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GDF-15 enhances intracellular Ca?* by increasing Ca,1.3 expression in rat

cerebellar granule neurons

Jun-Mei Lu*', Chang-Ying Wang*', Changlong Hu*, Yan-Jia Fang*? and Yan-Ai Mei*?
*Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and School of Life Sciences, Fudan University, Shanghai 200433, China

GDF-15 (growth/differentiation factor 15) is a novel member
of the TGF (transforming growth factor)-8 superfamily that
has critical roles in the central and peripheral nervous systems.
We reported previously that GDF-15 increased delayed rectifier
outward K* currents and K,2.1 « subunit expression through
TBRII (TGF-B receptor II) to activate Src kinase and Akt/mTOR
(mammalian target of rapamycin) signalling in rat CGNs
(cerebellar granule neurons). In the present study, we found
that treatment of CGNs with GDF-15 for 24h increased
the intracellular Ca>" concentration ([Ca®>"];) in response to
membrane depolarization, as determined by Ca?"™ imaging.
Whole-cell current recordings indicated that GDF-15 increased
the inward Ca?" current (Ic,) without altering steady-state
activation of Ca?* channels. Treatment with nifedipine, an

inhibitor of L-type Ca** channels, abrogated GDF-15-induced
increases in [Ca®* ]; and I,. The GDF-15-induced increase in I,
was mediated via up-regulation of the Ca, 1.3 « subunit, which
was attenuated by inhibiting Akt/mTOR and ERK (extracellular-
signal-regulated kinase) pathways and by pharmacological
inhibition of Src-mediated TBRII phosphorylation. Given that
Ca,1.3 is not only a channel for Ca®>* influx, but also a
transcriptional regulator, our data confirm that GDF-15 induces
protein expression via TPRII and activation of a non-Smad
pathway, and provide novel insight into the mechanism of GDF-15
function in neurons.
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INTRODUCTION

GDF-15 (growth/differentiation factor 15), also known as
macrophage inhibitory cytokine-1, is a distant member of the
TGF (transforming growth factor)-f superfamily [1]. GDF-15
plays key roles in prenatal development and the regulation of
cellular responses to stress signals and inflammation as well as
in tissue repair after acute injury [2]. Recent studies have also
shown that GDF-15 expression is up-regulated during myocardial
injury, ischaemia and remodelling, suggesting that it may act
as a cytokine that protects the heart from ischaemia/reperfusion
injury [3,4]. The mechanism of action of GDF-15 is not fully
understood, although it was shown to block noradrenaline
(norepinephrine)-induced myocardial hypertrophy by inhibiting
the phosphorylation of EGFR (epidermal growth factor receptor)
and the downstream kinases Akt and ERK (extracellular-signal-
regulated kinase) 1/2 [5].

GDF-15 is widely expressed in the brain, specifically in
the cortex, striatum and thalamus [6], and acts as a potential
neurotrophic factor for midbrain dopaminergic neurons in vivo,
promoting the survival of damaged mesencephalic dopaminergic
neurons following cortical lesioning [6,7]. GDF-15 is up-
regulated in a CNS (central nervous system) model of ischaemia
induced by middle cerebral artery occlusion [8], and GDF-15-
knockout mice exhibit progressive postnatal loss of spinal, facial
and trigeminal motoneurons and sensory neurons in dorsal root
ganglia [9]. An earlier study suggested that GDF-15 is involved in
neuronal synaptic development and integration and may promote

axonal elongation [10]. These data indicate that GDF-15 has
critical roles in CNS development, although its mechanisms of
action are poorly understood.

CGNs (cerebellar granule neurons) are glutamatergic cells
that differentiate postnatally into various types of neuron in
the mammalian brain. Primary rat CGN cultures are used as a
model for studying neuronal maturation, apoptosis, differentiation
and synaptic plasticity [11]. Growth and differentiation factors
such as TGF-B1 and neuregulin can stimulate or inhibit CGN
development and maturation via regulation of multiple signalling
pathways [12,13]. GDF-15 prevented the death of K*-deprived
CGNs by activating Akt and inhibiting constitutively active ERK
[14]. We recently demonstrated that GDF-15 increased delayed
rectifier outward K* current (/) and K,2.1 « subunit expression
by Src kinase activation via TBRII (TGF-8 receptor II) in non-
K*-deprived CGN cultures [15]. These data showed for the
first time that the modulation of K* channel expression and
the downstream signalling pathways by GDF-15 is receptor-
mediated, and demonstrated that CGNs are an effective cell model
for investigating the mechanism of action of GDF-15.

Increases in intracellular Ca®>* concentration [Ca®* ]; activate
signalling pathways that induce the expression of genes essential
for dendritic development, neuronal survival and synaptic
plasticity [16-18]. [Ca* ]; also regulates gene expression during
CGN development [17,19]. Whether GDF-15 modulates [Ca?™ ];
in CGNs and the mechanisms that are involved is unknown. In
the present study, we evaluated the effect of GDF-15 on [Ca®* ],
using Ca’" imaging while simultaneously recording inward
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Ca** current (Ig,), since changes in [Ca’*]; in CGNs are
associated with Ca?" influx-dependent Ca** release [20,21].
We also examined whether the same signalling pathways and
receptors identified in our previous study are activated by GDF-
15 under these conditions.

EXPERIMENTAL
Cell culture

All experimental procedures were carried out in accordance
with European guidelines for the care and use of laboratory
animals (Council Directive 86/609/EEC). CGNs were derived
from the cerebellum of 7-day-old Sprague—Dawley rat pups as
described previously [22]. Briefly, isolated cells were plated
in 35-mm-diamter Petri dishes coated with 1 pug/ml poly-L-
lysine at a density of 10° cells/ml and cultured at 37°C under
5% CO, in DMEM (Dulbecco’s modified Eagle’s medium)
supplemented with 10 % (v/v) FBS, 5 pg/ml insulin, 25 mM KCI
and 1 % antibiotic/antimycotic solution. After 24 h of culture,
5 uM cytosine B-D-arabinofuranoside was added to the culture
medium to inhibit the proliferation of non-neuronal cells. Cells
were used for experiments after 4—5 DIC (days in culture) unless
indicated otherwise.

Patch-clamp recordings

Whole-cell CGN currents were recorded with a conventional
patch-clamp technique using a multiclamp 200B amplifier (Axon
Instruments) operated in voltage-clamp mode. Data acquisition
and analysis were carried out using pClamp 8.01 (Axon
Instruments) and/or Origin 8 (Microcal Software) software.
Before recording I¢,, the culture medium was replaced with a
bath solution containing 147 mM tetraethylammonium chloride,
10 mM BaCl,, 10 mM Hepes (pH 7.4), 2 mM MgCl,, 1 uM
TTX (tetrodotoxin), 2 mM 4-AP (4-aminopyridine) and 10 mM
glucose. Soft glass recording pipettes were filled with an internal
solution containing 145 mM CsCl, 10 mM EGTA, 10 mM Hepes
(pH7.3), 5mM Na,-ATP and 0.5 mM Na,-GTP. The pipette
resistance was 4-6 MQ after filling with internal solution.
All recordings were carried out at room temperature. CGNs
selected for electrophysiological recording exhibited the typical
morphological characteristics of healthy cells, such as fusiform
soma with two principal neurites of similar size. There was no
difference in the mean capacitance of cells recorded in the control
and GDF-15 treatment groups (9.17 £ 0.23 and 9.36 £0.21 pF
respectively) [15].

Western blot analysis

Cells were lysed on ice for 30 min in lysis buffer containing
20mM Hepes, 150 mM NaCl, 0.5% Nonidet P-40, 10%
glycerol, 2 mM EDTA, 100 uM Na;VO,, 50 mM NaF (pH 7.5)
and 1% proteinase inhibitor cocktail. After centrifugation,
the supernatant was mixed with 2x SDS loading buffer and
boiled for 5 min. Proteins were separated by SDS/PAGE (10 %
gel) and transferred on to a PVDF membrane (Millipore),
which was blocked with 10% (w/v) non-fat dried skimmed
milk powder and incubated at 4°C overnight with mouse
monoclonal antibody against Ca,1.2 or Ca,1.3 (1:1000 dilution;
NIH NeuroMab Facility/University of California Davis) and
mouse monoclonal antibody against GAPDH (glyceraldehyde-
3-phosphate dehydrogenase) (1:10000 dilution; KangChen Bio-
Tech). After extensive washing in TBS with 0.1 % Tween 20, the

membrane was incubated with horseradish peroxidase-conjugated
anti-mouse or anti-rabbit IgG (1:10000 dilution; KangChen Bio-
Tech) for 2 h at room temperature. Protein bands were visualized
by chemiluminescence using the SuperSignal West Pico trial
kit (Pierce) and detected using a ChemiDoc XRS system (Bio-
Rad Laboratories). Quantity One version 4.6.2 software (Bio-
Rad Laboratories) was used for background subtraction and
quantification of immunoblotting data.

Measurement of [Ca%* ];

[Ca**]; in single cells was detected on the basis of fura 2
fluorescence intensity as described previously [23]. Briefly, CGNs
grown on coverslips were rinsed twice with BSS (balanced
salt solution) containing 145 mM NaCl, 2.5 mM KCl, 10 mM
Hepes, 1 mM MgCl,, 10 mM glucose and 2 mM CaCl,, and
incubated at 37°C for 45 min in the presence of fura-2 AM
(fura 2 acetoxymethyl ester) with 0.1 % DMSO in BSS. After
two washes with BSS, cells were incubated for an additional
20 min in BSS before imaging. The coverslips were transferred
to a chamber mounted on the stage of an inverted phase-
contrast microscope (Nikon Eclipse Ti); fresh BSS was added
to the chamber, and images were acquired at 4-s intervals for
the duration of the experiment. Excitation wavelengths for fura
2 were 340 and 380 nm, with emission at 505 nm. Baseline
[Ca’*]; was determined for 60 s immediately before the addition
of high-K* solution (27 mM KCI). Fluorescence intensity
was quantified using Metafluor software (Universal Imaging
Corporation).

Transfection and dual luciferase reporter assays

Rat Ca,1.3 promoter (— 1400 to + 497 bp) synthesized by
Magorbio was inserted into pGL3 luciferase reporter plasmid.
Lentiviral vectors for co-ordinately expressing CACNAID (L-
type voltage-dependent Ca’* channel «1D subunit) promoter
following fluorescent protein and Renilla luciferase protein only
were constructed respectively. CGNs cells were co-transfected
with Ca, 1.3 promoter and Renilla reporter plasmids. Luciferase
assays were performed at 7 DIC which is 3 days after transfection
using the Dual Luciferase Reporter Assay system (Promega)
according to the manufacturer’s instructions. The results were
expressed as a ratio of firefly luciferase (Fluc) activity to
Renilla luciferase (Rluc) activity, and the Renilla luciferase
reporter gene (50 ng) was used as an internal control. For each
sample, the relative luciferase activity was normalized to the
control group Fluc/Rluc ratio. All experiments were performed in
triplicate.

qPCR

To measure the Ca,1.2 and Ca,1.3 mRNA levels, qPCR
(quantitative real-time PCR) analysis was performed
with the following sequences: Ca,1.2 forward primer 5'-
TCAAAGGCTACCTGGACTGGAT-3' and reverse primer
5-CCATGCCCTCG TCCTCATT-3; Ca,1.3 forward primer
5-CTTCCTCTTCATCATCATCTTC-3" and reverse primer 5'-
TCATACATCACCGCATTCC-3'. To control for sampling errors,
gPCR for the housekeeping gene GAPDH was performed with the
primer sequences 5'-TGCTCCTCCCTGTTC-3' (forward) and
5-AGCCTTGACTGTGCC-3" (reverse). The reaction solution
contained 1.0 pug of diluted reverse transcription PCR product,
0.2 uM of each paired primer and Power SYBR Green PCR
master mix (Toyobo). The annealing temperature was set at 58°C
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Figure 1 Effect of GDF-15 on [Ca®* ]; induced by high K+ in rat CGNs

(A) Intracellular Ca2* imaging of control and GDF-15-treated CGNs before (Base) and after (HK) depolarization by acute perfusion with 27 mM K+ . Changes in fura 2 fluorescence excitation ratios
with increasing [Ca®* J; are depicted as a colour gradient from purple to red. Scale bar, 50 «m. (B) Changes in [Ca%* ]; upon application of a depolarizing stimulus, as measured by quantification of
fluorescence excitation ratios. The arrow represents a 30-s perfusion with a depolarizing solution of 27 mM K+ . (C) Statistical analysis of [Ca’+ ; induced by high K+ in the presence or absence
of GDF-15. Results are means + S.E.M. *P < 0.05 for the two groups connected with a straight line. Ctrl, control.
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Figure 2 Effect of GDF-15 on I, amplitude and steady-state Ca>+ channel activation

(A) Representative traces of control and GDF-15-treated CGNs. /¢, was elicited by depolarization to 10 mV from a holding potential of — 80 mV. (B) Statistical analysis of the effect of GDF-15 on I,
amplitude. Results are means + S.E.M. *P < 0.05 for two groups connected with a straight line. (C) Representative traces obtained with a steady-state voltage protocol of control and GDF-15-treated
CGNs. Ic, was elicited by 200-ms depolarizing pulses from a holding potential of — 80 mV to between — 60 and + 40 mV in 10-mV steps at 10-s intervals. (D) Voltage-dependent activation
curves of I, *P < 0.05 compared with corresponding control. (E) Steady-state activation curves of /¢, obtained by plotting normalized conductance as a function of command potential. Data points
were fitted using the Boltzmann function. Results are means + S.E.M.
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Figure 3 Effect of nifedipine on the increase in [Ca%* ]; elicited by high K+ in CGNs with or without GDF-15 treatment

(R) Ca>*+ imaging before and after depolarization by application of a 27-mM K+ solution in GDF-15-treated CGNs in the presence or absence of nifedipine. Scale bar, 50 m. (B) Changes in
[Ca?* ], upon application of a depolarizing stimulus, as measured by quantification of fluorescence excitation ratios. Each arrow represents a 30-s perfusion with a depolarizing 27-mM K+ solution.
(C) Statistical analysis of [Ca?* ]; in control and GDF-15-treated CGNSs in the presence or absence of nifedipine. Results are means + S.E.M. *P < 0.05 for the two groups connected with a straight

line. Ctrl, control.

and 40 amplification cycles were used. The absolute mRNA levels
in each sample were calculated according to a standard curve
determined using serial dilutions of known amounts of specific
templates plotted against the corresponding cycle threshold (Cr)
values. The normalized ratio of the target gene over GAPDH in
each sample was calculated. The specificity of the primers was
verified by both gel electrophoresis and sequencing of the PCR
products.

Data analysis

Multiple groups were compared by one-way ANOVA and
two-sample comparisons were performed using Student’s ¢
test. Results are presented as means + S.E.M., with n as the
number of neurons recorded, imaging experiments or replicates.
Electrophysiological data were collected from at least four
different batches of neurons prepared on different days to
minimize bias resulting from culture conditions. P < 0.05 was
considered statistically significant.

Chemicals

Recombinant human GDF-15 was purchased from Pepro Tech.
TTX, 4-AP, rapamycin, SB431542, PP1, LY2109761 and poly-L-
lysine were purchased from Sigma. U0126 was purchased from
Selleckchem. FBS, DMEM and antibiotic/antimycotic solution
were purchased from Gibco Life Technologies.

RESULTS

GDF-15 enhances [Ca?™ ]; and I¢, in CGNs without affecting
steady-state channel activation

We demonstrated previously that GDF-15 increases Iy of CGNs
in a time- and dose-dependent manner at different developmental
stages, and that incubating CGNs starting from 5 DIC with
100 ng/ml GDF-15 for 24 h produced the most significant increase
in I [15]. We therefore applied 100 ng/ml GDF-15 to CGNs after
5 DIC for 24 h and evaluated the effects of GDF-15 on [Ca*™ ];
by Ca’* imaging using the Ca** -sensitive fluorescent dye fura
2. Since GDF-15 did not affect basal [Ca**];, we used a high-
K* solution (27 mM KCI) to depolarize neurons and activate
VGCCs (voltage-gated Ca>* channels), inducing a rapid increase
in [Ca?" ];. In control neurons, depolarization with high K* caused
acute elevation of [Ca®* ];, with an increase in the Fy,y/Fsg, ratio
from 0.69+0.01 (n = 43) to a maximum of 1.71 £0.06 (n =
127). After treatment with GDF-15 for 24 h, the ratio increased
to a maximum value of 2.24 +0.01 (n = 115) (Figures 1A and
1B), which was ~30.9 % higher than in the control (Figure 1C).

To assess the role of GDF-15 in the activation of VGCCs in
CGNs, we recorded whole-cell /,, which was evoked by a 200-ms
depolarization from a holding potential of — 80 to 10 mV. GDF-
15 application (100 ng/ml for 24 h) increased the I, amplitude
by 44.57 % (from 155.71 £10.23 to 225.11 £ 16.31 pA, n = 41
and 54, P <0.05) (Figures 2A and 2B). We then investigated
whether the effects of GDF-15 on the I, amplitude were exerted
via modulation of the voltage-gating properties of I, channels.
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(A) Representative traces obtained with a steady-state voltage protocol of control and GDF-15-treated CGNs in the presence or absence of nifedipine. (B) I~V curve of Ic,. Results were obtained
from six independent experiments and are means + S.E.M. *P < 0.05. (C) Representative traces of control and GDF-15-treated CGNs in the presence or absence of nifedipine. /g, was elicited with
depolarizing pulses to 10 mV from a holding potential of — 80 mV. (D) Statistical analysis of the effect of nifedipine on /,. Results are means + S.E.M. *P < 0.05 for the two groups connected with

a straight line. Ctrl, control.

An I, was evoked by a 20-ms depolarizing pulse from a holding
potential of — 80 mV to between — 60 and 40 mV in 10-mV
steps at 10-s intervals (Figure 2C). The current—voltage (I-V)
curves of control and GDF-15-treated CGNs showed that I,
increased from a negative potential of —40 mV to a maximum
value of 10 mV (Figure 2D), indicating that GDF-15 did not
affect Ca** channel activity. Steady-state I, activation was
determined by calculating conductance and normalizing this value
to the command voltage. Data were fitted using the Boltzmann
function. The steady-state /., activation curves of CGNs with
or without GDF-15 treatment showed half-activation potentials
of 457+ 1.36 and 3.24+ 1.14 mV respectively (n = 15 and
18 respectively; P> 0.05) (Figure 2E). These results indicate
that GDF-15-induced increases in I, amplitude were not due
to changes in the voltage-gating properties of Ca’* channels.

L-type Ca2+ channels and Ca,1.3 expression mediate the
GDF-15-induced [Ca?*]; and I¢, amplitude

The I-V curves suggested that the Ca’* channels were L-type
channels found in neurons [24]. To determine whether L-type
Ca?* channels are indeed responsible for the GDF-15-induced
increases in Ca’* influx and I, amplitude, we treated CGNs
with the selective blocker nifedipine. Pre-incubation of CGNs
with nifedipine (10 uM) [25] abrogated the increase in [Ca*"];

evoked by high K* and inhibited the GDF-15-induced increase
in [Ca’"]; (Figures 3A and 3B). In the presence of nifedipine,
the increase in the F;,0/F3 ratio evoked by high-K* solution
without and with GDF-15 was reduced from 1.71+0.06 (n =
127) to 1.154+0.10 (n = 58) and from 2.24 +0.01 (n = 115)
to 1.23 £0.07 (n = 45) respectively (Figure 3C). Consistent with
these findings, nifedipine application alone reduced the amplitude
of I, evoked by a 200-ms depolarization from — 80 to 10 mV by
29.95 4+ 5.9 % (n =24 and 7), and abolished the GDF-15-induced
increase in I, amplitude (Figures 4A and 4B), suggesting that L-
type Ca’>* channels mediate the GDF-15-induced increase in the
I, amplitude and [Ca’* ];.

We investigated whether the GDF-15-mediated increase in /¢,
is due to an up-regulation of channel expression. A previous study
showed that Ca, 1.2 and Ca, 1.3 are the major «-subunits of L-type
Ca’" channels [26]; we therefore assessed the expression of these
two proteins in GDF-15-treated cells. Specific primers to amplify
Ca, 1.2 and Ca, 1.3 were used to measure mRNA expression levels
by gPCR after incubation with and without GDF-15. The results
reveal that there was a significant increase in the mRNA levels
both of the Ca,1.2 and Ca, 1.3 «-subunit (Figure 5SA). However,
Western blotting indicated that only the Ca,1.3 but not the
Ca, 1.2 protein level was increased in CGNs by 53.34 £ 8.46 %
(n = 4; P<0.05) following 24 h of incubation with GDF-15
(100 ng/ml) at 5 DIC (Figure 5B). Moreover, the effect of GDF-
15 on Ca, 1.3 expression was gradually increased with incubation
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Figure 5 Effect of GDF-15 on Ca,1.2 and Ca,1.3 expression in CGNs

GDF-15 incubation time

(A) Statistical analyses of Ca,1.2 and Ca, 1.3 mRNA levels detected using gPCR. CGNs were incubated with GDF-15 from 15 min to 36 h. (B) Western blot and statistical analyses of the effect of
GDF-15 on Ca,1.2 and Ca, 1.3 expression in CGNs. (C) Western blot and statistical analyses of Ca, 1.3 levels in CGNs after incubation with GDF-15 for 15 mins to 36 hrs. (D) Statistical analyses of
the effect of GDF-15 on Ca, 1.3 promoter expression in CGNs determined by luciferase reporter assays. Promoter information is illustrated. Results are means + S.E.M. *P < 0.05 for the two groups

connected with a straight line. Ctrl, control.

time (Figure 5C). These results suggest that an up-regulation in
Ca, 1.3 protein expression induced by GDF-15 is responsible for
the observed increased in I, and [Ca®* ],. We thus examined the
effect of GDF-15 on the Ca,1.3 gene promoter using luciferase
reporter assays. Administration of GDF-15 increased luciferase
expression driven by the rat Ca, 1.3 promoter by 51.4 +17.6 %
(n = 3; Figure 5D).

Effect of GDF-15 on Ca,1.3 expression requires Aki/mTOR and
MAPK (mitogen-activated protein kinase)/ERK activation via TSRII

Our previous study showed that Akt/mTOR signalling and
TBRII activity are required for the GDF-15-induced up-regulation
of Iy and K,2.1 o subunit expression [15]. We therefore
investigated whether these are involved in the observed effect
of GDF-15 on Ca, 1.3 expression. Blocking Akt/mTOR activity
with 20 uM LY294002 or 50 nM rapamycin [27] reduced the
GDF-15-induced increase in Ca,l1.3 protein expression from
5344+6.7% to 11.6+£4.7% and 0.04+4.2%, respectively
(n 3; P<0.05) (Figure 6A). Unexpectedly, inhibition of
MAPK with 1 uM U0126 [28] also suppressed the increase
in Ca,1.3 expression induced by GDF-15 from 54.8 +4.7 %
to 184+43% (n 3, P<0.05) (Figure 6B). These data

indicate that both the Akt/mTOR and MAPK/ERK pathways are
required for the up-regulation of Ca,1.3 expression induced by
GDF-15.

Since there are no specific inhibitors of TBRII, we used the
TBRIinhibitors SB431542 and PP1 and the TBRI/T BRIl inhibitor
LY2109761 to determine whether the effect of GDF-15 on Ca, 1.3
expression involves TBRIL. There was no change in GDF-15-
induced Ca, 1.3 expression relative to the control upon treatment
with 10 uM PP1 [15] (29.5 £ 3.91 % without PP1 compared with
34.11 £4.94 % with PP1;n =5, P > 0.05) (Figure 7A) or 10 uM
SB431542[15](29.5 & 3.91 % without SB431542 compared with
25.22 +£3.41 % with SB431542, n = 5, P > 0.05) (Figure 7B). In
contrast, 5 uM LY2109761 [15] treatment reduced the GDF-15-
induced up-regulation of Ca, 1.3 expression from 29.5 +3.91 %
to 1.41+4.99% (n = 5; P <0.05) (Figure 7C). These results
indicate that the effects of GDF-15 on I, and [Ca’*]; are
exerted via modulation of Ca, 1.3 expression, which involves the
activation of Akt/mTOR and MAPK/ERK signalling downstream
of TBRIL. Furthermore, we also examined whether TSRII and
ERK signal pathways are involved in the observed effect of GDF-
15 on the Ca, 1.3 gene promoter using luciferase reporter assays.
Similarly, together with SB431542, administration of GDF-15
significantly increased luciferase expression driven by the rat
Ca, 1.3 promoter by 36.23 £ 11.82 % relative to the control upon
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Figure 6 Effect of Akt/mTOR and ERK pathway inhibition on the GDF-15-induced increase in Ca,1.3 o subunit expression

(A and B) Western blot and statistical analyses of the effects of the Akt inhibitor LY294002 and mTOR inhibitor rapamycin (A) and the MEK inhibitor U0126 (B) on GDF-15-induced up-regulation of
(Ca,1.3 protein levels. Results are means + S.E.M. *P < 0.05 for the two groups connected with a straight line.

treatment with SB431542 alone. LY2109761 and U0126 inhibited
the GDF-15-induced up-regulation of luciferase expression driven
by the rat Ca, 1.3 promoter (n = 3, Figure 7D).

DISCUSSION

GDF-15 plays various roles in neuroprotection, neural
regeneration and axonal elongation [6,8,9]. However, there
is little known about the mechanism of action of GDF-15
and its downstream effectors. Our previous study suggested
that GDF-15 activates TBRII and PI3K (phosphoinositide 3-
kinase)/Akt/mTOR signalling to increase the Ix amplitude and
K,2.1 expression in CGNs, which may have developmental
significance [15]. In the present study, we found that GDF-15 also
increased the expression of Ca, 1.3 and thereby modulated the I,
and [Ca?" ];, which involved activation of the same receptor and
some of the same downstream signalling components as those
previously reported by our group.

VGCCs are voltage sensors that convert membrane
depolarization into intracellular Ca>* signals. In neurons, VGCCs
are L-, N-, P/Q-, R- and T-type Ca** channels [16,24]. L-
type Ca** channels are widely distributed on the neuronal
cell body throughout the mammalian CNS, including in CGNs
[26,29]. Ca** influx in response to membrane depolarization
occurs via L-type Ca?>™ channels and regulates intracellular Ca**
homoeostasis [18,30]. Our results demonstrate that intracellular
basal Ca’" was not increased by GDF-15 treatment; however,
[Ca’*]; in response to membrane depolarization and nifedipine-
sensitive /., were up-regulated, suggesting the involvement of L-
type Ca?" channels, although we cannot exclude the possibility
that nifedipine-insensitive Ca** channels or N-, P/Q- or R-
type Ca*>* channels were also modulated by GDF-15. A study
of rat CGNs indicated that administration of PACAP (pituitary
adenylate cyclase-activating polypeptide) induced a rapid rise in
[Ca**]; and thereby stimulated Ca?™ influx through N-type but not

L-type Ca®* channels [31]. This difference may be explained by
the fact that PACAP affects basal [Ca?" ];, but not the response
to membrane depolarization. Moreover, PACAP modulated the
channels through rapid phosphorylation of channel proteins rather
than regulation of Ca?* channel « subunit expression [31].

L-type channels consist of subtypes Ca,1.1-Ca,1.4. Ca,1.1
and Ca, 1.4 are mainly expressed in skeletal muscle and retinal
cells [32,33], whereas Ca,1.2 and Ca,1.3 are abundant in the
brain [29,34]. Both of the latter isoforms show broad expression
patterns in many types of neuron [35,36], where they regulate
neuronal excitability, synaptic plasticity and activity-dependent
gene transcription [37-39]. Ca, 1.2 and Ca, 1.3 account for 89 %
and 11% of L-type channel transcripts respectively in mouse
CGNs, and Ca,1.2 comprises the pore-forming subunits of
anomalous L-type channels in these cells [40]. However, our data
showed that there was no difference in the expression of the two
isoforms in CGNs, consistent with a previous study reporting that
functionally distinct L-type Ca?>" channels coexist in rat CGNs
[41]. Besides species differences, variations in protein stability
probably underlie the higher abundance of the Ca,1.3 « subunit
than what is predicted from mRNA levels, leading to a higher
number of functional Ca,1.3 channels in the membrane.

Ca,1.3 and Ca,1.2 differ in terms of biophysical properties,
distribution in the brain and function [42,43]. We observed that
the expression of the two channel types is also differentially
regulated, since GDF-15 up-regulated the expression of Ca,1.3
protein but not Ca, 1.2 protein, but both Ca, 1.2 and Ca, 1.3 mRNA
levels detected by using quantitative real-time PCR were increased
by GDF-15 for reasons that are unclear. Ca,1.2 and Ca,1.3
are encoded by the cacnalC and cacnalD genes respectively
[44]. The regulatory properties of Ca,1.2 and Ca,1.3 channels
differ according to interaction with different intracellular proteins
[45,46]. For instance, the association between Ca,1.2 and PDZ
(PSD-95/Dlg/Z01) domain proteins plays an important role in
coupling L-type Ca*>* channel activity with the phosphorylation
of nuclear CREB (cAMP-response-element-binding protein) [47],
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Figure 7 Effects of TBRI and TARI/TBRII inhibitors on the GDF-15-induced increase in Ca,1.3 protein level and gene promoter expression

(A—C) Western blot and statistical analyses of the effects of TRl inhibitors (PP1 and SB431542) (A and B) and TARI/TBRII dual inhibitor (LY2109761) (C) on GDF-15-induced up-regulation of
Ca, 1.3 protein levels. (D) Statistical analyses of the effect of the effects of SB431542, LY2109761 and U0126 on GDF-15-induced up-regulation of Ca, 1.3 promoter expression in CGNs determined
by luciferase reporter assays. Results are means + S.E.M. *P < 0.05 for the two groups connected with a straight line.

whereas interaction of Ca,1.3 with Shank results in its targeting
to phosphorylated (p)CREB at synapses [45,48]. Structurally
distinct forms of Ca,1.3 have also been reported in which the
C-terminal modulatory domain confers unique gating properties
[49,50]. Whether the differential regulation of Ca,1.2 and Ca,1.3
protein expression by GDF-15 is due to variation in protein
structure or a post-transcriptional mechanism remains an open
question.

Our previous study found that Akt/mTOR and MAPK/ERK
pathways were activated in CGNs by GDF-15 treatment,
consistent with findings in non-neuronal cells [51,52], although
activation of ERK signalling was not required for the GDF-15-
induced increases in K,2.1 expression and Iy [15]. Moreover,
the effect of GDF-15 on K,2.1 expression may be exerted
via TPBRII-induced activation of Src [15]. The results of the
present study suggest that the up-regulation of Ca, 1.3 expression
induced by GDF-15 is required for the activation of TARII and
PI3K/Akt/mTOR signalling pathways, confirming our previous
finding of a non-Smad mechanism [15]. However, we observed
that blocking ERK signalling did abolish the GDF-15-induced
increase in Ca,1.3 expression, suggesting that activation of the

ERK pathway is required for this effect. A previous study
showed that ERK activation regulates K,4 channel subunits at
the transcriptional and post-translational levels [53]. ERK can
directly phosphorylate ion channel subunits and may alter the
gating properties of K* channels, as in the regulation of Iy
by growth factors [54]. Since GDF-15 neither alters the gating
properties of I¢, nor has an immediate effect on Ca>* amplitude
(results not shown), instead it increased the mRNA level of Ca, 1.3
and luciferase expression driven by Ca, 1.3 promoter, we believe
that the activation of ERK signalling by GDF-15 regulates Ca, 1.3
expression at the transcriptional level.

Neuronal L-type Ca** was known to play a critical role in
coupling neuronal activity to gene transcription. Ca*>* influx via
postsynaptic L-type Ca?" channels activates pPCREB [47,48] and
NFATc4 (nuclear factor of activated T-cells cytoplasmic 4) [55],
which stimulate the transcription of target genes [48]. However,
a recent study demonstrated that the C-terminus of Ca,1.3
translocates to the nucleus where it functions as a transcriptional
regulator to modulate the transcription of Ca?*-activated K*
channels in atrial myocytes [56], and studies in Ca, 1.3/~ mice
have implicated Ca, 1.3 channels in auditory brainstem physiology
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and development [57,58]. Various pathologies have been linked
to Ca,1.3 channels; for instance, Ca,1.3 channel deficiency
reduces long-term fear memory, antidepressant-like behaviour
and congenital deafness [59-61]. In conclusion, our findings
provide important insight into the mechanisms underlying the
various functions of GDF-15 in the brain.
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