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Abstract

How are proteins transported across the stacked cisternae of the Golgi apparatus? Do they stay 

within the cisterna while the latter matures and progresses in an anterograde manner, or do they 

navigate between the cisternae via vesicles? Using synthetic biology, we engineered new tools 

designed to stabilize inter-cisternal adhesion such that Golgi cisternae are literally glued together, 

thus preventing any possible cisternal progression. Using bulk secretory assays and single cell live 

imaging, we observed that small cargoes (but not large aggregated cargoes including collagen) still 

transited through glued Golgi, although the rate of transport was moderately reduced. ARF1, 

whose membrane recruitment is required for budding COPI vesicles, continues to cycle on and off 

glued Golgi. Numerous COPI-size vesicles were intercalated among the glued Golgi cisternae. 

These results suggest that cisternal progression is not required for anterograde transport, but do not 

address the possibility of cisternal maturation in situ.

 Introduction

The yeast Saccharomyces cerevisiae harbors well-separated Golgi cisternae and the early 

cis-Golgi cisterna is capable of maturing into a late trans-Golgi cisterna (1, 2). This suggests 

that anterograde cargoes are likely to follow the maturation path, without needing to leave 

the original cisterna. However in mammals the structure of the Golgi is much more complex 

and structured. Mammalian Golgi harbor multiple polarized, stacked cisternae that are 

laterally connected to form a ribbon structure (3). By homology with the yeast maturation 

mechanism, it has been proposed that cis-Golgi cisternae containing anterograde cargo 

mature and progress forward within the stack (4). The cisternal progression model has been 

supported by dynamic morphological studies (5), but the molecular machinery responsible 

for such a process has not yet been identified.

Another view considers Golgi cisternae as individual entities that are stable over a time that 

is at least compatible with several rounds of transport. In that case, COPI vesicles are 

thought to mediate cargo exchange between adjacent stacked-cisternae (6). The machinery 

responsible for such vesicular transport has been identified and extensively investigated both 

in vitro and in vivo (7). A morphological study (8) has also described the presence of 

anterograde cargo within these vesicles.
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In an effort to assess the predictions of each transport model, we have recently developed 

several synthetic biology approaches to alter the topology and stability of the Golgi stacks. 

Using a cell-cell fusion assay, we found that both anterograde and retrograde cargoes (i.e 

overexpressed Golgi-resident enzymes) can be carried by COPI vesicles, as long as the size 

of the cargo is compatible with their ~ 70 nm inner diameter (9). We used a drug-inducible 

system to “staple” and decorate Golgi cisternae in order to follow their fate. We observed 

that Golgi cisternae are composed of two domains: a static and inert central portion, and a 

rim that is the active transport zone required for both vesicular transport and transport of 

large aggregates like collagens by a novel process that we termed “rim progression”(10). 

Because large aggregate transport – but not small cargo transport – requires an intact ribbon 

(and does not take place effectively in individual “mini-stacks”) we suggested that 

anterograde transport of larger cargoes requires fission/fusion of the cisternal rims enclosing 

the aggregates among adjacent individual Golgi stacks within the ribbon (11), much as 

envisioned in the cisternal progenitor model (15)

On the other hand, Luini and colleagues used a very similar approach (i.e drug controlled-

aggregation of a FM-aggregated Golgi-resident enzyme) to mark cisternae, and reached 

opposite conclusions (12). Their aggregated resident enzyme seemed to progress within the 

cisterna to the trans-Golgi face. Linstedt and colleagues (13) recently reported that FM-

induced aggregation within the lumen of the Golgi can target the aggregated proteins for 

degradation in lysosomes, once they reach the trans-Golgi network. This suggests that 

aggregation within the Golgi lumen may ultimately result in a quality control response in 

many cases. It is noteworthy that the aggregates studied by Luini et al (12) were 

metabolically unstable during the several hours required to study transport, whereas the 

aggregates we employed were more stable.

With this in mind, we have now taken an orthogonal approach in which we artificially and 

stably glue adjacent Golgi cisternae together. This should permanently stabilize Golgi stacks 

and prevent any possible cisternal movements within them. We then explored the 

consequences of this new topology and constraint on the anterograde transport of small and 

large cargoes.

 Results

 A Golgi matrix-based glue

We engineered Golgi matrix proteins designed to interact exclusively at the cytosolic 

interface of the cis, medial, and trans Golgi cisternae (Figure 1A) in a drug-controlled 

manner (Figure 1A). We took advantage of the hetero-dimerization system that allows for 

FKBP/FRB interaction in the presence of the hetero-dimerizing drug (14), and can be used 

concomitantly with the FM-based aggregation/secretion system (15). We focused on matrix 

proteins grasp65 (G65), grasp55 (G55), and golgin97 (G97) that are well established to 

specifically decorate cis (16), medial (17) and trans-Golgi cisternae, respectively (18–20). 

G55 was fused to 3 FKBP repeats, whereas G65 and G97 were both fused to a single FRB 

domain (Figure 1A). Each chimeric protein was also tagged with a fluorescent protein to be 

appropriately visualized by light microscopy.
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First we validated that the different components of the hypothetical glue (G65-FRB/G55-

FKBP3-CFP/RFP-FRB-G97) immuno-precipitated only in the presence of the hetero-

dimerizing drug (Figure 1B). Secondly, we showed by confocal microscopy that cells 

expressing the glue components harbored an enlarged Golgi (identified by GT-YFP, a Golgi 

marker) in the presence of the hetero-dimerizing agent (Figure 1C and D). The structure of 

the ER was not obviously altered within cells harboring glued Golgi (Supplementary Figure 

1D).

FRAP experiments revealed that the mobility within the Golgi area of G55-FKBP-CFP, 

which rapidly recovers (~10 second half-time) before dimerizer is added, was prolonged ~30 

times by adding the dimerizing drug (Figure 1E upper graph and Supplementary Figure 1B 

upper panel). Similar results (~19 times slower recovery in the presence of the dimerizer) 

were observed when half-Golgi were photobleached (Figure 1E lower graph and 

Supplementary Figure 1B lower panel). This provides direct evidence that the components 

forming the inter-cisternal glue had indeed assembled with each other.

The glued-Golgi areas were always grossly enlarged as compared to untreated cells (visible 

at the light level; see Figure 1C). This alteration presented itself in various ways at the 2D-

EM level. In some portions, the Golgi appeared as a giant flattened “hyper-stacked” ribbon 

closely opposed to rough ER (<10% of the cases); in other sections (>90% of the cases) it 

presented as an enlarged network of associated partly swollen Golgi cisternae 

(Supplementary Figure 1C). Because the later phenotype was more abundant we only further 

characterize by tomography the partly swollen cisternal presentation (Figure 3, 

Supplementary Figure 4A, B, and Supplementary Movie). This is discussed later. Note that 

electron dense structures were occasionally observed at the interface of the glued cisternae 

(Supplementary Movie and Supplementary Figure 4C), although this FKBP/FRB matrix-

based glue was clearly not as electron dense as the much stronger FM4-based aggregates 

(10, 21).

Immuno-EM confirmed that the assembled matrix-glue components were indeed highly 

concentrated (>4 fold increase) at the interfaces of opposed Golgi cisternae (Figure 1F and 

graph). As further evidence for successful gluing, the glued Golgi ribbons no longer 

dissociated into mini-stacks when microtubules were de-polymerized by nocodazole 

(Supplementary Figure 1A), suggesting that membrane fission is strongly inhibited within 

the core of the glued Golgi cisternae

Super-resolution microscopy revealed that cis and trans Golgi markers remained fully 

separated within the enlarged glued Golgi (Figure 1G). This suggests that the glued Golgi 

cisternae retained their proper identity. We note that the ribbon appeared thicker than in 

normal Golgi, consistent with our other results (Figure 1D and Supplementary Figure 1C).

 Anterograde transport through glued Golgi

We recently proposed that transport of large cargoes via rim progression requires fusion/

fission cycles between adjacent mini-stacks within the ribbon structure, whereas small 

cargoes utilize another secretory track(s) that do not require the ribbon organization (11). 

Gluing should prevent all forms of membrane mobility, including cisternae fission, and if so 
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is expected to block the proposed rim progression of large cargo. And, if small cargo can 

still transit static cisternae, it is predicted that small cargo but not large aggregated cargo 

should transit glued Golgi.

To test this, we measured the rate of secretion of small and large cargoes in populations of 

HeLa cells. The small cargoes (disaggregated FM-hGH and VSV-G) continued to be 

secreted, though at moderately reduced rates (1.8 and 1.4 fold decrease, respectively). By 

contrast, the large cargo (FM-hGH aggregated within the cis-Golgi) was strongly inhibited 

(5.5 fold decrease) (Figure 2A and Supplementary Figure 2). Confocal microcopy confirmed 

that Golgi-aggregated FM-hGH accumulated within the glued Golgi (Supplementary Figure 

2B). Similar results were obtained with collagen-secreting fibroblasts (Saos-2 cells), in 

which we measured the rate of secretion of endogenous MMP2 (small cargo) and 

endogenous collagen-I aggregates (large cargo). The secretion of MMP2 was moderately 

inhibited (1.7 fold decrease), whereas the secretion of collagen aggregates was strongly (4.5 

fold decrease) reduced (Figure 2A and Supplementary Figure 3A). Confocal microscopy 

confirmed that the retained collagen aggregates were located within the glued Golgi 

(Supplementary Figure 3B), suggesting that most of the transport inhibition occurs within 

the Golgi, and not earlier (i.e ER→Golgi).

Importantly, the inhibition of collagen aggregate transport was reversed when the glue was 

removed (Supplementary Figure 3C). Golgi enlargement phenotype was also reversed at the 

light microscopy level (data not shown). These results suggest that small cargoes are still 

transported within cells harboring glued Golgi, whereas large cargoes are largely retained, 

and therefore that the two types of cargoes follow different secretory pathways, consistent 

with our previous study (11).

We next extended the aforementioned population studies to single cells. Our strategy was to 

first select the cell to be monitored based on the size of the Golgi (expected to be enlarged 

when the Golgi is glued) and then to initiate a wave of cargo transport from the ER, using 

dynamic confocal imaging to monitor the appearance and disappearance of cargo from the 

Golgi over time. Then, at the end of the experiment, the cells were fixed and immuno-

stained for collagen, to confirm its retention within the very same cell.

In control cells, fluorescently tagged small cargo completely filled the Golgi within 40 

minutes, prior to being released progressively after an hour. As expected, at the end of the 

experiment, collagen was absent from the Golgi of these cells (Figure 2B left panel and 

lower graph). Transport of small cargoes still occurred in cells harboring glued Golgi, 

however the appearance of the cargo in the Golgi was delayed and now peaked at 90 minutes 

(Figure 2B right panel and lower graph). Cargo exit from the glued Golgi was sufficiently 

delayed that it was incomplete even at the end of the two-hour time course of live imaging. 

The retained portion of the cargo was located in the glued Golgi in these same single cells 

and co-localized with the blocked collagen (Figure 2B right panel). It is important to note 

that >85% of the cells that we had selected for live imaging based on the morphological 

criteria (enlarged Golgi) were later functionally validated as having retained collagen 

(Figure 2B upper graph). This validated that our judgment to select the cells to be imaged in 

real-time was appropriate. Furthermore, we may have imposed a selection bias towards 
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hyper-glued Golgi, which could explain why transport inhibition appeared stronger with 

single cell imaging than with the bulk secretion assay, which also include cells with poorly 

glued Golgi. The studies of single cells confirm and extend those from the population study.

To more sensitively investigate the effect of Golgi gluing on the kinetics of transport from to 

the cell surface we used TIRF microscopy. Consistent with the previous results, arrival of 

cargo at the cell surface still occurred within cells containing glued Golgi (Figure 2C), 

although the rate of transport was reduced. Importantly, in the absence of the disaggregating 

drug, no cargo reached the cell surface (Figure 2C, graph, black curve), ruling out any 

unspecific leak in our system.

The observed delay of transport could be due to a defect in ER→Golgi transport, intra-Golgi 

transport or Golgi→PM transport, or all of the above. To rule out a defect in Golgi→PM 

transport, we incubated the cell at 20°C for 4 hours to accumulate the released cargo in the 

TGN. We then measured the arrival at the PM by TIRF microscopy after releasing this 

temperature block (Figure 2D). The rate of TGN→PM transport was similar whether cells 

contained a glued Golgi or not, suggesting that the observed overall slowing of transport 

mainly occurs in the early secretory pathway and within the glued Golgi.

 Mechanism of transport within glued Golgi

We used EM tomography to determine if COPI vesicles are found in the vicinity of the glued 

Golgi. First, we confirmed that most of the objects constituting the glued-Golgi network 

were cisternae (Figure 3A and Supplementary Movie). Most of these cisternae were so 

extended that they could not be entirely captured within the 250 nm thickness of the 

electron-tomographic sample. We found that vesicles (50–100 nm spherical objects entirely 

resolved within the 250 nm) were found within the glued Golgi at an average density of 

60/µm3 (Figure 3A). These vesicles were not homogeneously distributed but seemed to 

concentrate in “hot-spots”, where they were intercalated within the maze of the glued Golgi 

cisternae (Figure 3B). This is consistent with these being intra-Golgi vesicles responsible for 

the transport activity. We therefore tested the dynamics of ARF1-GFP, a required component 

of COPI vesicles, by FRAP of glued Golgi membranes. ARF1-GFP turnover on Golgi 

membrane was very similar whether the Golgi was glued or not (recovery half-times of 13 

and 14 sec, respectively) (Figure 3C). However, the mobile fraction of ARF1-GFP was 

slightly reduced within glued Golgi (1.3 fold decrease) consistent with the slowdown of 

transport reported earlier. This suggested that the machinery responsible for vesicle budding 

within the Golgi is functional, even in glued Golgi. Therefore, we concluded that vesicles 

might be responsible for the remaining anterograde transport activity observed in cells 

harboring glued Golgi. These vesicles may also be involved in the recycling of Golgi 

resident proteins.

 Discussion

We engineered tools that literally glue Golgi cisternae together over a prolonged period (> 

15 hours) during which about 50 complete cycles of import and export of cargo would 

normally occur (assuming about 20 min Golgi transit time). Yet, despite this, anterograde 

transport of secretory and membrane proteins continue largely unimpeded. It is hard to 
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reconcile this dramatic finding with models in which cisternae must move progressively 

from one end of the stack to the other to carry such cargo. Gluing should prevent the trans-

most cisterna from leaving in this model, but should not prevent addition of new membrane 

(from ER) at the cis face to form new cisternae, so the number of cisternae should increase 

and membranes should massively accumulate at the cis pole of the stack. This was not 

observed.

Furthermore, protein aggregates are retained within the glued Golgi, implying that even if 

cisternal progression had been taking place before gluing (as the mechanism of aggregate 

transport) it must have been stopped by gluing. This underscores that the ongoing transport 

of small cargo after gluing could not result from cisternal progression.

It is especially important for the interpretation of our results to explicitly distinguish 

between the concepts of cisternal maturation (a given cisterna takes on the composition of a 

later cisterna over time) and cisternal progression (a given cisterna physically moves up in 

the stack), our results speak strongly against progression as being responsible for the 

majority of anterograde transport but do not address the possibility that maturation could 

continue within the glued Golgi stacks. Thus, recycling COPI vesicles could be formed at 

the edges of the glued cisternae, and formation of secretory vesicles could still occur within 

a static cis-glued cisterna that is reaching a TGN-like state. This could satisfyingly explain 

the transport of small cargo. But why large cargo transport would be more dramatically 

affected then?

The Golgi stack is, by definition, perturbed by gluing, and the transport of small anterograde 

cargo is slower than before gluing. But to minimize the degree of perturbation, we chose a 

glue based on the very matrix proteins that are naturally positioned at the interface of Golgi 

cisternae, where they normally contribute to establish inter-cisternal adhesion. We merely 

used synthetic approaches to strengthen these interactions and render them permanent. In 

addition, the location of this perturbation to the cytoplasmic side of the cisternae avoids the 

theoretical possibility of contact/interference with lumenal cargo. In light of this and the 

considerations above, our experiments cannot address whether cisternal progression is 

responsible for the fraction of anterograde transport corresponding to reduction in rate after 

gluing; rather, we can only conclude that cisternal progression is not the only mechanism 

capable of anterograde transport.

The simplest explanation is that the small cargoes move through COPI vesicles, which are 

known to bud at the rims of cisternae at all levels of the stack (8). Indeed, we readily 

observed these vesicles within the vicinity of the glued Golgi. In fact the density of COPI-

size vesicles in glued Golgi areas (~ 60 vesicles/µm3) is slightly lower to that reported for 

unperturbed Golgi areas (~ 100 vesicles/µm3; (22)), consistently with the reported transport 

slow down.

In the long run it will be vital to observe and quantify the patterns of protein traffic in the 

Golgi directly using dynamic, molecularly specific imaging at super-resolution. Until that 

technology emerges, the field will need to rely on indirect methods involving one or another 

kind of perturbation, and the strength of conclusions needs to be calibrated with this in mind. 
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The more orthogonal methods that are applied the better. Neither trans-lumenal stapling of 

cisterna (10) nor permanently gluing them together grossly impede anterograde transport; in 

both conditions the cisternae were shown to be (10) or rendered (this study) immobile.

 Materials and Methods

 Cell culture and transfection

HeLa and Saos-2 cells were maintained in DMEM medium (Gibco, Grand Island, NY, 

U.S.A.) supplemented with 10 % fetal bovine serum (Sigma-Aldrich, St Louis, MO, U.S.A.) 

at 37°C under 5% CO2. 25 µg/mL ascorbate (Sigma-Aldrich) was further added to Saos-2 

cells medium. Hela cells were transfected using Lipofectamine 2000 (Invitrogen, Grand 

Island, NY, U.S.A.) according to the manufacturer’s instructions. Saos-2 cells were 

electroporated using the Nepa21 electroporator (Nepagene, Chiba, Japan).

 Plasmids, antibodies and reagents

ss-GFP-FM4-hGH was described previously (21). VSV-Gts-GFP was ordered from Addgene 

(Cambridge, MA, United States). DsRed-FRB-Golgin97 (DsRed-FRB-G97), GRASP55-

FKBP3-CFP (G55-FKBP3-CFP), GRASP55-FKBP, GRASP65-FRB-YFP (G65-FRB-YFP) 

and GRASP65-FRB were generated by sequential insertion of CFP (or YFP, or DsRed), and 

the indicated Golgi protein-encoding sequences into a pC4-ss-FM backbone vector 

(ARIAD), using XbaI/SpeI compatibility and the BamH1 restriction site. GRASP65-, 

GRASP55- and Golgin97-encoding plasmids were a gift from Y. Wang, A. Linstedt and S. 

Munro, respectively. GT-YFP and ARF1-GFP plasmids were kind gifts from C. Giraudo and 

G. Romero respectively.

For immunoblotting and immunofluorescence microscopy, antibodies used were anti-

mCherry (Biovision, Milpitas, CA, U.S.A.), anti-Collagen-I (Developmental Studies 

Hybridoma Bank, Iowa City, IA, U.S.A.), anti-MMP2 (Cell Signaling, Boston, MA, 

U.S.A.), anti-GFP (Roche, Brandford, CT, U.S.A.), anti-HA (Covance, Princeton, NJ, 

U.S.A.), anti-VSV-G P5D4 (12). anti-Grasp65 (Sigma-Aldrich), and anti-hGH (Dako, 

Carpinteria, CA, U.S.A.). The anti-Grp78 antibody was a kind gift from T. Walter. The 

Atto647-conjugated secondary antibody we used was from Sigma-Aldrich.

A/C heterodimerizer and D/D solubilizer were from Clontech Laboratories (Mountain View, 

CA, U.S.A.) and used at 1 µM for the indicated amount of time. Nocodazole (Sigma-

Aldrich) was used at 1 µg/mL for 2 hours.

 Electron microscopy

For regular epon embedding, cells were fixed in 2.5% gluteraldehyde in 0.1 M sodium 

cacodylate buffer pH7.4 before being scraped and pelleted in 2% agar, then post-fixed in 1% 

osmium tetroxide and en bloc stained in 2% uranyl acetate. Samples were then dehydrated in 

an ethanol series and infiltrated with resin (Electron Microscopy Science, Hatfield, PA, 

U.S.A.). Hardened blocks were cut using a Leica UltraCut UC7 (Buffalo Grove, IL, U.S.A.), 

60 nm sections were collected and stained using 2% uranyl acetate and lead citrate.
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For immuno-electron microscopy using LR White (London Resin White), samples were 

fixed in 4% paraformaldehyde/0.1% gluteraldehyde in PBS before being rinsed in PBS and 

blocked with 50 mM NH4Cl +100mM glycine. Cells were then scraped in 1% gelatin, and 

transferred to 2% Agar on ice. Samples were trimmed and rinsed in Tris 50 mM Maleate 

+ 3.5% sucrose twice and placed in 2% uranyl acetate/Tris + 50 mM Maleate. After rinsing 

again they were dehydrated in an ethanol series, then infiltrated with 50:50 ethanol/LR 

White (Electron Microscopy Science), followed by several changes of pure 100% LR White. 

Samples were polymerized and sections were collected on carbon/ formvar coated nickel 

grids. Grids were placed section side down on drops of 0.1M ammonium chloride to quench 

untreated aldehyde groups, then blocked for nonspecific binding on 1% fish skin gelatin in 

PBS. Grids were then incubated with the polyclonal anti-DsRed primary antibody (1:200; 

Clontech Laboratories), rinsed in PBS followed by incubation with 10 nm Protein A gold 

(Utrecht Medical Center). Grids were rinsed in PBS, post-fixed using 1% gluteraldehyde, 

contrast stained using aqueous uranyl acetate and lead citrate.

Samples were all viewed on FEI Tencai Biotwin TEM at 80Kv. Images were taken using 

Morada CCD and iTEM (Olympus, Waltham, MA, U.S.A.) software.

Electron tomography on 250nm sections was done using FEI Tecnai TF20 at 200 Kv tilting 

from 60 to –60 degrees. Data was collected using FEI Eagle 1×1 and reconstructed and 

modeled using IMOD (University of Colorado, Boulder, CO, U.S.A.).

For surface density calculations, the number of gold particles associated with a structure was 

counted, and the membrane length was measured using ImageJ. The density was then 

expressed as LD (number of gold particles/micrometer).

 Fluorescence microscopy

For immunofluorescence, cells were grown on glass coverslips in 24-well plates and were 

fixed with 4% paraformaldehyde before being triton permeabilized and incubated with the 

appropriate antibodies. For live cell imaging, Saos-2 cells were grown in glass bottom dishes 

(MatTek, Ashland, MA, U.S.A.) and imaged in Live Cell Imaging Solution (Invitrogen) 

supplemented with 10 mM Glucose and 25 µg/mL ascorbate (Sigma-Aldrich). For cargo 

release, cells were incubated with 100 µg/mL cycloheximide (Sigma-Aldrich) and D/D 

solubilizer for the indicated amount of time. Live cell imaging was performed at 37°C. 

Images were obtained on a Zeiss LSM510 microscope.

For FRAP experiments we used a multicolor spinning-disk confocal based on an inverted 

Olympus microscope (IX-71) and Perkin-Elmer Ultraview system with 5-laser and FRAP/

photoactivation. GRASP55-FKBP3-CFP or ARF1-GFP were photobleached within the 

Golgi region at 440 nm (90% laser power) for 0.5 seconds and 488 nm (20% laser power) 

for 2 seconds respectively. Stimulated emission depletion microscopy was performed on a 

custom system built around an inverted microscope base (IX-71, Olympus, Japan). A 

depletion wavelength of 775 nm is employed from an 80 MHz repetition rate, 650 ps pulsed, 

laser (Katana HP, One Five, Switzerland) which is coupled into a polarization maintaining 

(PM) single-mode fiber. The collimated fiber output is directed onto a spatial light 

modulator (X10468-02, Hamamatsu, Japan) for aberration control and application of a 
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helical phase ramp to create a ring shaped depletion focus. The SLM is imaged onto a 16 

kHz resonant mirror (SC-30, Electro-Optical Products Corp., U.S.A) which is, in turn, 

imaged on to the back pupil plane of a 100× oil immersion objective lens (UPLSAPO 100× 

Oil PSF, Olympus, Japan). Fluorescence excitation is provided by two pulsed diode lasers 

emitting laser pulses of approximately 80 ps at wavelengths of 650 nm and 595 nm (LDH-

D-C-650 and LDH-TA-595, PicoQuant GmbH, Germany), which are electronically 

synchronized to the depletion laser via custom built electronics (Opsero Electronic Design, 

Canada). The excitation beams are combined with the depletion beam via a dichroic mirror 

(zt750spxr, Chroma) after passing through a PM single-mode fiber. Scanning the overlaid 

depletion and excitation foci through the focal plane is accomplished with the 

aforementioned 16 kHz resonant mirror for the fast axis and a synchronized galvanometer 

pair for the slow axis. Fluorescence is collected by the same objective, de-scanned, and 

separated from back scattered excitation and depletion light with a custom dichroic mirror 

(zt485/595/640/775rpc, Chroma). Fluorescence from STAR635P and ATTO594 is then split 

with a dichroic mirror (zt640rdc, Chroma) and directed through respective band pass filters 

(FF02-685/40-25 and FF01-624/40-25, Semrock), focused into 125 µm core multimode 

fibers acting as confocal pinholes (approximately 0.8 Airy units), and collected via single-

photon counting avalanche photodiodes (APD) (SPCM-ARQ-13-FC, Excelitas, Canada). 

APD outputs are connected to custom electronics (Opsero Electronic Design, Canada) that 

gate the detection signal relative to the excitation laser pulses before being passed to a field 

programmable gate array board (PCIe-7852R, National Instruments, U.S.A) that organizes 

photon counts into lines of the image before passing them to the host computer. System 

control is realized using a custom interface (LabVIEW, National Instruments, U.S.A) with 

the ability to collect images sequentially or simultaneous in a line-by-line mode.

For TIRF microscopy, Saos-2 cells were handled as for live cell confocal microscopy. 

Immunofluorescence for STED imaging was performed using an anti-TGN46 antibody 

generated in sheep (Ab serotec) and an anti-GM130 antibody generated in mouse (BD 

biosciences laboratories). As secondary antibodies anti-mouse STAR635P antibodies 

(Abberior) and anti-Sheep ATTO594 generated in the lab were used. Conjugation of 

unlabelled anti-Sheep IgGs (Jackson Immunoresearch) was performed in a 10% 1M Sodium 

bicarbonate with a molar ratio of ATTO590 NHS ester (SIGMA):antibodies of 50:1. The 

reaction was incubated at room temperature for 1 hour and the excess free dye was separated 

using a Micro Bio-Spin column MWCO=6KDa (BIORAD).

 Co-immunoprecipitation

Cells were grown in 6-well plate and transfected with the appropriate combination of 

plasmids. When required, the dimerizing drug was added overnight and maintained during 

the procedure. Cells were collected and resuspended in lysis buffer (1% Triton X-100, 5mM 

EDTA, 150mM NaCl pH 7.4 and 1% protease inhibitor). The cell lysate was centrifuged, 

and the supernatant was collected and incubated with anti-GFP antibody (Roche, Penzberg, 

Germany) and Protein-A agarose beads (Roche, Penzberg, Germany) for 2 hours at 4°C. 

After centrifugation, protein-A interacting proteins were eluted from the beads with SDS-

sample buffer. Samples were then analyzed by SDS-PAGE and immunoblotting.
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 Secretion assays

Cell surface biotinylation, TCA precipitation, SDS-PAGE and immunoblot analysis were 

performed as described previously (10).

 Image analysis and statistics

All graphs were rendered in GraphPad Prism (La Jolla, CA, U.S.A.) as averaged data ± 

standard error of the mean (s.e.m.).

FRAP was quantified using Volocity (PerkinElmer, Walthham, MA, U.S.A.) and single 

corrected (background corrected).

Densitometry for immunoblots, as well as fluorescence intensity and area size on 

micrographs were quantified using ImageJ. Fluorescence intensity for live imaging was 

background corrected and expressed as fold increase.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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 Abbreviation List

ARF1 ADP-ribosylation factor 1

COPI coat protein complex I

FRAP Fluorescence Recovery After Photobleaching

GFP Green Fluorescent Protein

RFP Red Fluorescence Protein

EM Electron Microscopy

ER Endoplasmic Reticulum

PM Plasma Membrane

CHX Cycloheximide

VSV-G Vesicular Stomatitis Virus glycoprotein

TGN Trans Golgi Network

GRASP Golgi Re-Assembly Stacking Protein

MMP2 matrix metalloproteinase-2
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GT Galactosyl-Transferase
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Figure 1. Gluing Golgi cisternae to stabilize the ribbon
A. Cartoon depicting the approach used to form a glued Golgi. Golgin97 (G97), Grasp55 

(G55) and Grasp65 (G65) are fused to protein domains allowing their drug-controlled 

hetero-dimerization as well as to fluorescent proteins for visualization purposes. Upon 

Dimerizer treatment, the different constructs come together to glue cis and trans faces of the 

Golgi stack. B. Lysates from HeLa cells expressing DsRed-FRB-Golgin97, Grasp55-

FKBP3-CFP and Grasp65-FRB, treated or not with Dimerizer for 16 hours, were subjected 

to anti-CFP co-immunoprecipitation. Immunoprecipitates were resolved by SDS-PAGE and 
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visualized by western blot using anti-CFP, anti-DsRed or anti-Grasp65 antibodies to detect 

the three different constructs expressed. C. HeLa cells expressing DsRed-FRB-Golgin97, 

Grasp55-FKBP3-CFP, Grasp65-FRB and GT-YFP, treated or not with Dimerizer for 16 

hours, were visualized by confocal microscopy. The areas delineating the nucleus and the 

Golgi (labeled with GT-YFP) were measured and ratioed for 18 cells for each condition as 

plotted in D. Scale bars: 10 µm. E. Fluorescence Recovery After Photobleaching 

experiments were performed on HeLa cells expressing DsRed-FRB-Golgin97, Grasp55-

FKBP3-CFP and Grasp65-FRB with (green) or without (blue) Dimerizer. CFP fluorescence 

was bleached and its recovery monitored within full or Half Golgi region (see Fig. S1B). 

Data was single-corrected and averaged over at least 9 cells taken from two independent 

experiments. Data was fitted on a one-phase association curve (red line). F. HeLa cells 

expressing DsRed-FRB-Golgin97, Grasp55-FKBP3-CFP and Grasp65-FRB-YFP and treated 

with Dimerizer, were processed for immuno-electron microscopy against DsRed. Scale bars: 

500nm. Graph, Gold particle concentration (Linear Density) at membrane facing opposed 

Golgi membrane (A) or cytosol (B). Quantification was performed on >20 Golgi. G. HeLa 

cells expressing GFP-FRB-Golgin97, Grasp55-FKBP3-CFP and Grasp65-FRB, treated or 

not with Dimerizer for 16 hours, were immunolabeled with anti-TGN46 and anti-GM130 

antibodies and observed by STED microscopy. Scale bars: 1 µm.
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Figure 2. Cargo transport through glued Golgi
A. Table summarizing bulk transport experiments results performed on different cargoes and 

different cell lines (see Fig. S2 and S3). B. Saos-2 cells expressing DsRed-FRB-Golgin97, 

Grasp55-FKBP, Grasp65-FRB and the model cargo ssGFP-FM4-CD8 (disaggregated form), 

treated (Glue) or not (Control) with Dimerizer for 16 hours, were subjected to live confocal 

imaging. Cargo was released by addition of Solubilizer at time 0 min. Fluorescence intensity 

at the Golgi was monitored, and the average of at least 5 cells taken from 4 independent 

experiments was plotted. After the 2 hours of live imaging, cells were fixed and immuno-
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labeled for Collagen-I. The ratio of fluorescence intensity in the Golgi region over the 

intensity in the whole cell was plotted for each cell analyzed. C. Cells as in B were subjected 

to TIRF microscopy starting 30 minutes after cargo release (Solubilizer addition). 

Fluorescence intensity at the plasma membrane was monitored, averaged from at least 5 

cells taken from 4 independent experiments and plotted. D. Cells as in C were subjected to a 

temperature block at 20°C for the first 4 hours of cargo release. Cells were then brought 

back to 37°C for 5 minutes prior to TIRF imaging as in C. Before and after live imaging, 

wide-field images were obtained to observe the fluorescence intensity of the cargo in the 

Golgi. Data from 3 independent experiments (4 cells) was averaged and plotted. *: p<0.1; 

**: p<0.05.
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Figure 3. Vesicles form in glued Golgi
A–B. Electron tomography was performed on HeLa cells expressing DsRed-FRB-Golgin97, 

Grasp55-FKBP3-CFP and Grasp65-FRB-YFP, treated with Dimerizer for 16 hours. 3 

dimensions reconstruction was performed on 81 tilt series using the IMOD software. Golgi 

cisternae are represented in shades of blue, green and yellow. The colors were used to 

facilitate the distinction between each reconstituted partly swollen cistern. Vesicles and 

vesicle buds (modeled as spheres of 50 to 150 nm in diameter entirely enclosed in the 

thickness of the section) are magenta and red respectively. A multi-vesicular body is colored 
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black and the endoplasmic reticulum (ER) is white. For clarity purposes, only vesicles were 

modeled in A, while all the structures shown in the red box were modeled in B. Scale bars: 

150 nm. C. Fluorescence Recovery After Photobleaching experiments were performed on 

HeLa cells expressing DsRed-FRB-Golgin97, Grasp55-FKBP, Grasp65-FRB and Arf1-GFP. 

GFP fluorescence was bleached and its recovery monitored in the Golgi region. Data was 

single-corrected and averaged over at least 5 cells taken from two independent experiments. 

Data was fitted on a one-phase association curve (black line).
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