig. 1). Because 
poliovirus replication generally leads to cell lysis under culture 
conditions,11 S2M was constructed to model burst. However, 
minor code modifications could yield a model to simulate per-
sistent infection, whereby budded virus (genotypes) would be 
subtracted from a cell population and added to a cloud. S2M 
does not model details of virus or cell structure or biology, 
nor does it model mechanistic details of replication (eg, ribo-
some binding, mutations involving transition versus transver-
sion), favored recombination breakpoints,32 or rates at which 
any process occurs. Furthermore, S2M simulations are driven 
by a predefined, fixed end state, whereas a most compelling 
next step in modeling genetic state transition might involve 
adaptation to dynamic environmental forces, such as migra-
tion through specific host tissues11,33 or pressures imposed by 
the host immune system. Additional improvements that could 
enhance S2M’s utility might include incorporation of measures 
of Hamming distance from the initial or end-state genotypes 
(enabling a more quantitative tracking of genetic transition) 
and a mathematical definition of robustness, which could 
take into account the mutational distances that genotypes of 
equivalent fitness may need to traverse in order to attain a given 
end state.34 Furthermore, the Sabin-to-Mahoney transition as 
modeled here represents a sample state transition, although 
there is no reason (other than limitations in data quality and 
quantity) that the model could not be adapted to any desired 
state transition consistent with the model’s structure, or used 
to model coinfection of closely related viruses.
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S2M may be unique, as the author is not aware of any 
published model that simulates in-cell replication followed by 
cell-to-cell infection over many generations. S2M has a simple 
design, yet provides a versatile simulation capability. The S2M 
library modules could be rearranged in writing a kernel that 
would simulate, for example, spread of the virus from a single 
infected cell to multiple surrounding cells and beyond. Such a 
simulation suggests the use of parallel computing and would 
be entirely feasible, given the S2M code library. Much more 
detail could be incorporated as well, but S2M embodies a mini-
mal approach to a complex problem in an endeavor to critically 
examine mechanisms and relationships. Fixed-state genotypes 
are defined in code, but a programmer could readily insert addi-
tional fixed-state genotypes in the FixedState.h file and modify 
certain classes to accommodate additional state changes or 
genotype features. In addition, S2M could be used as an educa-
tional tool to illustrate picornavirus replication dynamics.

Code design and availability. The S2M model code was 
written in C/C++ with modules representing genotypes, virus 
populations, and the quasispecies cloud, as well as modules 
for specifying static genotypes and configurable features. 
Efficient memory usage was incorporated into the design so 
that the model could be executed in a personal computer and 
would therefore be accessible to the average computational 
biologist. However, the model is sufficiently versatile that 
complex simulations could be constructed and run in paral-
lel on supercomputers. S2M includes a postprocessing code, 
specific to the S2M kernel used for simulations in this work, 
written in Python 2.7. All S2M source codes are open source 
offered through a General Public License and are available for 
academic use at https://www.github.com/carolzhou/Virus/. 
To access the code, one should first download and install the 
Git client (see https://git-scm.com/downloads). The project 
files can be cloned either using the graphical user interface 
or more simply from the command line (once the software 
is installed, typing “git” should display a help menu). S2M 
files can then be downloaded by entering, “git clone https://
github.com/carolzhou/Virus”. S2M codes can also be down-
loaded from SourceForge at https://sourceforge.net/projects/
qspp-modeling/.
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