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abstractBACKGROUND: Little is known about the association of gut microbiota, a potentially modifiable 

factor, with bronchiolitis in infants. We aimed to determine the association of fecal 

microbiota with bronchiolitis in infants.

METHODS: We conducted a case–control study. As a part of multicenter prospective study, we 

collected stool samples from 40 infants hospitalized with bronchiolitis. We concurrently 

enrolled 115 age-matched healthy controls. By applying 16S rRNA gene sequencing and an 

unbiased clustering approach to these 155 fecal samples, we identified microbiota profiles 

and determined the association of microbiota profiles with likelihood of bronchiolitis.

RESULTS: Overall, the median age was 3 months, 55% were male, and 54% were non-Hispanic 

white. Unbiased clustering of fecal microbiota identified 4 distinct profiles: Escherichia-

dominant profile (30%), Bifidobacterium-dominant profile (21%), Enterobacter/Veillonella-

dominant profile (22%), and Bacteroides-dominant profile (28%). The proportion of 

bronchiolitis was lowest in infants with the Enterobacter/Veillonella-dominant profile 

(15%) and highest in the Bacteroides-dominant profile (44%), corresponding to an odds 

ratio of 4.59 (95% confidence interval, 1.58–15.5; P = .008). In the multivariable model, 

the significant association between the Bacteroides-dominant profile and a greater 

likelihood of bronchiolitis persisted (odds ratio for comparison with the Enterobacter/
Veillonella-dominant profile, 4.24; 95% confidence interval, 1.56–12.0; P = .005). In 

contrast, the likelihood of bronchiolitis in infants with the Escherichia-dominant or 

Bifidobacterium-dominant profile was not significantly different compared with those with 

the Enterobacter/Veillonella-dominant profile.

CONCLUSIONS: In this case–control study, we identified 4 distinct fecal microbiota profiles 

in infants. The Bacteroides-dominant profile was associated with a higher likelihood of 

bronchiolitis.
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WHAT’S KNOWN ON THIS SUBJECT: Recent studies 

have demonstrated a link between gut microbiota and 

respiratory diseases, such as asthma. However, little 

is known about the association of gut microbiota, 

a potentially modifi able factor, with bronchiolitis in 

infants.

WHAT THIS STUDY ADDS: In this case–control study 

of infants hospitalized with bronchiolitis and healthy 

age-matched controls, we identifi ed 4 distinct fecal 

microbiota profi les in their fecal samples. We found 

that the Bacteroides-dominant microbiota profi le was 

associated with a higher likelihood of bronchiolitis.
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Bronchiolitis is a major public health 

problem for children in the United 

States and worldwide.1–3 Indeed, 

bronchiolitis is the leading cause 

of hospitalizations in US infants, 

accounting for 18% of all infant 

hospitalizations.3 Although causative 

viral pathogens (eg, respiratory 

syncytial virus [RSV]) are ubiquitous, 

not all infants develop bronchiolitis.4 

Likewise, severity of infection ranges 

from a minor nuisance to fatal 

bronchiolitis. The reasons for these 

differences remain largely unclear.5

The recent advent of culture-

independent techniques revealed 

the presence of highly functional 

communities of microbes inhabiting 

the human body (ie, the human 

microbiota) that contribute to 

host immune development and 

homeostasis.6 Within the human 

body, the intestinal tract is the most 

densely colonized surface, with 

bacterial loads of ~1014 bacteria.7 

Disruption of balance in the gut 

microbiota and microbiota-derived 

regulatory T cell response are linked 

with inflammatory diseases in the 

local environment (eg, inflammatory 

bowel disease).8, 9 Recent studies 

also demonstrate that the gut 

microbiota modulates the immune 

function in distant mucosal locations, 

such as the respiratory tract, 7 and 

thereby remotely contributes to 

pathogenesis of asthma and cystic 

fibrosis.10–12 Despite the evidence 

suggesting the existence of a 

“common mucosal response” in host 

immune development, 13, 14 to the best 

of our knowledge no studies have 

investigated the relationship of gut 

microbiota, a potentially modifiable 

factor, with bronchiolitis in infants.

In this context, we conducted a 

case–control study of a multicenter 

prospective cohort of infants 

hospitalized with bronchiolitis 

and healthy matched controls to 

determine the association of fecal 

microbiota and bronchiolitis in 

infants.

METHODS

Study Design, Setting, and 
Participants

We conducted a case–control study 

to examine the fecal microbiota 

of infants hospitalized with 

bronchiolitis (cases) and that of 

healthy infants (controls). As part 

of a multicenter prospective cohort 

study, the 35th Multicenter Airway 

Research Collaboration, 15 we 

enrolled 40 infants age <12 months 

hospitalized with an attending 

physician diagnosis of bronchiolitis 

at 1 of 3 US hospitals (Alfred I. 

duPont Hospital for Children, 

Wilmington, DE; Boston Children’s 

Hospital, Boston, MA; and Kosair 

Children’s Hospital, Louisville, KY) 

during a bronchiolitis season from 

November 2013 through April 

2014. Bronchiolitis was defined by 

American Academy of Pediatrics 

guidelines as an acute respiratory 

illness with some combination of 

rhinitis, cough, tachypnea, wheezing, 

crackles, and retractions.4 We 

excluded infants with previous 

enrollment into the 35th Multicenter 

Airway Research Collaboration, 

those who were transferred to a 

participating hospital >48 hours 

after the original hospitalization, 

those whose parents gave consent 

>24 hours after hospitalization, or 

those with known cardiopulmonary 

disease, immunodeficiency, 

immunosuppression, or gestational 

age ≤32 weeks.

Healthy infants (n = 115) were 

enrolled as the controls in this 

case–control study. The setting and 

participants have been reported 

previously.16 Briefly, using a 

standardized protocol, we enrolled 

healthy infants (age-matched within 

1.5 months of cases) from a primary 

care group practice at Massachusetts 

General Hospital (Boston, MA) 

from November 2013 through May 

2014. We excluded infants with 

current fever, respiratory illness, or 

gastrointestinal illness, 17 or antibiotic 

treatment in the preceding 7 days. 

The institutional review board at 

each of the participating hospitals 

approved the study. Written 

informed consent was obtained from 

the parent or guardian.

Data and Sample Collection

Site investigators conducted a 

structured interview and chart 

review that assessed patients’ 

demographic characteristics, family 

history, prenatal and past medical 

history, home environmental 

characteristics, and hospital course 

(in the cases only). All data were 

reviewed at the Study Coordinating 

Center, and site investigators were 

queried about missing data and 

discrepancies identified by manual 

data checks.

Fecal samples were collected via a 

standardized protocol at the time of 

hospitalization (in the cases) or at 

home before the clinic visit (in the 

controls). First, diapers containing 

feces were refrigerated or stored in 

a cooler by hospital staff or parents 

immediately after collection. The 

fecal samples were then placed 

in sterile Sarstedt feces collection 

containers (Sarstedt, Nümbrecht, 

Germany) and immediately stored 

at −80°C. Frozen samples were 

shipped on dry ice to Baylor College 

of Medicine, where we characterized 

the microbiota via 16S rRNA gene 

sequencing.

16s rRNA Gene Sequencing

We adapted 16S rRNA gene 

sequencing methods from the 

methods developed for the National 

Institutes of Health Human 

Microbiome Project.18, 19 Briefly, 

bacterial genomic DNA was extracted 

with a Mo BIO PowerMag DNA 

Isolation Kit (Mo Bio Laboratories, 

Carlsbad, CA). The 16S rDNA V4 

region was amplified by polymerase 

chain reaction (PCR) and sequenced 

in the MiSeq platform (Illumina, 

San Diego, CA) via the 2- × 250-

bp paired-end protocol, yielding 
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pair-end reads that overlap almost 

completely. The primers used for 

amplification contain adapters for 

MiSeq sequencing and single-end 

barcodes, allowing pooling and direct 

sequencing of PCR products.20

Sequencing read pairs were 

demultiplexed based on the unique 

molecular barcodes, and reads were 

merged in USEARCH v7.0.1090, 21 

allowing 0 mismatches and a 

minimum overlap of 50 bases. 

Merged reads were trimmed at the 

first base with a Q5 quality score. In 

addition, a quality filter was applied 

to the resulting merged reads, and 

reads containing >0.05 expected 

errors were discarded. Rarefaction 

curves of bacterial operational 

taxonomic units (OTUs) were 

constructed with sequence data for 

each sample to ensure coverage 

of the bacterial diversity present. 

Samples with suboptimal amounts of 

sequencings reads (<80% of the taxa 

are represented) were resequenced 

to ensure that the majority of 

bacterial taxa were encompassed 

in our analyses. Details of the 

quality control may be found in the 

Supplemental Information.

The 16S rRNA gene sequences 

were clustered into OTUs at a 

similarity cutoff value of 97% via 

the UPARSE algorithm.22 OTUs were 

mapped to the SILVA Database23 

containing only the 16S V4 region to 

determine taxonomies. We recovered 

abundances by mapping the 

demultiplexed reads to the UPARSE 

OTUs. A custom script constructed a 

rarefied OTU table from the output 

files generated in the previous 2 

steps for downstream analyses of 

α-diversity (eg, Shannon index) and 

β-diversity (eg, Bray–Curtis distance).

Statistical Analyses

We calculated the relative abundance 

of each OTU for each fecal sample. 

We conducted analyses at the genus 

level; because our sequences were 

dominated by 1 OTU per genus, 

we collapsed all OTUs assigned to 

the same genus into a single group 

for reporting.24 To identify fecal 

microbiota profiles, we performed 

unbiased clustering by partitioning 

around medoids25 by using Bray–

Curtis distances. Each cluster is 

defined by a point designated as the 

center, the “medoid, ” and minimizes 

the distance between samples in a 

cluster. We determined the number 

of clusters to choose for the data by 

using the gap statistic.26

To examine the association of 

microbiota profiles with the 

likelihood of being a bronchiolitis 

case, we constructed 2 logistic 

regression models. First, we fitted 

an unadjusted model that included 

only microbiota profiles as the 

independent variable. Second, we 

constructed an adjusted model 

controlling for ≤5 potential 

confounders (ie, age, gender, 

prematurity, mode of birth, and 

history of systemic antibiotic use 

before enrollment), given the small 

number of bronchiolitis cases. 

These variables were chosen based 

on clinical plausibility and a priori 

knowledge.4, 5, 27 We did not control 

for breastfeeding status because it 

was considered an ancestor variable 

of the association of interest (ie, the 

relationship between breastfeeding 

and likelihood of bronchiolitis may 

be mediated by gut microbiota), and 

adjustment of an ancestor variable 

would bias the inference toward the 

null.

Next, to compare the abundances 

of bacteria within fecal microbiota 

between bronchiolitis cases and 

healthy controls, we used the linear 

discriminant analysis effect size 

method.28 In this method, vectors 

resulting from the comparison of 

abundances (eg, Bacteroides relative 

abundance) between the groups 

are used as inputs to the linear 

discriminant analysis. This method 

has the advantage over traditional 

statistical tests (eg, pairwise tests) 

that an effect size is produced in 

addition to a P value. This advantage 

enables us to sort the results of 

multiple testing by the magnitude of 

the between-group difference, not 

only by P values, because the 2 are 

not necessarily correlated.28 Analyses 

used R version 3.2 with the phyloseq 

package.29

RESULTS

Study Population

At the 4 participating hospitals, 

we enrolled a total of 40 infants 

hospitalized with bronchiolitis 

(cases) and 115 age-matched healthy 

infants (controls). Overall, the 

median age was 3 months (IQR, 2–5 

months), 55% were male, and 54% 

were non-Hispanic white. Of cases 

of bronchiolitis, RSV was detected in 

65% and rhinovirus in 23%. Subject 

characteristics differed between 

cases and controls (Table 1). For 

example, compared with healthy 

controls, infants with bronchiolitis 

were more likely to have a parental 

history of asthma, maternal antibiotic 

use during pregnancy, a history of 

premature birth, a sibling at home, 

and corticosteroid use before the 

enrollment, but they were less likely 

to be breastfed (all Ps < .05).

Fecal Microbiota Sequence and 
Profi les

We analyzed fecal samples from all 

enrolled infants by 16S rRNA gene 

sequencing and obtained 484 669 

high-quality merged sequences, of 

which 456 888 (94%) were mapped 

to the database. All 155 samples had 

sufficient sequence depth to obtain 

a high degree of sequence coverage 

(rarefaction cutoff, 1470 reads 

per sample) and were used for the 

analysis. The fecal microbiota was 

composed primarily of 4 genera, 

Escherichia (22%), Bifidobacterium 

(19%), Enterobacter (15%), and 

Bacteroides (13%), followed by 

Veillonella (5%).

Partitioning around medoid 

clustering of fecal microbiota 

identified 4 distinct microbiota 
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profiles (Fig 1): Escherichia-dominant 

profile (30%), Bifidobacterium-

dominant profile (21%), 

Enterobacter/Veillonella-dominant 

profile (22%), and Bacteroides-

dominant profile (28%). The first 2 

profiles were dominated by either 

the Escherichia or Bifidobacterium 

genus, and the third profile was 

codominated by Enterobacter and 

Veillonella genera (Table 2). The 

fourth profile had the highest relative 

abundance of Bacteroides,  with 

highest bacterial richness (P < .001) 

and α-diversity index (Shannon 

index, P < .001). The nonmetric 

multidimensional scaling of fecal 

microbiota also revealed that the 

subjects clustered together according 

to their microbiota profile (Fig 2). 

Some of the patient characteristics 

differed across the 4 microbiota 

profiles (Supplemental Table 4). For 

instance, compared with infants with 

an Enterobacter/Veillonella-dominant 

profile, those with a Bacteroides-

dominant profile were older and 

more likely to have maternal smoking 

history during pregnancy and history 

of vaginal birth (both P < .05).

Microbiota Profi les and Bronchiolitis

The proportion of infants with severe 

bronchiolitis differed across the 4 

microbiota profile groups: lowest 

in the Enterobacter/Veillonella-

dominant profile (15%) and highest 

in the Bacteroides-dominant profile 

(44%; Table 2), corresponding to 

an odds ratio (OR) of 4.59 (95% 

confidence interval [CI], 1.58–15.5; 

P = .008). In the multivariable 

model adjusting for age, gender, 

prematurity, mode of birth, and 

history of systemic antibiotic use, the 

association between the Bacteroides-

dominant profile and a greater 

likelihood of severe bronchiolitis 

case remained significant (OR for 

comparison with the Enterobacter/
Veillonella-dominant profile, 

3.89; 95% CI, 1.19–14.6; P = .03; 

Table 3). In a sensitivity analysis 

adjusting for a different set of 

covariates (age, gender, parental 

history of asthma, maternal 

antibiotic use during pregnancy, 

and systemic corticosteroid use 

before enrollment), the results did 

not change materially: Infants with 

a Bacteroides-dominant profile had 

a greater likelihood of bronchiolitis 

(OR, 4.12; 95% CI, 1.28–15.2; P = .02).

In contrast, the likelihood of 

bronchiolitis in infants with 

an Escherichia-dominant or 

Bifidobacterium-dominant profile 

was not significantly different 

compared with those with an 

Enterobacter/Veillonella-dominant 

profile in both unadjusted and 

adjusted analyses. Similarly, the use 

of linear discriminant effect size 

method demonstrated that Veillonella 

genus was negatively associated with 

likelihood of bronchiolitis, whereas 

Bacteroides genus was positively 

associated with likelihood (both 

Benjamini–Hochberg adjusted Ps < 

.05; Fig 3).

DISCUSSION

In this case–control study of 40 

infants with bronchiolitis and 115 

healthy age-matched controls, we 

identified 4 distinct fecal microbiota 

profiles. We found that, compared 

with infants with an Enterobacter/
Veillonella-dominant profile, those 

with a Bacteroides-dominant 

4

TABLE 1  Characteristics of Infants With Bronchiolitis (Cases) and Healthy Infants (Controls)

Characteristics Infants With 

Bronchiolitis 

(Cases), n = 40

Healthy Infants 

(Controls), n 

= 115

P

Demographics

 Age, mo, mean (SD) 4 (3) 4 (2) .76

 Male gender 18 (55) 64 (56) .99

 Race or ethnicity .04

  Non-Hispanic white 23 (57) 61 (53)

  Non-Hispanic black 6 (15) 11 (10)

  Hispanic 10 (25) 19 (17)

  Other 1 (2) 24 (21)

 Parental history of asthma 16 (40) 21 (18) .01

Prenatal history

 Maternal smoking during pregnancy 8 (20) 3 (3) .001

 Maternal antibiotic use during pregnancy 11 (29) 13 (11) .02

 Maternal antibiotic use during labor 12 (34) 35 (30) .82

Past medical history and home environmental 

characteristics

 Mode of birth .13

  Vaginal birth 31 (78) 72 (63)

  Cesarean delivery 9 (22) 43 (37)

 Prematurity (32–37 wk) 12 (30) 11 (10) .004

 Previous breathing problems before enrollmenta 8 (21) 0 (0) <.001

 History of eczema 8 (21) 17 (15) .56

 Ever attended day care 9 (23) 14 (12) .16

 Sibling at home 34 (87) 47 (41) <.001

 Smoking exposure at home 8 (21) 4 (3) .002

 Mostly breastfed for the fi rst 3 mo of age 16 (52) 89 (77) .009

 Systemic antibiotic use before enrollment 8 (21) 13 (11) .24

 Systemic corticosteroid use before enrollment 9 (23) 0 (0) <.001

Hospitalization course

 Hospital length-of-stay, d, median (IQR) 3 (2–4) — —

 Admission to ICU 8 (20) — —

 Use of mechanical ventilationb 5 (16) — —

Data are no. (%) of infants unless otherwise indicated. Percentages may not equal 100 because of missingness or 

rounding. —, not computed.
a Defi ned as an infant having a cough that wakes him or her at night or causes emesis, or when the child has wheezing or 

shortness of breath without cough.
b Defi ned as use of continuous positive airway pressure or intubation during inpatient stay, regardless of location at any 

time during the index hospitalization.
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profile had a higher likelihood 

of bronchiolitis. In contrast, the 

likelihood of bronchiolitis in infants 

with an Escherichia-dominant or 

Bifidobacterium-dominant profile 

was not significantly different. To 

our knowledge, this is the first study 

that has investigated the association 

of fecal microbiota with the risk of 

bronchiolitis in infants. Our study 

also highlights the importance of 

integrating discovery-driven (ie, 

the identification of microbiota 

profiles) and hypothesis-driven (ie, 

the determination of association 

between the microbiota profiles and 

bronchiolitis) approaches.

Studies of prebiotic and probiotic 

supplements, despite their 

heterogeneity in study populations, 

treatment regimens, and outcomes, 30 

have demonstrated the promise 

of modulating gut microbiota 

and potentially reducing the 

morbidity of viral acute respiratory 

infections (ARIs).31–33 For example, 

a randomized controlled trial of 

94 preterm infants reported that 

supplementation of prebiotics and 

probiotics (Lactobacillus rhamnosus) 

led to a lower incidence of rhinovirus 

ARIs.31 Another clinical trial of 326 

healthy children also reported that 
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 FIGURE 1
Clustering and composition of fecal microbiota in 155 infants. All fecal microbiota profi les of cases 
and controls were clustered via partitioning around medoids clustering method with Bray–Curtis 
distance. Colored bars indicate 4 microbiota profi les: Escherichia-dominant profi le (ESP; red), 
Bifi dobacterium-dominant profi le (BFD; green), Enterobacter/Veillonella-dominant profi le (EVP; 
blue), and Bacteroides-dominant profi le (BCP; purple). The optimal number of clusters was identifi ed 
by use of the gap statistic. To obtain additional information about the bacterial composition of 
samples within microbiota profi les, the 10 most abundant genera present in an adjacent heatmap 
were displayed. The taxonomy depicted is on the genus level because our sequences were dominated 
by 1 OTU per genus.

TABLE 2  Richness, α-Diversity, Relative Abundance, and Case–Control Status by Fecal Microbiota Profi le

Escherichia-Dominant 

Profi le, n = 46 (30%)

Bifi dobacterium-

Dominant Profi le, n = 

32 (21%)

Enterobacter/

Veillonella-Dominant 

Profi le, n = 34 (22%)

Bacteroides-Dominant 

Profi le, n = 43 (28%)

P

Richness

 Number of genera, median (IQR) 13 (10–17) 15 (11–17) 11 (9–14) 20 (15–25) <.001

α-Diversity, median (IQR)

 Shannon index 1.86 (1.20–2.46) 1.96 (1.62–2.39) 1.69 (1.35–2.20) 2.51 (2.22–2.96) <.001

Relative abundance of 10 most abundant genera, mean (SD)

 Escherichia 0.53 (0.22) 0.12 (0.12) 0.03 (0.08) 0.13 (0.14) .003a

 Bifi dobacterium 0.12 (0.12) 0.50 (0.19) 0.07 (0.09) 0.12 (0.12) .003a

 Enterobacter 0.04 (0.10) 0.06 (0.11) 0.49 (0.26) 0.08 (0.11) .003a

 Bacteroides 0.03 (0.07) 0.04 (0.07) 0.04 (0.12) 0.37 (0.23) .003a

 Veillonella 0.03 (0.05) 0.02 (0.05) 0.15 (0.19) 0.02 (0.05) .003a

 Lachnospiraceae incertae sedis 0.07 (0.12) 0.02 (0.04) 0.04 (0.10) 0.07 (0.09) .85a

 Streptococcus 0.02 (0.04) 0.05 (0.11) 0.03 (0.06) 0.01 (0.01) .49a

 Clostridium sensu stricto 1 0.04 (0.08) 0.00 (0.01) 0.03 (0.05) 0.01 (0.02) .20a

 Enterococcus 0.02 (0.04) 0.02 (0.04) 0.02 (0.05) 0.01 (0.02) .96a

 Akkermansia 0.00 (0.02) 0.03 (0.09) 0.03 (0.11) 0.01 (0.08) .99a

Case–control status .01

 Bronchiolitis 10 (22%) 6 (19%) 5 (15%) 19 (44%)

 Healthy control 36 (78%) 26 (81%) 29 (85%) 24 (56%)

a Benjamini–Hochberg adjusted P value accounting for multiple comparisons.



 HASEGAWA et al 

the use of Lactobacillus acidophilus 

and Bifidobacterium animalis reduced 

ARI symptoms.32 However, none 

of these trials has investigated the 

gut microbiota itself. Although data 

are scarce, murine studies have 

deciphered the relationship of gut 

microbiota with host response against 

viral ARIs (eg, influenza, RSV).34–36 

For instance, Ichinohe et al, 34 

using an antibiotic-treated mouse 

model, reported that a disruption 

of gut microbiota (ie, dysbiosis) 

impairs the generation of virus-

specific CD4 and CD8 T cells and 

antibody responses after influenza 

virus infection, suggesting the need 

for an intact commensal bacterial 

community in the establishment 

of immune response against viral 

ARIs. Our study corroborates these 

earlier findings and extends them 

by demonstrating the association 

of Bacteroides-dominant fecal 

microbiota profiles with bronchiolitis 

in infants.

Our observations, in conjunction 

with the earlier studies, suggest 

a causal pathway linking the gut 

microbiota in early infancy to 

the respiratory tract immune 

response against viral infection. 

That is, the Bacteroides-dominant 

gut microbiota in early infancy 

attenuates the development of 

immune function in the respiratory 

tract and thereby leads to an 

increased susceptibility to 

bronchiolitis. Indeed, Sjögren 

et al, 37 examining a prospective 

cohort of 64 infants in Sweden, 

reported that a high abundance of 

Bacteroides fragilis in fecal samples 

during the first month of age was 

associated with lower levels of 

Toll-like receptor 4 expression 

and lipopolysaccharide-induced 

production of inflammatory 

cytokines in the peripheral blood 

mononuclear cells. These data fit 

into the larger concept of a 

“common mucosal response, ”13, 14 

that is, antigen presentation at 1 

mucosal site (eg, gut), via systemic 

immune responsiveness, shapes 

immune function at distant mucosal 

sites (eg, respiratory tract). 

Alternatively, the Bacteroides-

dominant fecal microbiota might 

be simply a marker of infants who 

have a higher propensity for viral 

ARI, including bronchiolitis. It is 

also possible that viral ARI alters 

the gut microenvironment, leading 

to overgrowth of Bacteroides 

locally (ie, reverse causation38). 

Furthermore, any combinations of 

these mechanisms are also possible.

Interestingly, infants with a 

Bacteroides-dominant profile had 

the highest bacterial richness 

and diversity. Although it is 

generally considered that higher 

diversity is protective against 

morbidity, recent studies have 

demonstrated that higher bacterial 

diversity may be associated with 

higher disease morbidity. For 

example, Huang et al39 found 

that, compared with healthy 

controls, patients with asthma 

had a higher bacterial richness 

and diversity in their airway. This 

finding was concordant with an 

independent study of a European 

corticosteroid-using population of 

patients with asthma.40 Although 

the underlying mechanism remains 

to be elucidated, these data may 

suggest that a depletion of gut 

microbiota that protects against 
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 FIGURE 2
Nonmetric multidimensional scaling (NMDS) ordination of fecal microbiota. The Bray–Curtis distance 
between all cases and controls was calculated and used to generate nonmetric multidimensional 
scaling plots. Each dot in the fi gure represents the microbiota profi le of a single subject in a low-
dimensional space. Colored dots indicate 4 microbiota profi les: Escherichia-dominant profi le (red), 
Bifi dobacterium-dominant profi le (green), Enterobacter/Veillonella-dominant profi le (blue), and 
Bacteroides-dominant profi le (purple). The subjects cluster together according to their microbiota 
profi les. 
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development of bronchiolitis 

(resilience microbiota6), rather 

than microbial richness or diversity, 

plays a role in the development 

of bronchiolitis. Despite the 

complexity, identification of the 

association between the Bacteroides-

dominant microbiota profile and 

bronchiolitis is an important finding. 

Our data underscore the importance 

of understanding microbiome–

host interactions by defining the 

responsible mechanisms, such 

as systemic dissemination of 

metabolites produced by the gut 

microbiota promoting the growth of 

certain bacteria or acting directly as 

immunomodulatory molecules in the 

respiratory tract.7

Several potential limitations of 

our study should be taken into 

account. First, the study cases 

consisted of infants hospitalized 

with bronchiolitis; therefore, our 

inference might not be extrapolated 

to those with milder illness (eg, 

bronchiolitis not necessitating 

hospitalization). However, our case 

selection approach, with its greater 

severity contrast, probably improved 

the efficiency of investigating the 

association of interest. Second, the 

study design precluded investigation 

of the dynamics and succession 

of the gut microbiota in relation 

to respiratory health in early 

childhood. To address this important 

question, we are following the study 

populations longitudinally up to age 6 

years, with fecal sampling at multiple 

time points. Third, with the use of 

16S rRNA gene sequence, we were 

unable to elucidate the differences in 

bacterial composition at the species 

level or their functional capacity. 

These important topics will be the 

focus of our future investigations. 

Fourth, as with any observational 
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TABLE 3  Unadjusted and Multivariable Associations Between Fecal Microbiota Profi les and Likelihood of Bronchiolitis

Unadjusted Model Adjusted Model Sensitivity Analysis

Variables OR (95% CI) P OR (95% CI) P OR (95% CI) P

Microbiome profi le

 Escherichia-dominant profi le 1.61 (0.51–5.66) .43 1.63 (0.49–5.97) .44 1.64 (0.49–6.07) .44

 Bifi dobacterium-dominant 

profi le

1.24 (0.36–5.14) .66 1.28 (0.33–5.13) .72 1.12 (0.26–4.79) .88

 Enterobacter/Veillonella-

dominant profi le

Reference Reference Reference

 Bacteroides-dominant profi le 4.59 (1.58–15.5) .008 3.89 (1.19–14.6) .03 4.12 (1.28–15.2) .02

Covariates

 Age, mo (per incremental 

month)

— — 0.90 (0.75–1.07) .24 0.89 (0.74–1.05) .19

 Female gender — — 1.22 (0.55–2.78) .63 0.93 (0.40–2.19) .87

 Prematurity — — 4.24 (1.56–12.0) .005 — —

 Cesarean delivery — — 0.63 (0.23–1.63) .35 — —

 Systemic antibiotic use before 

enrollment

— — 1.68 (0.55–4.95) .35 2.12 (0.66–6.53) .19

 Parental history of asthma — — — — 3.27 (1.35–7.99) .009

 Maternal antibiotic use during 

pregnancy

— — — — 3.11 (1.23–8.56) .27

 FIGURE 3
Effect sizes of genera that were signifi cantly associated with likelihood of being a case (bronchiolitis) 
or healthy control. The linear discriminant effect size method was used to compare the abundances 
of all detected bacteria between cases and controls, computing an effect size for each comparison. 
Results shown here are signifi cant by Kruskal–Wallis test (Benjamini–Hochberg adjusted P < .05) 
and represent large differences between groups (absolute effect size >3.6). Positive values (right) 
correspond to the effect sizes representative of healthy infants (controls), and negative values (left) 
correspond to the effect sizes infants with bronchiolitis (cases). Veillonella genus was found to be 
overrepresented in healthy infants, whereas Bacteroides genus was overrepresented in infants with 
bronchiolitis.
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study, the association between fecal 

microbiota and bronchiolitis does 

not necessarily prove causality 

and might be explained, at least 

partly, by unmeasured confounders. 

Additionally, the small number of 

bronchiolitis cases prevented us 

from adjusting for all sets of potential 

confounders. However, the significant 

association persisted even after we 

controlled for clinically important 

covariates. Finally, participating 

sites were academic centers in the 

urban areas. Although these results 

may not be generalizable to infants 

in rural areas, our study participants 

consisted of racially and ethnically 

diverse samples.

CONCLUSIONS

In this case–control study of infants 

with bronchiolitis and healthy age-

matched controls, we identified 4 

distinct fecal microbiota profiles 

in their fecal samples. We also 

found that, compared with infants 

with the Enterobacter/Veillonella-

dominant profile, those with the 

Bacteroides-dominant profile had 

a higher likelihood of bronchiolitis. 

Although causal inferences remain 

premature, the identification of a 

Bacteroides-dominant microbiota 

profile in early infancy as the primary 

culprit in the association between 

the gut microbiota and host immune 

response against viral ARIs is an 

important finding. Our data should 

facilitate epidemiologic, mechanistic, 

and interventional investigations to 

disentangle the complex web of the gut 

microbiome, respiratory viruses, host 

immune response, and bronchiolitis 

pathogenesis in children.
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