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ABSTRACT

Malignant pleural mesothelioma (MPM) is a tumor originating in the mesothelium, the membrane lining the
thoracic cavities, and is induced by exposure to asbestos. Australia suffers one of the world's highest rates of
MPM and the incidence is yet to peak. The prognosis for patients with MPM is poor and median survival following
diagnosis is 4-18 months. Currently, no or few effective therapies exist for MPM. Trials of targeted agents such as
antiangiogenic agents (VEGF, EGFR) or ribonuclease inhibitors (ranpirnase) largely failed to show efficacy in
MPM Tsao et al. (2009) [1]. A recent study, however, showed that cisplatin/pemetrexed + bevacizumab (a re-
combinant humanized monoclonal antibody that inhibit VEGF) treatment has a survival benefit of 2.7 months
Zalcman et al. (2016) [2]. It remains to be seen if this targeted therapy will be accepted as a new standard for
MPM. Thus the unmet needs of MPM patients remain very pronounced and almost every patient will be
confronted with drug resistance and recurrence of disease. We have identified unique gene signatures associated
with prolonged survival in mesothelioma patients undergoing radical surgery (EPP, extrapleural pneumonecto-
my), as well as patients who underwent palliative surgery (pleurectomy/decortication). In addition to data pub-
lished in Molecular Oncology, 2015;9:715-26 (GSE59180) Kirschner et al. (2015) , we describe here additional
data using a system-based approach that support our previous observations. This data provides a resource to

further explore microRNA dynamics in MPM.
© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

Specifications

(continued)

Organism/cell line/tissue
Sex

Sequencer or array type
Data format
Experimental factors

Experimental features

Consent

Human malignant mesothelioma tissue
(micro-dissected using laser capture)

Male 75%, female 25% (2 females in long and short
group respectively)

Agilent unrestricted AMADID miRNA
8x15k-AMADID:021827 miRNA array

Log2 transformation and normalized to the 90th
percentile without baseline transformation.
Short-term vs long-term survival, without prior
chemotherapy

Differential gene expression of microRNAs were
selected and evaluated against clinical data of survival
outcome to determine their prognostic nature.
Waiver of consent for these patient samples was granted
by the Human Research Ethics Committee at Concord
Repatriation General Hospital, Sydney, Australia

Specifications

Sample source location

(CH62/6/2009/078). The histopathology of all samples
was independently reassessed by Assoc Prof Sonja Klebe,
an expert pathologist and final diagnoses were made
according to World Health Organization criteria [4].
Sydney, Australia

* Corresponding author at:

Asbestos Diseases Research Institute, Sydney, Australia.

E-mail address: Ruby.lin@sydney.edu.au (R.C.Y. Lin).

http://dx.doi.org/10.1016/j.gd

ata.2016.06.009

1. Direct link to deposited data

MicroRNA profiling of malignant pleural mesothelioma tumour tis-
sues, http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE59180

2. Experimental design, materials and methods

The experimental design and analysis pipeline are outlined in Fig. 1.
Briefly, we used 16 FFPE (formalin-fixed paraffin embedded)
tumor samples from patients who underwent EPP (extrapleural

2213-5960/© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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EPP cohort, FFPE samples

(n=85) (n = 64)

Validate in Validation Set
(n =43, P/D Cohort*)

Kirschner et al, Molecular Oncology (2014),
http://dx.doi.org/10.1016/j.molonc.2014.11.007
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Fig. 1. Analysis pipelines for miR-Score (Kirschner et al. [3]) and additional bioinformatics analysis. “This P/D cohort consisted of 75 patients but only 43 passed the criteria for RNA quality

and quantity to be put forward for microRNA validation experiment.

pneumonectomy) [3,5] to interrogate the prognostic value of genome-
wide microRNA gene expression. The RNA samples were divided into
2 groups; 1) long survival, median = 53.7 months, n = 8 and 2) short
survival, median = 6.4 months, n = 8. Agilent Human 8x15k miRNA
microarrays (GPL10850) were utilized for microRNA transcriptome
profiling. Agilent feature extraction v10.5 was used to extract fluores-
cence intensity.

2.1. Data processing

Total Gene Signals from the miRNA arrays were quantile normalized
and log transformed to base 2. Further filtering was applied to exclude
ones with gene expression of <1 (Partek Genome Suite, v6.6). In com-
parison, Kirschner et al., 2015 used signal value of 1 as a threshold and
normalized by shifting to the 90th percentile without applying baseline
transformation. The intention here is to show that regardless of normal-
ization methods used for the initial array data processing (Fig. 1), candi-
date microRNAs identified still hold true their association with the
phenotype and in particular, the affected regulatory pathways where
predicted genes are targeted by these microRNAs.

One-way ANOVA was used to examine differential gene expression
between long and short survival (n = 16 in total). This analysis also as-
sumes that long and short survival-related gene expression patterns are
normally distributed and that the variance is approximately equal be-
tween the groups. Configuring the ANOVA in Partek Genome Suite
(v6.6) enabled adjustment for systematic technical errors, such as
batch processing of the RNA samples as well as the shortcomings of
RNA extraction from FFPE blocks.

2.2. Visualization of gene expression and regulatory pathways

To visualize the dataset, further analysis was carried out to identify
distinctive gene expression patterns using Self-Organizing Map (SOM)
clustering (map height = 4, map width = 3) (Fig. 2A). Cluster structure
of this dataset in the form of non-linear mapping to a two-dimensional

grid (SOM clustering) enabled us to explore the relationship and
ultimately the function of these microRNAs. Hierarchical clustering
(Fig. 2B) was also utilized (subdivide gene expression in similar vs dif-
ferent clusters) to identify significantly enriched functional categories.
This is useful for unknown genes in the same cluster to enable us to
infer a functional role. Two distinctive SOM clusters were identified
and assigned to “Long Survival” and “Short Survival” based on the fol-
lowing criteria; 1) P < 0.05 differentially expressed, 2) Fold change
>1.5 and 3) correlation with enriched pathway based on predicted tar-
gets. We focused on 2 clusters, cluster 1 and cluster 11, as they showed
distinct expression differences between long and short survival (Fig. 2A,
Table 1).

Predicted target genes of microRNAs in the “Long Survival” and
“Short Survival” clusters were extracted from miRDB [6] (Version 6.0,
release date: August 2014) and starBase Version 2.0 [7]. Within
starBase, predicted targets were extracted based on intersections with
TargetScan [8], picTar [9], RNA22 [10], PITA [11] and miRanda/mirSVR
[12]. This resolves some of the issues surrounding use of predicted tar-
gets from bioinformatics approaches where validation of targets leads
to an estimated false positive rate of at least 20-40% [13,14] and false
negative rates of up to 50% [15,16]. Although protocols such as HITS-
CLIP [17] or PAR-CLIP [18] are considered in starBase for determining
RISC occupancy on microRNAs, similar pitfalls still exist and we proceed
with caution. The parameters used for starBase are medium stringency
(>2CLIP-Seq experiments supported the predicted miRNA target site).

To interrogate the data further, gene ontology (GO) enrichment
analysis based on these target gene lists (Fisher's Exact test) was carried
out to detect over-represented genes and to reflect enriched biological
themes (biological process, molecular function and cellular component)
as described [3]. Pathway enrichment analysis was carried out on this
predicted target gene list to explore association of enriched regulatory
pathways with patient survival outcome. This is based on Fisher's
Exact test (P < 0.05), using the KEGG (Kyoto Encyclopedia of Genes
and Genomes) [19] Homo sapiens hg19 Build reference genome as the
background [3] as well as hg38 Build (Fig. 1). The aim was to
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Fig. 2. Visualization of microRNA microarray data. (A) SOM clustering of distinctive microRNA gene expression patterns in long vs short survival patients. (B) Hierarchical clustering
showed distinctive gene expression pattern of candidate microRNAs to reflect coordinated regulation in long vs short survival patients.

Table 1
Long survival microRNAs vs short survival microRNAs by SOM clustering analysis.

Cluster 1: short survival microRNA ~ p-Value (short vs long)  Fold-change (short vs long)  Fold-change (short vs long) (description)  Candidates microRNAs from [3]

hsa-miR-210-3p 0.0010555 4.02696 Short up vs long X
hsa-miR-93-5p 0.00111034 3.3278 Short up vs long X
hsa-miR-221-3p 0.0029257 6.45867 Short up vs long X
hsa-miR-22-3p 0.00472295 1.61837 Short up vs long
hsa-miR-151-5p 0.00943964 2.21248 Short up vs long
hsa-miR-20a-5p 0.0102997 2.39401 Short up vs long X
hsa-miR-92a-3p 0.0141019 1.69546 Short up vs long X
hsa-miR-30e-5p 0.0196756 3.32221 Short up vs long X
hsa-miR-146b-5p 0.021048 2.52768 Short up vs long
hsa-miR-17-5p 0.0219565 3.21235 Short up vs long X
hsa-miR-20b-5p 0.0256082 6.73325 Short up vs long
hsa-miR-27b-3p 0.0295604 1.71494 Short up vs long
hsa-miR-30c-5p 0.0319141 2.51445 Short up vs long
hsa-miR-374a-5p 0.0386754 9.82208 Short up vs long
hsa-miR-95-3p 0.046397 11.7385 Short up vs long

Cluster 11: long survival microRNA  p-Value(short vs long) Fold-change (short vs long)  Fold-change (short vs long) (description)

hsa-miR-671-5p 0.00122393 —2.28734 Short down vs long
hsa-miR-188-5p 0.00362187 —1.97211 Short down vs long
hsa-miR-1469 0.00424181 —3.8781 Short down vs long X
hsa-miR-654-5p 0.00460829 —12.2823 Short down vs long
hsa-miR-622 0.00508603 —1.974 Short down vs long
hsa-miR-662 0.00675084 —7.14828 Short down vs long X
hsa-miR-1471 0.00688436 —3.04317 Short down vs long
hsa-miR-1183 0.00831059 —1.9464 Short down vs long
hsa-miR-431-5p 0.0100513 —5.19376 Short down vs long
hsa-miR-370-3p 0.0111777 —2.9025 Short down vs long
hsa-miR-345-5p 0.0122815 —6.13592 Short down vs long
hsa-miR-483-5p 0.012858 —1.80356 Short down vs long
hsa-miR-877-3p 0.0233915 —1.64644 Short down vs long
hsa-miR-1225-5p 0.025947 —1.56253 Short down vs long

hsa-miR-30c-1-3p 0.0262453 —4.46393 Short down vs long
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characterize and compare the biological pathways best represented in
both series. The higher the enrichment score the more enriched the
genes are within a specific pathway (Table 2).

As shown from alternate data processing (Fig. 1) and discovery pro-
cesses (Fig. 2), the results from these additional analyses support the ro-
bustness of miR-Score outlined in Kirschner et al. [3]. In the first
instance, the directionality of fold change of the candidate microRNAs
agrees (Table 1) where gene expression of hsa-miR-21-5p, hsa-miR-
221-3p and members of the hsa-miR-17-92 cluster (hsa-miR-17-5p,
hsa-miR-20a-5p) were higher in short survivors [3]. Furthermore,
these microRNAs have been shown by others to be involved in PTEN
regulation and modulate the PI3K/Akt signaling pathway [20,21]. For vi-
sualization purposes, we compared genes targeted by these candidate
microRNAs from pathways that have been found to be associated with
cancer progression, tumor architecture and drug resistance [22,23],
i.e., PI3K/Akt signaling, hippo signaling and focal adhesion pathways
(Fig. 3, Table 3). All of which have been implicated in mesothelioma
biology [24].

2.3. Utilizing microRNA-based regulation to exert a systems effect

Of note, visualizing expression of microRNA and its targets within a
pathway and identifying commonalities between these pathways
(Fig. 3) enable further exploration, especially in terms of designing
microRNA therapeutic targets [25]. Complex disease conditions such
as heart failure and cancer are increasingly being recognized as the re-
sult of multiple dysfunctional pathways. Hence it is essential to change
our approach towards disease treatment and develop new therapeutic
strategies that seek to correct the overall network of pathways that
has been distorted. At a systems level, the aim of either rescuing defec-
tive genes within a beneficial pathway and/or shutting down patholog-
ical gene(s) upstream of a regulatory cascade becomes clearer using this
type of visualization approach [26-28]. For example, CCND2, a target of
hsa-miR-17-5p, appears to be common to the three enriched pathways
mentioned above. Inhibiting CCND2 expression via hsa-miR-17-5p
would thus modulate all three pathways and would have the potential
to reduce tumor growth. According to starBase [7], CCND2 is also a
target of hsa-miR-15/16 and thus can potentially be targeted by
TargomiRs, a novel microRNA-based treatment approach for MPM
using microRNA-loaded EGFR antibody-targeted minicells (EDV
™nanocells) [29]. In KEGG [19], CCND2 is shown to be deeply
entrenched in cell cycle progression, anti-apoptosis and pro-prolifera-
tion processes. Furthermore, in the case where gene expression of
hsa-miR-21-5p, hsa-miR-221-3p, hsa-miR-17-5p and hsa-miR-20a-5p
is higher in short survivors, an anti-microRNA approach [27] would be
appropriate to restore the suppressed beneficial pathways.

In contrast, where down-regulated microRNAs are associated with a
disease condition, a re-introduction of these microRNAs can be utilized
to exert a systems effect in order to ameliorate dysregulated pathways.
For example, in MPM, miR-16, miR-15a and miR-15b mimics were ob-
served to have tumor suppressing properties [30] and subsequently a

Table 2

Hippo Signaling

4
2 4 1
PPP1CB, YWHAG
PPP1CC [
1
CCND2
2 6
. AKT3, ITGAS, COL1A1,
ITGB8 4

Focal Adhesion PI3K/Akt Signaling

Fig. 3. Venn diagram showing common gene targets within hippo signaling, PI3K/Akt
signaling and focal adhesion pathways. The number denotes number of gene targets
(extracted from starBase v2.0) in common with a specific pathway. For example, CCND2,
target of hsa-miR-17-5p appears to be a common target to these three enriched
pathways. At a systems level, design of microRNA-based therapeutic agents can then be
deduced to either rescuing defective genes within a beneficial pathway and/or shutting
down pathological gene(s) upstream of a regulatory cascade. For example; 1) YWHAG
(hsa-miR-222-3p) and CCND2 (hsa-miR-17-5p) are two genes that can be targeted to
modulate gene expression in both PI3K/Akt signaling and hippo signaling pathways; 2)
CCND2, AKT3, ITGA5, COL1A1 and ITGB8 can be targeted to affect PI3K/Akt signaling and
focal adhesion pathways and 3) CCND2, PPP1CB and PPP1CC can be targeted by hsa-miR-
17-5p, hsa-miR-23a-3p and hsa-miR-27a-3p respectively to modulate hippo signaling
and focal adhesion pathways.

mimic based on the consensus sequence of the miR-15 family has
shown signs of activity in a phase 1 clinical trial in MPM patients [29].
The assumption here is that detrimental pathways were rescued ge-
nome-wide. In comparison, a common seed-like sequence designed to
exert microRNA-like regulation at 3’UTR region of unrelated genes
[31,32] can also have a systems effect.

Using the Molecular Signatures Database (MSigDB, now v5.1 [33]) to
apply Gene Set Enrichment Analysis (GSEA) to differentially expressed
genes from four MPM gene expression datasets, enabled us to identify
enriched microRNA binding motifs that can be translated into potential
druggable targets for MPM [34]. Here, GSEA on the twenty genes
(Table 3) extracted from the enriched pathways revealed promoter re-
gions (—2 kb, 2 kb) around transcription start sites containing enriched
binding motifs for transcriptional factors; MAZ (GGGAGGRR), PAX4
(GGGTGGRR), AP1 (TGANTCA) and FOX04 (TTGTTT). All of which are
implicated in MPM biology [35-37]. Using ChIPBase database (curated

Pathway enrichment analysis of predicted targets of short vs long candidate microRNAs (enriched P < 0.001, extracted from starBase: http://starbase.sysu.edu.cn).

Pathway name Enrichment score

Enrichment p-Value

# genes in list, in pathway Pathway ID

Vasopressin-regulated water reabsorption 7.88895 0.000374863 5 kegg_pathway_57
Hippo signaling pathway 6.25988 0.00191147 8 kegg_pathway_96
Pancreatic cancer 5.794 0.00304576 6 kegg_pathway_249
Vascular smooth muscle contraction 5.71464 0.00329734 7 kegg_pathway_118
Chronic myeloid leukemia 5.57127 0.00380564 6 kegg pathway_69
Hepatitis B 5.50279 0.00407539 8 kegg pathway_89
Focal adhesion 5.47739 0.00418024 9 kegg_pathway_188
Dilated cardiomyopathy 5.46448 0.00423454 6 kegg_pathway_263
Regulation of actin cytoskeleton 5.43195 0.00437454 9 kegg pathway_139
PI3K-Akt signaling pathway 5.03748 0.00649008 12 kegg_pathway_262
Shigellosis 4.84404 0.00787516 5 kegg_pathway_82
HTLV-I infection 4.74205 0.00872078 10 kegg pathway_190
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Table 3

Gene targets of candidate microRNAs from PI3K/Akt signaling, hippo signaling and focal adhesion pathways (enriched P < 0.001, extracted from starBase: http://starbase.sysu.edu.cn).

PI3K-Akt signaling pathway

Gene targets  RefSeq/Gene name

microRNA Position

COL1A1 NM_000088//collagen, type I, alpha 1

ITGB8 NM_002214//integrin, beta 8

RBL2 NM_005611//retinoblastoma-like 2

CCND2 NM_001759//cyclin D2

CDKN1A NM_000389//cyclin-dependent kinase inhibitor 1A (p21, Cip1)

JAK1 NM_002227//Janus kinase 1

EFNA3 NM_004952//ephrin-A3

YWHAG NM_012479//tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein gamma
ITGAS NM_002205//integrin, alpha 5 (fibronectin receptor, alpha polypeptide)

CSF1 NM_000757//colony stimulating factor 1 (macrophage)

KITLG NM_000899//KIT ligand

AKT3 NM_001206729//v-akt murine thymoma viral oncogene homolog 3

Hippo signaling pathway

GDF6 NM_001001557//growth differentiation factor 6

TGFBR1 NM_001130916//transforming growth factor, beta receptor 1

CCND2 NM_001759//cyclin D2

FRMD6 NM_001042481//FERM domain containing 6

TGFBR2 NM_001024847//transforming growth factor, beta receptor Il (70/80 kDa)

YWHAG NM_012479//tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein gamma
PPP1CB NM_002709//protein phosphatase 1, catalytic subunit, beta isozyme

PPP1CC NM_002710//protein phosphatase 1, catalytic subunit, gamma isozyme

Focal adhesion

COL1A1 NM_000088//collagen, type I, alpha 1

ITGB8 NM_002214//integrin, beta 8

MAPK9 NM_002752//mitogen-activated protein kinase 9

CCND2 NM_001759//cyclin D2

PPP1CB NM_002709//protein phosphatase 1, catalytic subunit, beta isozyme
ITGA5 NM_002205//integrin, alpha 5 (fibronectin receptor, alpha polypeptide)
PPP1CC NM_002710//protein phosphatase 1, catalytic subunit, gamma isozyme
VCL NM_003373//vinculin

AKT3 NM_001206729//v-akt murine thymoma viral oncogene homolog 3

hsa-let-7i-5p
hsa-miR-106b-5p
hsa-miR-106b-5p
hsa-miR-17-5p
hsa-miR-17-5p
hsa-miR-17-5p
hsa-miR-210-3p
hsa-miR-222-3p
hsa-miR-25-3p
hsa-miR-27a-3p
hsa-miR-27a-3p
hsa-miR-93-5p

chr17:48262068-48262074| |
chr7:20449851-20449858[ + |
chr16:53524846-53524853[ + ]
chr12:4410143-4410149[ + ]
chr6:36654725-36654731( +]
chr1:65298950-65298956] — |
chr1:155059817-155059823[ +]
chr7:75956151-75956157[ — ]
chr12:54789081-54789088[ |
chr1:110472264-110472271[+]
chr12:88890807-88890814[ ]
chr1:243667403-243667409] — |

hsa-let-7i-5p
hsa-let-7i-5p
hsa-miR-17-5p
hsa-miR-20a-5p
hsa-miR-21-5p
hsa-miR-222-3p
hsa-miR-23a-3p
hsa-miR-27a-3p

chr8:97154690-97154697[ —]
chr9:101911662-101911669[ +]
chr12:4410143-4410149[ +]
chr14:52194908-52194915[ +]
chr3:30733297-30733303[ +]
chr7:75956151-75956157[ —]
chr2:29022976-29022982[ +]
chr12:111158440-111158447[—]

hsa-let-7i-5p
hsa-miR-106b-5p
hsa-miR-106b-5p
hsa-miR-17-5p
hsa-miR-23a-3p
hsa-miR-25-3p
hsa-miR-27a-3p
hsa-miR-34a-5p
hsa-miR-93-5p

chr17:48262068-48262074[ |
chr7:20449851-20449858[ + |
chr5:179663017-179663023[— |
chr12:4410143-4410149[ +]
chr2:29022976-29022982[ + ]
chr12:54789081-54789088[ |
chr12:111158440-111158447[ — |
chr10:75878809-75878815[ + ]
chr1:243667403-243667409] — |

ChIP-seq (Chromatin immunoprecipitation [ChIP] with massive parallel
DNA sequencing data) [38], we characterized further how these tran-
scriptional factors interact with candidate microRNAs in the MPM sys-
tem. Here, we found that Jun./AP1 binds to the promoter region
(defined by ChIPBase as 5 kb upstream and 1 kb downstream) of the
following microRNAs: hsa-miR-30c-1, hsa-miR-30e, hsa-miR-20a, hsa-
miR-19a, hsa-miR-19b-1, hsa-miR-17, hsa-miR-18a, hsa-miR-92a-1,
hsa-miR-93, hsa-miR-106b, hsa-miR-25, hsa-miR-210 and hsa-miR-
95. This analysis implicated that targets of the microRNAs identified in
our miR-Score study have the capacity to regulate other microRNAs
(see Ooi et al. [28] for in-depth discussion on microRNA-transcriptional
factor-microRNA interactions in a cardiovascular disease model [28]).
Thus, the approach to identify enriched binding motifs and biological
themes has merit in prioritizing genes for downstream validation, espe-
cially towards developing therapeutic agents. The complexity of the
microRNA-transcriptional factor interactions is inferred here and we
continue to utilize these approaches in our investigation into mesothe-
lioma pathology.
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