Abstract
Increased global demand for adequate protein nutrition against a backdrop of climate change and concern for animal agriculture sustainability necessitates new and more efficient approaches to livestock growth and production. Anabolic growth is achieved when rates of new synthesis exceed turnover, producing a positive net protein balance. Conversely, deterioration or atrophy of lean mass is a consequence of a net negative protein balance. During early life and periods of growth, muscle mass is driven by increases in protein synthesis at the level of mRNA translation. Throughout life, muscle mass is further influenced by degradative processes such as autophagy and the ubiquitin proteasome pathway. Multiple signal transduction networks guide and coordinate these processes alongside quality control mechanisms to maintain protein homeostasis (proteostasis). Genetics, hormones and environmental stimuli each influence proteostasis control, altering capacity and/or efficiency of muscle growth. An overview of recent findings and current methods to assess muscle protein balance and proteostasis is presented. Current efforts to identify novel control points have the potential through selective breeding design or development of hormetic strategies to better promote growth and health span during environmental stress.
Keywords: proteostasis, muscle protein synthesis, mRNA translation, muscle protein degradation, proteolysis
1. Introduction
Worldwide population growth has increased global demand for adequate protein nutrition [1]. Novel strategies to increase meat production are needed while minimizing the adverse effects on the environment [2]. Genetic approaches to increase production of animal products through selective breeding are successful but also result in economic, environmental and ethical complications [3,4]. Overall, efforts to meet the world’s protein needs against a back drop of environmental stress (i.e., physical, chemical and biological constraints on the productivity of the species [5]) are creating greater pressures on animal agriculture than ever before. For these reasons, a greater understanding of the fundamental control points in determining muscle protein balance is relevant to animal agriculture sustainability.
Over the past two decades, advances in genomics allowed for selective breeding to be more informed and thus targeted. Recent developments in technology have further bolstered if not replaced the genomic age with an age of proteomics and metabolomics. These technologies allow for even more sophisticated questions to be asked, moving the field from monitoring genotype to phenotype [6]. A deeper understanding of the phenotypic mechanisms that regulate muscle mass will in turn provide new insight about how to best address environmental challenges to animal growth and improve overall health of livestock. With the above in mind, the following perspective was crafted to provide a basic overview of recent advances in the study of skeletal muscle protein balance in vivo. This information is aimed to inform the fields of domestic and livestock animal production about ways to better monitor or alter capacity and efficiency of growth, with an emphasis on skeletal muscle.
2. Evolution of methodology in assessing protein balance
A table summarizing past, current and emerging technologies to evaluate skeletal muscle protein synthesis and turnover in animals are found in Table 1. Nitrogen balance has traditionally served as a surrogate marker to assess whole body protein balance and growth [7,8]. Subtracting nitrogen intake from output produces a value which reflects growth (>0), maintenance (=0) or atrophy (<0). While this measure remains the fundamental basis for determining dietary protein requirements in mammals, this technique reflects whole body and not skeletal muscle specifically. MPS capacity can be reflected by the RNA to protein ratio, a classic measurement in skeletal muscle [9–11]. While still in use today, most research settings use instead a variety of techniques that measure the rate of skeletal muscle protein synthesis (MPS) and turnover more directly. These methods use an assortment of metabolic compounds and labeling techniques in combination with highly sensitive and specialized instruments to calculate rates of MPS and/or muscle protein breakdown (MPB) or simply visualize the expression of one or more individual proteins as biomarkers of muscle growth. To estimate global rates of MPS or MPB, the incorporation and/or flux of an injected or infused metabolic tracer (i.e., radioactive or stable amino acid isotope mixed with an unlabeled amino acid or tracee) is measured into and/or out of muscle tissues over a relatively short and defined period of time [12–16]. Analyses of precursor and product tracer/tracee enrichment involve sophisticated methods of chromatography and mass spectrometry and in some cases complex tracer kinetic calculations [17]. MPS measurements over longer periods of time (d or wk) can be accomplished by ingestion of deuterium oxide (heavy water) [18,19]. This method allows for calculation of DNA synthesis in addition to MPS and turnover [20]. Metabolic tracer approaches are very useful in generating tissue averages, changes over short periods of time, assessing muscle fiber-type differences and detecting changes within subcellular organelles (e.g., mitochondrial protein synthesis) [21,22]. Synthesis rates of individual proteins can also be assessed [23,24].
Table 1.
Common and emerging technologies to assess muscle protein balance in domestic animals and livestock.
Method | Applications | Strengths | Limitations | Refs |
---|---|---|---|---|
| ||||
Nitrogen Balance | Whole body protein balance and growth | Simple, sensitive, noninvasive | Cannot assess muscle-specific effects; difficult to measure losses precisely | [7,8] |
RNA/protein ratio | Estimates protein synthesis capacity | Simple, inexpensive | Crude | [9–11] |
Amino acid isotope tracer kinetics | Whole body protein synthesis and breakdown, Tissue and fiber-type-specific protein synthesis and breakdown, individual protein synthesis and breakdown | Sensitive, can assess change over short time frames | May not capture proteins with longer half-lives; cannot assess free-living environments | [12–17,21,22,24,29] |
Deuterium oxide/heavy water enrichment | Protein synthesis, protein breakdown and DNA synthesis in whole body, skeletal muscle, specific fiber-types and individual proteins | Can assess free living conditions over extended periods of time | Isotope expense, sophisticated equipment and calculations required | [18–20,23] |
Two-dimensional electrophoresis | Differential expression of specific tissue proteins using mass spectrometry | Can visualize modifications affecting protein activity in addition to changes in expression | Protein identification is often targeted versus global | [10] |
SUnSET - non-isotopic immunodetection of puromycin | Skeletal muscle protein synthesis (whole tissue and fiber-type) | Simple, inexpensive snapshot of nascent MPS | Qualitative, puromycin dose may inhibit protein synthesis in other tissues; cannot assess breakdown | [25,26] |
PUNCH-P - puromycin-associated nascent chain proteomics | Genome-wide identification and quantification of protein synthesis in tissues | Ex vivo, relatively simple, less expensive than Ribo-Seq | Qualitative, sophisticated equipment required; cannot assess breakdown | [27,28] |
Ribosomal profiling | Tissue-specific global quantification of mRNA translation | Ex vivo, global snapshot of both translated and untranslated mRNAs | Conducting gene expression across polysome fractions is time consuming and expensive; cannot assess breakdown | [30,35] |
Ribo-Seq | Global quantification of the average ribosome density on mRNA | Ex vivo, comprehensive evaluation of nascent mRNA translation | Expensive; technology not yet optimized for use in animal tissues; unable to reveal the proportion of untranslated mRNA relative to polysome bound mRNA; cannot assess breakdown | [31–34] |
Applications that rely on antibody-based detection methods such as immunoblotting, immunofluorescence, and flow cytometry are commonly used to visualize protein expression and provide a qualitative measure of the proteome. The tagging of newly synthesized proteins with puromycin is a more recent method being used to estimate new protein synthesis in muscle [25,26]. Another approach uses biotinylated puromycin to label newly synthesized proteins in cell-free conditions, followed by proteomic analysis to generate a snapshot of the translatome [27,28]. These protein tagging approaches to assess the proteome are faster and easier than two-dimensional gel electrophoresis methods to assess the proteome [10,29].
The use of whole genome sequencing is now emerging as a powerful approach to assess the translatome [30]. Genome-wide analyses of mRNA expression by microarray or RNA sequencing is now being applied to monitor in vivo mRNA translation. One of these approaches is called ribosomal profiling or Ribo-Seq. This method conducts deep sequencing of ribosome-protected RNA fragments to determine which mRNAs are being actively translated at a specific point in time [31–34]. A related approach to examine gene-specific translation involves whole genome sequencing of mRNA bound to varying numbers of polysomes separated via density gradient centrifugation [35]. The technology and instrumentation behind many of these high-throughput systems-based methods are advancing at a pace that precludes independent validation against other more traditional measures of growth. Furthermore, the value of next-generation sequencing data requires bioinformatics pipelines that are not only fast, accurate and easy to use but also take into account animal to animal variability and complex experimental designs. As such, the usefulness of these findings as a phenotypic measure or accurate reflection of animal physiology is uncertain. Nevertheless, there is great potential for these emerging technologies to improve assessment of protein balance and meat quality in livestock as the cost of conducting genome-wide sequencing becomes more affordable and bioinformatics pipelines become more widely accessible and applicable to animal physiology [33,36,37].
3. The proteostasis network in skeletal muscle
Skeletal muscle mass is regulated by dynamic control of the processes of protein synthesis and degradation in combination with systems in place to manage folding, trafficking and clearance. In this regard, protein balance does not function as a binary operation akin to a balance scale (i.e., synthesis or degradation) but instead is a summation of multiple processes that operate according to highly interconnected signaling networks. These signaling networks coordinate quality control mechanisms to maintain protein homeostasis, or proteostasis [38]. Proteostasis control is complex and dynamic, manifesting phenotypic outcomes over months or years. In this regard, visualizing proteostasis as gears to a clock mechanism is an effective analogy [39]. Each step or process in the making and degrading of a protein impacts the function of the entire mechanism. External pressure on the network can alter the pace of the mechanism (i.e., aging) or result in its collapse (i.e., cellular damage or disease). The proteostasis network is a subject of intense study in humans, aimed toward discovering new approaches to delay aging and prevent disease [40]. Proteostasis control concepts are relevant throughout lifespan of domestic animals, even in rapid growth states, particularly under conditions of environmental stress (e.g., changes in temperature, humidity, nutrition), where growth among breeds or species can differ [41]. A greater understanding of how proteostasis is regulated in the different muscle fiber types in each species will help shape future genetic, hormonal and environmental approaches to maximize muscle growth and animal production. It will also help understand differences in meat quantity between breeds, provide novel targets that have efficient growth potential through selective breeding design or perhaps assist in the development of novel in vitro strategies to produce meat [2,42].
4. Muscle protein synthesis is controlled at the level of mRNA translation
Studies in rodents and pigs show that postnatal skeletal muscle growth occurs via increases in MPS that are controlled at the initiation step of mRNA translation [43,44]. Two events in translation initiation are identified as contributing factors in the regulation of muscle mass: 1) the creation of a ternary initiation complex, which consists of methionyl tRNA, eukaryotic initiation factor 2 (eIF2) and GTP; and 2) formation of the eIF4 ribosomal complex. Both of these cellular events are regulated by phosphorylation of specific eIFs which can be monitored using immunoblotting techniques and then used as biomarkers of MPS in response to environmental factors. Among various environmental factors, nutritional factors are of primary importance. Feeding increases MPS, via enhanced formation of the eIF4 complex [45,46] whereas fasting and low protein reduces MPS in concert with reduced eIF4 formation [47]. Stimulation of MPS by feeding is developmentally regulated, with the capacity of the translational machinery reducing with age [43]. Furthermore, recent evidence points to bolus feeding as more effective in stimulating MPS than continuous feeding in neonates [48]. Catabolic stimuli such as infection, inflammation, disuse and aging blunt or block feeding-induced stimulations in MPS at the level of translation initiation and correspond with reductions in the formation of the ternary initiation complex and/or the eIF4 complex [49–51].
Among nutritional strategies examined in recent years, dietary amino acid supply and composition have been a focus [52]. Some of this work began with the seminal observations that the branched chain amino acids and especially leucine stimulated MPS independent of insulin or energy intake [53,54]. More recent efforts have further identified a potentially important role for the leucine metabolite, beta-hydroxy-beta-methylbutyrate [55–57]. Other related research efforts have studied the impact of dose and timing of amino acid intake on maximizing MPS over time, particularly in relation to physical activity and aging [58–61]. The logic behind these studies is clear: maximize MPS with each meal and over time muscle mass will increase. Many examples are to be found in the literature showing impressive increases in MPS in response to feeding protein or leucine more frequently and/or in greater amounts [58,62]. Nonetheless, long term studies examining the impact of protein or amino acid supplementation on lean mass gains are inconsistent or equivocal [63,64] with significant differences between breeds and among phases of growth evident [65,66]. Thus, it is difficult to assign a single conclusion about the effect of supplementing dietary protein or specific amino acids on skeletal muscle growth; sometimes a reduction rather than an increase in dietary protein or amino acids improves quality of finished product [67]. The use of dietary protein and amino acids must therefore be utilized according to the biological goal in mind alongside an appreciation for the underlying genetic and hormonal background.
5. Protein degradation pathways regulate muscle mass
Skeletal muscle cell mass is influenced by protein turnover/degradation in all phases of life. Enhanced degradation not only reduces muscle mass but also alters muscle fiber type composition [68]. Fasting, glucocorticoids, sepsis and aging shifts fast (Type II) fiber types to slow (Type I) while inactivity and denervation causes a slow to fast fiber type shift [68]. How the different proteolytic systems regulate the capacity and efficiency of growth in the different muscle fiber types, particularly during environmental stress, are important research questions without clearly defined answers. The difficulty in answering these questions lies in the complexity of proteolysis. The stability or half-life of any single protein is modulated by the activity of assorted, overlapping degradative systems in the body. The main proteolytic processes influencing skeletal muscle mass are the 1) autophagy lysosomal system, 2) ubiquitin proteasome pathway, 3) calcium-dependent calpains and 4) cysteine protease caspase enzyme cascade (for recent review see [69]). The relative contribution of these processes in determining muscle mass fluctuates according to genetics, life stage, hormones and environmental stimuli. Furthermore, these catabolic processes interact through associated quality-control signaling networks and gene expression events that modulate one another [70]. As such, a deeper understanding of the regulatory processes guiding activation of each of these modes of proteolysis is a subject of intense investigation.
The two most influential cellular processes in muscle protein turnover and especially during muscle wasting are the autophagy lysosomal system and ubiquitin proteasome pathway [71]. The autophagy lysosomal system is well-recognized for its important role in conducting bulk degradation and recycling of cellular material and organelles. Recent descriptions of the different types or forms of autophagy relevant to muscle metabolism and mass are published [69,72–77] and include microautophagy, macroautophagy, and chaperone mediated autophagy. Microautophagy describes direct engulfment of small portion of cellular material (e.g., glycogen) into the lysosome; its contribution to normal skeletal muscle metabolism is not well-defined. On the other hand, macroautophagy is recognized as a major regulator of muscle mass and activation of macroautophagy corresponds with muscle atrophy. During macroautophagy, the process of “self-eating” occurs through highly-regulated expansion of a double-membraned vesicle that encapsulates cytoplasmic material. Concomitant maturation and closure of the membrane produces an autophagic vacuole which subsequently fuses with a lysosome. While the cellular material degraded can be nonselective, targeted forms of macroautophagy do exist and are increasingly becoming recognized as important for maintenance of muscle homeostasis. The selectivity of client substrate is also specified during chaperone-mediated autophagy (CMA). During CMA, soluble cytosolic proteins containing a targeting motif (KFERQ) are shuttled to the lysosomal surface without the need for vesicular transfer. A role for CMA in normal muscle maintenance is identified in flies, rodents and humans [72] and certain degenerative muscle disease states indicate involvement of CMA [78].
Targeted mutations in components of the autophagic machinery in the skeletal muscle of mice have revealed that macroautophagy is essential for muscle remodeling and quality-control. In particular, selective forms of macroautophagy such as mitophagy have important roles in mitochondrial function and oxidative stress defense during aging [79]. Macroautophagy is regulated by nutritional state, with fasting stimulating and feeding inhibiting biomarkers of autophagosome formation [77]. In neonatal pigs, both insulin and amino acids play a role in inhibiting macroautophagy whereas CMA is not altered [80]. It should be noted that functional assessment of autophagy is complex and some controversy surrounding valid biomarkers of autophagosome maturation exists. The reader is directed to a formal position statement describing these considerations [81].
The other important proteolytic system in skeletal muscle is the ubiquitin proteasome pathway [71]. The ubiquitin proteasome pathway accomplishes selective protein degradation via ATP hydrolysis and the tagging of client protein with a polyubiquitin chain. In a series of three cooperative catalytic reactions mediated by the E1 (ubiquitin activating), E2 (ubiquitin conjugating), and E3 (ubiquitin ligase) enzymes, four or more ubiquitin monomers are covalently attached to proteins selected for destruction by the 26S proteasome. Because E3 ligases catalyze the final and rate-limiting step of the ubiquitination cascade, research efforts have been directed toward identifying the determinants of substrate selection. However, less than half of the known E3 ligases harbor enzymatic activity by themselves; most require interaction with the proper E2 in order to correctly target substrates for degradation [82]. These E2–E3 relationships in developing or atrophying skeletal muscle are for the most part unknown.
Many catabolic conditions correspond with an increase the expression or activity of a number of E3 ligases, some which exist broadly in different cell types and others with expression exclusive to skeletal muscle [83–85]. Two muscle-specific E3 ubiquitin ligases, named Muscle RING Finger 1 (MuRF1) and Muscle Atrophy F-box (MAFbx)/Atrogin-1 are well-studied in their expression levels during various states of muscle catabolism and atrophy [84]. Other E3 ligases such as Nedd4-1, Trim32 and TRAF6 play critical roles in different models of atrophy and different stages of muscle development [71]. A full list of E3 ligases relevant to the control of muscle mass has yet to be generated, as does the identity of the E2s that pair with them. A detailed understanding of this level of control will reveal novel means to improve environmental resilience.
6. Signaling pathways coordinate muscle protein balance
Intracellular signaling events are initiated by a variety of chemical signals that reflect nutrition and hormonal status (e.g., insulin/IGF-I), energy state and activity (e.g., AMP kinase, phosphatidic acid), and other mediators of environmental stress (e.g., glucocorticoids, cytokines) (Figure 1). A key point of integration in muscle growth and development is the protein kinase B/Akt kinase [86]. The insulin/IGF-I- Akt pathway increases MPS via inhibiting glycogen synthase kinase 3β (an inhibitor of eIF2 ternary complex formation) and activating mechanistic target of rapamycin complex 1 (mTORC1) signaling [87]. Akt also reduces MPB via phosphorylation of the Forkhead box class O (FOXO) transcription factors [70,88].
Figure 1.
Signaling pathways coordinate muscle protein balance. Anabolic and catabolic stimuli are integrated through the PKB/Akt-mTORC1 signaling to regulate mechanisms that control muscle protein synthesis and breakdown.
Assembly of mTORC1, a major hub for sensing nutrients, redox and energy state, consists of the core proteins mTOR, Raptor and mLST8, and can include associated ancillary proteins such as Rag A–D, Deptor, PRAS40 and Rheb-GTP [89]. A second complex called mTORC2 is required for Akt signaling to FOXO but the role of mTORC2 in muscle growth is unclear [87] [90]. The activity of mTORC1 is controlled by its localization and assembly at or near the lysosome [91]. Increased mTORC1 lysosomal assembly and signaling corresponds with increased MPS at the translation initiation step and inhibition of autophagy whereas reduced mTORC1 assembly and signaling lowers MPS and increases autophagy. The ubiquitin proteasome pathway is not directly inhibited by mTORC1 but rather is regulated by PI3K/Akt signaling upstream of mTORC1 [86]. In general, anabolic stimuli (e.g., growth hormone, insulin/IGF-I, amino acids, testosterone, β-agonist) activates the mTORC1 signaling pathway whereas catabolic stimuli (e.g., inflammatory cytokines, glucocorticoids, myostatin, fasting, low protein) represses mTORC1 signaling [73,92,93]. Nutrients, especially the branched chain amino acids, are potent activators of mTORC1 in muscle independent of insulin/IGF-I-Akt [52,54]. Likewise growth factors can stimulate mTORC1 signaling in skeletal muscle independent of amino acid nutrition [94]. A variety of plant steroid compounds called phytoecdysteroids are found to increase protein synthesis and activate Akt signaling similarly to IGF-I in cultured myocytes [95,96]. Feeding these and other phytoecdysteroids produce an anti-obesity effect in mice [97]. Nonetheless, recent feeding trials are unable to identify an acute impact of 20-hydroxyecdysone on Akt or mTORC1 signaling in skeletal muscle [98] suggesting that phytoecdysteroids may require other factors for activity and/or regulate longer-term transcriptional changes in MPB versus signaling mechanisms that regulate MPS.
The control of gene expression through key transcription factors plays a major role in regulating muscle mass. Many of these proteins such as the FOXO family promotes muscle atrophy through increased expression of both E3 ubiquitin ligases as well as inducing autophagosome membrane components [70]. These discoveries are revealing how the ubiquitin proteasome and autophagy lysosome pathways often work together versus separate from each other. Furthermore, hormones and other growth factors can alter the activities and function of both mTORC1 and transcription factors [73,83]. For example, insulin/IGF-I treatment promotes increases Akt signaling, which promotes mTORC1 complex assembly and MPS but also inhibits MPB via reduced proteolytic gene expression under control of the FOXO transcription factors [86,87]. Myostatin treatment blocks Akt, which reduces MPS via mTORC1 complex assembly and increases MPB by activating the FOXO transcription factors [99] as well as other transcriptional regulators such as SMAD family members [100].
An emerging pathway of muscle mass control involves regulation of the Activating Transcription Factor 4 (ATF4) transcription factor [101]. Early studies in non-myofibrillar tissues characterized ATF4 as part of the integrated stress response, a signaling pathway that controls adaptation to nutrient and oxidative stress by altering gene-specific translation and the transcriptome [102,103]. Knockout and transgenic studies in rodents find that ATF4 is necessary and sufficient for muscle atrophy during fasting and aging [101,104]. Subsequently, unbiased mRNA expression signatures of muscle atrophy in combination with connectivity maps identified two natural compounds, ursolic acid and tomatidine, as small molecule inhibitors of ATF4 activity which prevent age-related loss of muscle mass [105–107]. Because these compounds are naturally occurring, the potential for their use as dietary additives is feasible. This innovative approach highlights the potential of mRNA expression signatures to discover novel regulators of protein muscle mass for use in domestic animal production [108].
7. Proteostasis meets hormesis
A loss of proteostasis control can speed up the aging process whereas enhancement of the proteostasis network extends lifespan and promotes disease resistance [40]. Current evidence suggests that dietary restriction or reductions in insulin/IGF-I signaling improves proteostasis in association with increased life span [20,109–111]. However, these life span benefits can associate with reduced fertility and/or increased development time [112,113]. The balance between adverse (reduced fecundity and growth) versus beneficial (increased resistance to environmental stress and disease) outcomes can be seen as a function of preconditioning or hormesis in which physiological outcomes are influenced by exposure level or dose [114]. Hormetic responses by definition are multi-phasic, and in certain dose ranges, both adverse and beneficial outcomes can coexist or overlap [115]. Benefits of hormesis can also be ‘off-target’, so that exposure to one type of stress can impart protection from another, different types of stress. These concepts are relevant to the study of quality versus quantity of muscle mass, not only with respect to an animal’s age and sex, but also with respect to future progeny. For example, previous work in cows suggested that during nutrient restriction, muscle protein degradation pathways were activated in pregnant cows but not their fetuses [116]. However, a recent study in rats shows that protein restriction during pregnancy limits muscle growth capacity of male progeny later in life [117] and a another study in pigs shows that feeding a high protein diet during gestation permanently alters the offspring’s genome [118]. These data highlight how adaptive responses to protein nutrition can cross generations in their influence. In addition to nutrition, climate conditions are a major influence on the development, performance and health of livestock [119] yet much remains unknown regarding the regulation of protein balance under these conditions. In an age of increased environmental pressures, these factors are important to consider in the search for novel therapeutic and prophylactic strategies to optimize if not maximize muscle growth and meat production.
Highlights.
Global demand for protein challenges animal agriculture sustainability.
A variety of sophisticated approaches to studying the translatome in muscle are revealing novel targets.
The proteostasis network in skeletal muscle imparts quality control and cytoprotection.
Signaling pathways in skeletal muscle coordinate protein synthesis and degradation to regulate protein mass.
Acknowledgments
The author gratefully acknowledges research funding from the National Institutes of Health (grant HD070487), NJ Agricultural Experimental Station and USDA NIFA Multistate (NC1184).
Footnotes
Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
References
- 1.WHO. Availability and changes in consumption of animal products. Nutrition health topics: Global and regional food consumption patterns and trends. 2015 http://www.who.int/nutrition/topics/3_foodconsumption/en/index4.html.
- 2.Post MJ. Cultured meat from stem cells: Challenges and prospects. Meat science. 2012;92:297–301. doi: 10.1016/j.meatsci.2012.04.008. [DOI] [PubMed] [Google Scholar]
- 3.Humane Society of the United States. An HSUS report: Welfare issues with selective breeding for rapid growth in broiler chickens and turkeys. :1–9. http://www.humanesociety.org/assets/pdfs/farm/welfiss_breeding_chickens_turkeys.pdf.
- 4.Bassett A. Welfare and belgian blue cattle. Animal Welfare Approved Technical Advice Fact Sheet, Animal Welfare Approved. 2009:1–8. http://animalwelfareapproved.org/wp-content/uploads/2013/07/TAFS-1-Welfare-and-Belgian-Blue-Cattle-v1.pdf.
- 5.Zuo J, Xu M, Abdullahi YA, Ma L, Zhang Z, Feng D. Constant heat stress reduces skeletal muscle protein deposition in broilers. J Sci Food Agric. 2015;95:429–436. doi: 10.1002/jsfa.6749. [DOI] [PubMed] [Google Scholar]
- 6.Boggess MV, Lippolis JD, Hurkman WJ, Fagerquist CK, Briggs SP, Gomes AV, Righetti PG, Bala K. The need for agriculture phenotyping: “Moving from genotype to phenotype”. J Proteomics. 2013;93:20–39. doi: 10.1016/j.jprot.2013.03.021. [DOI] [PubMed] [Google Scholar]
- 7.Tome D. Criteria and markers for protein quality assessment - a review. Br J Nutr. 2012;108(Suppl 2):S222–229. doi: 10.1017/S0007114512002565. [DOI] [PubMed] [Google Scholar]
- 8.Kopple JD. Uses and limitations of the balance technique. JPEN J Parenter Enteral Nutr. 1987;11:79S–85S. doi: 10.1177/014860718701100511. [DOI] [PubMed] [Google Scholar]
- 9.Millward DJ, Garlick PJ, James WP, Nnanyelugo DO, Ryatt JS. Relationship between protein synthesis and RNA content in skeletal muscle. Nature. 1973;241:204–205. doi: 10.1038/241204a0. [DOI] [PubMed] [Google Scholar]
- 10.Fu W, Duan Y, Wang S, Ni Y, Grossmann R, Zhao R. Comparative proteomic analysis of the breast muscle response to chronic corticosterone administration in broiler chickens showing long or short tonic immobility. Poult Sci. 2014;93:784–793. doi: 10.3382/ps.2013-03456. [DOI] [PubMed] [Google Scholar]
- 11.Gautsch TA, Kandl SM, Donovan SM, Layman DK. Response of the IGF-I system to prolonged undernutrition and its involvement in somatic and skeletal muscle growth retardation in rats. Growth Dev Aging. 1998;62:13–25. [PubMed] [Google Scholar]
- 12.Fiorotto ML, Sosa HA, Jr, Davis TA. In vivo measurement of muscle protein synthesis rate using the flooding dose technique. Methods Mol Biol. 2012;798:245–264. doi: 10.1007/978-1-61779-343-1_14. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Smith GI, Patterson BW, Klein SJ, Mittendorfer B. Effect of hyperinsulinaemia-hyperaminoacidaemia on leg muscle protein synthesis and breakdown: Reassessment of the two-pool arterio-venous balance model. J Physiol. 2015;593:4245–4257. doi: 10.1113/JP270774. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Holm L, Kjaer M. Measuring protein breakdown rate in individual proteins in vivo. Curr Opin Clin Nutr Metabol Care. 2010;13:526–531. doi: 10.1097/MCO.0b013e32833c3c64. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Holm L, O’Rourke B, Ebenstein D, Toth MJ, Bechshoeft R, Holstein-Rathlou NH, Kjaer M, Matthews DE. Determination of steady-state protein breakdown rate in vivo by the disappearance of protein-bound tracer-labeled amino acids: A method applicable in humans. Am J Physiol Endocrinol Metabol. 2013;304:E895–907. doi: 10.1152/ajpendo.00579.2012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Price JC, Ghaemmaghami S. Analysis of proteome dynamics in mice by isotopic labeling. Methods Mol Biol. 2014;1156:111–131. doi: 10.1007/978-1-4939-0685-7_7. [DOI] [PubMed] [Google Scholar]
- 17.Tuvdendorj D, Chinkes DL, Herndon DN, Zhang XJ, Wolfe RR. A novel stable isotope tracer method to measure muscle protein fractional breakdown rate during a physiological non-steady-state condition. Am J Physiol Endocrinol Metabol. 2013;304:E623–630. doi: 10.1152/ajpendo.00552.2012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Busch R, Kim YK, Neese RA, Schade-Serin V, Collins M, Awada M, Gardner JL, Beysen C, Marino ME, Misell LM, Hellerstein MK. Measurement of protein turnover rates by heavy water labeling of nonessential amino acids. Biochim Biophys Acta. 2006;1760:730–744. doi: 10.1016/j.bbagen.2005.12.023. [DOI] [PubMed] [Google Scholar]
- 19.Gasier HG, Fluckey JD, Previs SF. The application of 2H2O to measure skeletal muscle protein synthesis. Nutr Metab (Lond) 2010;7:31. doi: 10.1186/1743-7075-7-31. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Miller BF, Drake JC, Naylor B, Price JC, Hamilton KL. The measurement of protein synthesis for assessing proteostasis in studies of slowed aging. Ageing Res Rev. 2014;18:106–111. doi: 10.1016/j.arr.2014.09.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Burd NA, Tardif N, Rooyackers O, van Loon LJ. Optimizing the measurement of mitochondrial protein synthesis in human skeletal muscle. Appl Physiol Nutr Metabol. 2015;40:1–9. doi: 10.1139/apnm-2014-0211. [DOI] [PubMed] [Google Scholar]
- 22.Jaleel A, Short KR, Asmann YW, Klaus KA, Morse DM, Ford GC, Nair KS. In vivo measurement of synthesis rate of individual skeletal muscle mitochondrial proteins. Am J Physiol Endocrinol Metabol. 2008;295:E1255–1268. doi: 10.1152/ajpendo.90586.2008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Miller BF, Wolff CA, Peelor FF, 3rd, Shipman PD, Hamilton KL. Modeling the contribution of individual proteins to mixed skeletal muscle protein synthetic rates over increasing periods of label incorporation. J Appl Physiol (1985) 2015;118:655–661. doi: 10.1152/japplphysiol.00987.2014. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Papageorgopoulos C, Caldwell K, Schweingrubber H, Neese RA, Shackleton CH, Hellerstein M. Measuring synthesis rates of muscle creatine kinase and myosin with stable isotopes and mass spectrometry. Anal Biochem. 2002;309:1–10. doi: 10.1016/s0003-2697(02)00253-1. [DOI] [PubMed] [Google Scholar]
- 25.Goodman CA, Mabrey DM, Frey JW, Miu MH, Schmidt EK, Pierre P, Hornberger TA. Novel insights into the regulation of skeletal muscle protein synthesis as revealed by a new nonradioactive in vivo technique. FASEB J. 2011;25:1028–1039. doi: 10.1096/fj.10-168799. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Goodman CA, Hornberger TA. Measuring protein synthesis with sunset: A valid alternative to traditional techniques? Exerc Sport Sci Rev. 2013;41:107–115. doi: 10.1097/JES.0b013e3182798a95. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Aviner R, Geiger T, Elroy-Stein O. Novel proteomic approach (PUNCH-P) reveals cell cycle-specific fluctuations in mrna translation. Genes Dev. 2013;27:1834–1844. doi: 10.1101/gad.219105.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Aviner R, Geiger T, Elroy-Stein O. Genome-wide identification and quantification of protein synthesis in cultured cells and whole tissues by puromycin-associated nascent chain proteomics (PUNCH-P) Nat Protoc. 2014;9:751–760. doi: 10.1038/nprot.2014.051. [DOI] [PubMed] [Google Scholar]
- 29.Li Q. Advances in protein turnover analysis at the global level and biological insights. Mass Spectrom Rev. 2010;29:717–736. doi: 10.1002/mas.20261. [DOI] [PubMed] [Google Scholar]
- 30.Kuersten S, Radek A, Vogel C, Penalva LO. Translation regulation gets its ‘omics’ moment. Wiley Interdiscip Rev RNA. 2013;4:617–630. doi: 10.1002/wrna.1173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Ingolia NT, Brar GA, Rouskin S, McGeachy AM, Weissman JS. Genome-wide annotation and quantitation of translation by ribosome profiling. Curr Protoc Mol Biol. 2013;Chapter 4(Unit 4):18. doi: 10.1002/0471142727.mb0418s103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Gao X, Wan J, Liu B, Ma M, Shen B, Qian SB. Quantitative profiling of initiating ribosomes in vivo. Nat Methods. 2015;12:147–153. doi: 10.1038/nmeth.3208. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Jackson R, Standart N. The awesome power of ribosome profiling. RNA. 2015;21:652–654. doi: 10.1261/rna.049908.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Ingolia NT, Brar GA, Rouskin S, McGeachy AM, Weissman JS. The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nat Protoc. 2012;7:1534–1550. doi: 10.1038/nprot.2012.086. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.King HA, Gerber AP. Translatome profiling: Methods for genome-scale analysis of mRNA translation. Brief Funct Genomics. 2014 doi: 10.1093/bfgp/elu045. [DOI] [PubMed] [Google Scholar]
- 36.Jung WY, Kwon SG, Son M, Cho ES, Lee Y, Kim JH, Kim BW, Park da H, Hwang JH, Kim TW, Park HC, Park BY, Choi JS, Cho KK, Chung KH, Song YM, Kim IS, Jin SK, Kim DH, Lee SW, Lee KW, Bang WY, Kim CW. RNA-seq approach for genetic improvement of meat quality in pig and evolutionary insight into the substrate specificity of animal carbonyl reductases. PloS ONE. 2012;7:e42198. doi: 10.1371/journal.pone.0042198. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Sodhi SS, Song KD, Ghosh M, Sharma N, Lee SJ, Kim JH, Kim N, Mongre RK, Adhikari P, Kim JY, Hong SP, Oh SJ, Jeong DK. Comparative transcriptomic analysis by RNA-seq to discern differential expression of genes in liver and muscle tissues of adult berkshire and jeju native pig. Gene. 2014;546:233–242. doi: 10.1016/j.gene.2014.06.005. [DOI] [PubMed] [Google Scholar]
- 38.Morimoto RI, Cuervo AM. Proteostasis and the aging proteome in health and disease. J Gerontol A Biol Sci Med Sci. 2014;69(Suppl 1):S33–38. doi: 10.1093/gerona/glu049. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Noack J, Brambilla Pisoni G, Molinari M. Proteostasis: Bad news and good news from the endoplasmic reticulum. Swiss Med Wkly. 2014;144:w14001. doi: 10.4414/smw.2014.14001. [DOI] [PubMed] [Google Scholar]
- 40.Labbadia J, Morimoto RI. Proteostasis and longevity: When does aging really begin? F1000prime reports. 2014;6:7. doi: 10.12703/P6-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41.Rivera-Ferre MG, Aguilera JF, Nieto R. Muscle fractional protein synthesis is higher in iberian than in landrace growing pigs fed adequate or lysine-deficient diets. J Nutr. 2005;135:469–478. doi: 10.1093/jn/135.3.469. [DOI] [PubMed] [Google Scholar]
- 42.Xu YJ, Jin ML, Wang LJ, Zhang AD, Zuo B, Xu DQ, Ren ZQ, Lei MG, Mo XY, Li FE, Zheng R, Deng CY, Xiong YZ. Differential proteome analysis of porcine skeletal muscles between meishan and large white. J Anim Sci. 2009;87:2519–2527. doi: 10.2527/jas.2008-1708. [DOI] [PubMed] [Google Scholar]
- 43.Davis TA, Suryawan A, Orellana RA, Nguyen HV, Fiorotto ML. Postnatal ontogeny of skeletal muscle protein synthesis in pigs. J Anim Sci. 2008;86:E13–18. doi: 10.2527/jas.2007-0419. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.Jefferson LS, Kimball SR. Translational control of protein synthesis: Implications for understanding changes in skeletal muscle mass. Int J Sport Nutr Exer Metabol. 2001;11(Suppl):S143–149. doi: 10.1123/ijsnem.11.s1.s143. [DOI] [PubMed] [Google Scholar]
- 45.Wilson FA, Suryawan A, Orellana RA, Kimball SR, Gazzaneo MC, Nguyen HV, Fiorotto ML, Davis TA. Feeding rapidly stimulates protein synthesis in skeletal muscle of neonatal pigs by enhancing translation initiation. J Nutr. 2009;139:1873–1880. doi: 10.3945/jn.109.106781. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.Kimball SR, Jefferson LS, Nguyen HV, Suryawan A, Bush JA, Davis TA. Feeding stimulates protein synthesis in muscle and liver of neonatal pigs through an mTOR-dependent process. American journal of physiology Endocrinology and metabolism. 2000;279:E1080–1087. doi: 10.1152/ajpendo.2000.279.5.E1080. [DOI] [PubMed] [Google Scholar]
- 47.Liu Y, Li F, Kong X, Tan B, Li Y, Duan Y, Blachier F, Hu CA, Yin Y. Signaling pathways related to protein synthesis and amino acid concentration in pig skeletal muscles depend on the dietary protein level, genotype and developmental stages. PloS ONE. 2015;10:e0138277. doi: 10.1371/journal.pone.0138277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.Davis TA, Fiorotto ML, Suryawan A. Bolus vs. Continuous feeding to optimize anabolism in neonates. Curr Opin Clin Nutr Metabol Care. 2015;18:102–108. doi: 10.1097/MCO.0000000000000128. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49.Goodman CA, Mayhew DL, Hornberger TA. Recent progress toward understanding the molecular mechanisms that regulate skeletal muscle mass. Cell Signal. 2011;23:1896–1906. doi: 10.1016/j.cellsig.2011.07.013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50.Laufenberg LJ, Pruznak AM, Navaratnarajah M, Lang CH. Sepsis-induced changes in amino acid transporters and leucine signaling via mTOR in skeletal muscle. Amino Acids. 2014;46:2787–2798. doi: 10.1007/s00726-014-1836-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51.You JS, Anderson GB, Dooley MS, Hornberger TA. The role of mTOR signaling in the regulation of protein synthesis and muscle mass during immobilization in mice. Disease models & mechanisms. 2015;8:1059–1069. doi: 10.1242/dmm.019414. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.Duan Y, Li F, Li Y, Tang Y, Kong X, Feng Z, Anthony TG, Watford M, Hou Y, Wu G, Yin Y. The role of leucine and its metabolites in protein and energy metabolism. Amino Acids. 2016;48:41–51. doi: 10.1007/s00726-015-2067-1. [DOI] [PubMed] [Google Scholar]
- 53.Anthony JC, Anthony TG, Kimball SR, Jefferson LS. Signaling pathways involved in translational control of protein synthesis in skeletal muscle by leucine. J Nutr. 2001;131:856S–860S. doi: 10.1093/jn/131.3.856S. [DOI] [PubMed] [Google Scholar]
- 54.Columbus DA, Fiorotto ML, Davis TA. Leucine is a major regulator of muscle protein synthesis in neonates. Amino Acids. 2015;47:259–270. doi: 10.1007/s00726-014-1866-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 55.Qiao X, Zhang HJ, Wu SG, Yue HY, Zuo JJ, Feng DY, Qi GH. Effect of beta-hydroxy-beta-methylbutyrate calcium on growth, blood parameters, and carcass qualities of broiler chickens. Poult Sci. 2013;92:753–759. doi: 10.3382/ps.2012-02341. [DOI] [PubMed] [Google Scholar]
- 56.Wheatley SM, El-Kadi SW, Suryawan A, Boutry C, Orellana RA, Nguyen HV, Davis SR, Davis TA. Protein synthesis in skeletal muscle of neonatal pigs is enhanced by administration of beta-hydroxy-beta-methylbutyrate. Am J Physiol Endocrinol Metabol. 2014;306:E91–99. doi: 10.1152/ajpendo.00500.2013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 57.Duan Y, Li F, Li Y, Tang Y, Kong X, Feng Z, Anthony TG, Watford M, Hou Y, Wu G, Yin Y. The role of leucine and its metabolites in protein and energy metabolism. Amino Acids. 2015 doi: 10.1007/s00726-015-2067-1. [DOI] [PubMed] [Google Scholar]
- 58.Gazzaneo MC, Suryawan A, Orellana RA, Torrazza RM, El-Kadi SW, Wilson FA, Kimball SR, Srivastava N, Nguyen HV, Fiorotto ML, Davis TA. Intermittent bolus feeding has a greater stimulatory effect on protein synthesis in skeletal muscle than continuous feeding in neonatal pigs. J Nutr. 2011;141:2152–2158. doi: 10.3945/jn.111.147520. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59.Mitchell WK, Phillips BE, Williams JP, Rankin D, Lund JN, Wilkinson DJ, Smith K, Atherton PJ. The impact of delivery profile of essential amino acids upon skeletal muscle protein synthesis in older men: Clinical efficacy of pulse vs. Bolus supply. Am J Physiol Endocrinol Metabol. 2015;309:E450–457. doi: 10.1152/ajpendo.00112.2015. [DOI] [PubMed] [Google Scholar]
- 60.Pasiakos SM, McLellan TM, Lieberman HR. The effects of protein supplements on muscle mass, strength, and aerobic and anaerobic power in healthy adults: A systematic review. Sports Med. 2015;45:111–131. doi: 10.1007/s40279-014-0242-2. [DOI] [PubMed] [Google Scholar]
- 61.Layman DK, Anthony TG, Rasmussen BB, Adams SH, Lynch CJ, Brinkworth GD, Davis TA. Defining meal requirements for protein to optimize metabolic roles of amino acids. Am J Clin Nutr. 2015 doi: 10.3945/ajcn.114.084053. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 62.Arnal MA, Mosoni L, Dardevet D, Ribeyre MC, Bayle G, Prugnaud J, Patureau Mirand P. Pulse protein feeding pattern restores stimulation of muscle protein synthesis during the feeding period in old rats. J Nutr. 2002;132:1002–1008. doi: 10.1093/jn/132.5.1002. [DOI] [PubMed] [Google Scholar]
- 63.Columbus DA, Steinhoff-Wagner J, Suryawan A, Nguyen HV, Hernandez-Garcia A, Fiorotto ML, Davis TA. Impact of prolonged leucine supplementation on protein synthesis and lean growth in neonatal pigs. Am J Physiol Endocrinol Metabol. 2015;309:E601–610. doi: 10.1152/ajpendo.00089.2015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 64.Pasiakos SM, McClung JP. Supplemental dietary leucine and the skeletal muscle anabolic response to essential amino acids. Nutr Rev. 2011;69:550–557. doi: 10.1111/j.1753-4887.2011.00420.x. [DOI] [PubMed] [Google Scholar]
- 65.Goodband B, Tokach M, Dritz S, Derouchey J, Woodworth J. Practical starter pig amino acid requirements in relation to immunity, gut health and growth performance. J Anim Sci Biotechnol. 2014;5:12. doi: 10.1186/2049-1891-5-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 66.Otten C, Berk A, Muller S, Weber M, Danicke S. Influence of dietary amino acid level on chemical body composition and performance of growing-finishing boars of two sire lines. Arch Anim Nutr. 2013;67:477–491. doi: 10.1080/1745039X.2013.858896. [DOI] [PubMed] [Google Scholar]
- 67.Madeira MS, Costa P, Alfaia CM, Lopes PA, Bessa RJ, Lemos JP, Prates JA. The increased intramuscular fat promoted by dietary lysine restriction in lean but not in fatty pig genotypes improves pork sensory attributes. J Anim Sci. 2013;91:3177–3187. doi: 10.2527/jas.2012-5424. [DOI] [PubMed] [Google Scholar]
- 68.Greising SM, Gransee HM, Mantilla CB, Sieck GC. Systems biology of skeletal muscle: Fiber type as an organizing principle. Wiley Interdiscip Rev Syst Biol Med. 2012;4:457–473. doi: 10.1002/wsbm.1184. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 69.Pasiakos SM, Carbone JW. Assessment of skeletal muscle proteolysis and the regulatory response to nutrition and exercise. IUBMB Life. 2014;66:478–484. doi: 10.1002/iub.1291. [DOI] [PubMed] [Google Scholar]
- 70.Milan G, Romanello V, Pescatore F, Armani A, Paik JH, Frasson L, Seydel A, Zhao J, Abraham R, Goldberg AL, Blaauw B, DePinho RA, Sandri M. Regulation of autophagy and the ubiquitin-proteasome system by the FOXO transcriptional network during muscle atrophy. Nat Commun. 2015;6:6670. doi: 10.1038/ncomms7670. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 71.Sandri M. Protein breakdown in muscle wasting: Role of autophagy-lysosome and ubiquitin-proteasome. Int J Biochem Cell Biol. 2013;45:2121–2129. doi: 10.1016/j.biocel.2013.04.023. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 72.Arndt V, Dick N, Tawo R, Dreiseidler M, Wenzel D, Hesse M, Furst DO, Saftig P, Saint R, Fleischmann BK, Hoch M, Hohfeld J. Chaperone-assisted selective autophagy is essential for muscle maintenance. Curr Biol. 2010;20:143–148. doi: 10.1016/j.cub.2009.11.022. [DOI] [PubMed] [Google Scholar]
- 73.Bonaldo P, Sandri M. Cellular and molecular mechanisms of muscle atrophy. Dis Models Mech. 2013;6:25–39. doi: 10.1242/dmm.010389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 74.Boya P, Reggiori F, Codogno P. Emerging regulation and functions of autophagy. Nat Cell Biol. 2013;15:713–720. doi: 10.1038/ncb2788. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 75.Sanchez AM, Bernardi H, Py G, Candau RB. Autophagy is essential to support skeletal muscle plasticity in response to endurance exercise. Am J Physiol Regul Integr Comp Physiol. 2014;307:R956–969. doi: 10.1152/ajpregu.00187.2014. [DOI] [PubMed] [Google Scholar]
- 76.Vainshtein A, Grumati P, Sandri M, Bonaldo P. Skeletal muscle, autophagy, and physical activity: The menage a trois of metabolic regulation in health and disease. J Mol Med (Berl) 2014;92:127–137. doi: 10.1007/s00109-013-1096-z. [DOI] [PubMed] [Google Scholar]
- 77.Fan J, Kou X, Jia S, Yang X, Yang Y, Chen N. Autophagy as a potential target for sarcopenia. J Cell Physiol. 2015 doi: 10.1002/jcp.25260. [DOI] [PubMed] [Google Scholar]
- 78.Cacciottolo M, Nogalska A, D’Agostino C, Engel WK, Askanas V. Chaperone-mediated autophagy components are upregulated in sporadic inclusion-body myositis muscle fibres. Neuropathol Appl Neurobiol. 2013;39:750–761. doi: 10.1111/nan.12038. [DOI] [PubMed] [Google Scholar]
- 79.Leduc-Gaudet JP, Picard M, St-Jean Pelletier F, Sgarioto N, Auger MJ, Vallee J, Robitaille R, St-Pierre DH, Gouspillou G. Mitochondrial morphology is altered in atrophied skeletal muscle of aged mice. Oncotarget. 2015;6:17923–17937. doi: 10.18632/oncotarget.4235. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 80.Suryawan A, Davis TA. Regulation of protein degradation pathways by amino acids and insulin in skeletal muscle of neonatal pigs. J Anim Sci Biotechnol. 2014;5:8. doi: 10.1186/2049-1891-5-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 81.Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, Adachi H, Adams CM, Adams PD, Adeli K, Adhihetty PJ, Adler SG, Agam G, Agarwal R, Aghi MK, Agnello M, Agostinis P, Aguilar PV, Aguirre-Ghiso J, Airoldi EM, Ait-Si-Ali S, Akematsu T, Akporiaye ET, Al-Rubeai M, Albaiceta GM, Albanese C, Albani D, Albert ML, Aldudo J, Algül H, Alirezaei M, Alloza I, Almasan A, Almonte-Beceril M, Alnemri ES, Alonso C, Altan-Bonnet N, Altieri DC, Alvarez S, Alvarez-Erviti L, Alves S, Amadoro G, Amano A, Amantini C, Ambrosio S, Amelio I, Amer AO, Amessou M, Amon A, An Z, Anania FA, Andersen SU, Andley UP, Andreadi CK, Andrieu-Abadie N, Anel A, Ann DK, Anoopkumar-Dukie S, Antonioli M, Aoki H, Apostolova N, Aquila S, Aquilano K, Araki K, Arama E, Aranda A, Araya J, Arcaro A, Arias E, Arimoto H, Ariosa AR, Armstrong JL, Arnould T, Arsov I, Asanuma K, Askanas V, Asselin E, Atarashi R, Atherton SS, Atkin JD, Attardi LD, Auberger P, Auburger G, Aurelian L, Autelli R, Avagliano L, Avantaggiati ML, Avrahami L, Awale S, Azad N, Bachetti T, Backer JM, Bae DH, Bae JS, Bae ON, Bae SH, Baehrecke EH, Baek SH, Baghdiguian S, Bagniewska-Zadworna A, Bai H, Bai J, Bai XY, Bailly Y, Balaji KN, Balduini W, Ballabio A, Balzan R, Banerjee R, Bánhegyi G, Bao H, Barbeau B, Barrachina MD, Barreiro E, Bartel B, Bartolomé A, Bassham DC, Bassi MT, Bast RC, Jr, Basu A, Batista MT, Batoko H, Battino M, Bauckman K, Baumgarner BL, Bayer KU, Beale R, Beaulieu JF, Beck GR, Jr, Becker C, Beckham JD, Bédard PA, Bednarski PJ, Begley TJ, Behl C, Behrends C, Behrens GM, Behrns KE, Bejarano E, Belaid A, Belleudi F, Bénard G, Berchem G, Bergamaschi D, Bergami M, Berkhout B, Berliocchi L, Bernard A, Bernard M, Bernassola F, Bertolotti A, Bess AS, Besteiro S, Bettuzzi S, Bhalla S, Bhattacharyya S, Bhutia SK, Biagosch C, Bianchi MW, Biard-Piechaczyk M, Billes V, Bincoletto C, Bingol B, Bird SW, Bitoun M, Bjedov I, Blackstone C, Blanc L, Blanco GA, Blomhoff HK, Boada-Romero E, Böckler S, Boes M, Boesze-Battaglia K, Boise LH, Bolino A, Boman A, Bonaldo P, Bordi M, Bosch J, Botana LM, Botti J, Bou G, Bouché M, Bouchecareilh M, Boucher MJ, Boulton ME, Bouret SG, Boya P, Boyer-Guittaut M, Bozhkov PV, Brady N, Braga VM, Brancolini C, Braus GH, Bravo-San Pedro JM, Brennan LA, Bresnick EH, Brest P, Bridges D, Bringer MA, Brini M, Brito GC, Brodin B, Brookes PS, Brown EJ, Brown K, Broxmeyer HE, Bruhat A, Brum PC, Brumell JH, Brunetti-Pierri N, Bryson-Richardson RJ, Buch S, Buchan AM, Budak H, Bulavin DV, Bultman SJ, Bultynck G, Bumbasirevic V, Burelle Y, Burke RE, Burmeister M, Bütikofer P, Caberlotto L, Cadwell K, Cahova M, Cai D, Cai J, Cai Q, Calatayud S, Camougrand N, Campanella M, Campbell GR, Campbell M, Campello S, Candau R, Caniggia I, Cantoni L, Cao L, Caplan AB, Caraglia M, Cardinali C, Cardoso SM, Carew JS, Carleton LA, Carlin CR, Carloni S, Carlsson SR, Carmona-Gutierrez D, Carneiro LA, Carnevali O, Carra S, Carrier A, Carroll B, Casas C, Casas J, Cassinelli G, Castets P, Castro-Obregon S, Cavallini G, Ceccherini I, Cecconi F, Cederbaum AI, Ceña V, Cenci S, Cerella C, Cervia D, Cetrullo S, Chaachouay H, Chae HJ, Chagin AS, Chai CY, Chakrabarti G, Chamilos G, Chan EY, Chan MT, Chandra D, Chandra P, Chang CP, Chang RC, Chang TY, Chatham JC, Chatterjee S, Chauhan S, Che Y, Cheetham ME, Cheluvappa R, Chen CJ, Chen G, Chen GC, Chen G, Chen H, Chen JW, Chen JK, Chen M, Chen M, Chen P, Chen Q, Chen Q, Chen SD, Chen S, Chen SS, Chen W, Chen WJ, Chen WQ, Chen W, Chen X, Chen YH, Chen YG, Chen Y, Chen Y, Chen Y, Chen YJ, Chen YQ, Chen Y, Chen Z, Chen Z, Cheng A, Cheng CH, Cheng H, Cheong H, Cherry S, Chesney J, Cheung CH, Chevet E, Chi HC, Chi SG, Chiacchiera F, Chiang HL, Chiarelli R, Chiariello M, Chieppa M, Chin LS, Chiong M, Chiu GN, Cho DH, Cho SG, Cho WC, Cho YY, Cho YS, Choi AM, Choi EJ, Choi EK, Choi J, Choi ME, Choi SI, Chou TF, Chouaib S, Choubey D, Choubey V, Chow KC, Chowdhury K, Chu CT, Chuang TH, Chun T, Chung H, Chung T, Chung YL, Chwae YJ, Cianfanelli V, Ciarcia R, Ciechomska IA, Ciriolo MR, Cirone M, Claerhout S, Clague MJ, Clària J, Clarke PG, Clarke R, Clementi E, Cleyrat C, Cnop M, Coccia EM, Cocco T, Codogno P, Coers J, Cohen EE, Colecchia D, Coletto L, Coll NS, Colucci-Guyon E, Comincini S, Condello M, Cook KL, Coombs GH, Cooper CD, Cooper JM, Coppens I, Corasaniti MT, Corazzari M, Corbalan R, Corcelle-Termeau E, Cordero MD, Corral-Ramos C, Corti O, Cossarizza A, Costelli P, Costes S, Cotman SL, Coto-Montes A, Cottet S, Couve E, Covey LR, Cowart LA, Cox JS, Coxon FP, Coyne CB, Cragg MS, Craven RJ, Crepaldi T, Crespo JL, Criollo A, Crippa V, Cruz MT, Cuervo AM, Cuezva JM, Cui T, Cutillas PR, Czaja MJ, Czyzyk-Krzeska MF, Dagda RK, Dahmen U, Dai C, Dai W, Dai Y, Dalby KN, Dalla Valle L, Dalmasso G, D'Amelio M, Damme M, Darfeuille-Michaud A, Dargemont C, Darley-Usmar VM, Dasarathy S, Dasgupta B, Dash S, Dass CR, Davey HM, Davids LM, Dávila D, Davis RJ, Dawson TM, Dawson VL, Daza P, de Belleroche J, de Figueiredo P, de Figueiredo RC, de la Fuente J, De Martino L, De Matteis A, De Meyer GR, De Milito A, De Santi M, de Souza W, De Tata V, De Zio D, Debnath J, Dechant R, Decuypere JP, Deegan S, Dehay B, Del Bello B, Del Re DP, Delage-Mourroux R, Delbridge LM, Deldicque L, Delorme-Axford E, Deng Y, Dengjel J, Denizot M, Dent P, Der CJ, Deretic V, Derrien B, Deutsch E, Devarenne TP, Devenish RJ, Di Bartolomeo S, Di Daniele N, Di Domenico F, Di Nardo A, Di Paola S, Di Pietro A, Di Renzo L, DiAntonio A, Díaz-Araya G, Díaz-Laviada I, Diaz-Meco MT, Diaz-Nido J, Dickey CA, Dickson RC, Diederich M, Digard P, Dikic I, Dinesh-Kumar SP, Ding C, Ding WX, Ding Z, Dini L, Distler JH, Diwan A, Djavaheri-Mergny M, Dmytruk K, Dobson RC, Doetsch V, Dokladny K, Dokudovskaya S, Donadelli M, Dong XC, Dong X, Dong Z, Donohue TM, Jr, Doran KS, D'Orazi G, Dorn GW, 2nd, Dosenko V, Dridi S, Drucker L, Du J, Du LL, Du L, du Toit A, Dua P, Duan L, Duann P, Dubey VK, Duchen MR, Duchosal MA, Duez H, Dugail I, Dumit VI, Duncan MC, Dunlop EA, Dunn WA, Jr, Dupont N, Dupuis L, Durán RV, Durcan TM, Duvezin-Caubet S, Duvvuri U, Eapen V, Ebrahimi-Fakhari D, Echard A, Eckhart L, Edelstein CL, Edinger AL, Eichinger L, Eisenberg T, Eisenberg-Lerner A, Eissa NT, El-Deiry WS, El-Khoury V, Elazar Z, Eldar-Finkelman H, Elliott CJ, Emanuele E, Emmenegger U, Engedal N, Engelbrecht AM, Engelender S, Enserink JM, Erdmann R, Erenpreisa J, Eri R, Eriksen JL, Erman A, Escalante R, Eskelinen EL, Espert L, Esteban-Martínez L, Evans TJ, Fabri M, Fabrias G, Fabrizi C, Facchiano A, Færgeman NJ, Faggioni A, Fairlie WD, Fan C, Fan D, Fan J, Fang S, Fanto M, Fanzani A, Farkas T, Faure M, Favier FB, Fearnhead H, Federici M, Fei E, Felizardo TC, Feng H, Feng Y, Feng Y, Ferguson TA, Fernández ÁF, Fernandez-Barrena MG, Fernandez-Checa JC, Fernández-López A, Fernandez-Zapico ME, Feron O, Ferraro E, Ferreira-Halder CV, Fesus L, Feuer R, Fiesel FC, Filippi-Chiela EC, Filomeni G, Fimia GM, Fingert JH, Finkbeiner S, Finkel T, Fiorito F, Fisher PB, Flajolet M, Flamigni F, Florey O, Florio S, Floto RA, Folini M, Follo C, Fon EA, Fornai F, Fortunato F, Fraldi A, Franco R, Francois A, François A, Frankel LB, Fraser ID, Frey N, Freyssenet DG, Frezza C, Friedman SL, Frigo DE, Fu D, Fuentes JM, Fueyo J, Fujitani Y, Fujiwara Y, Fujiya M, Fukuda M, Fulda S, Fusco C, Gabryel B, Gaestel M, Gailly P, Gajewska M, Galadari S, Galili G, Galindo I, Galindo MF, Galliciotti G, Galluzzi L, Galluzzi L, Galy V, Gammoh N, Gandy S, Ganesan AK, Ganesan S, Ganley IG, Gannagé M, Gao FB, Gao F, Gao JX, García Nannig L, García Véscovi E, Garcia-Macía M, Garcia-Ruiz C, Garg AD, Garg PK, Gargini R, Gassen NC, Gatica D, Gatti E, Gavard J, Gavathiotis E, Ge L, Ge P, Ge S, Gean PW, Gelmetti V, Genazzani AA, Geng J, Genschik P, Gerner L, Gestwicki JE, Gewirtz DA, Ghavami S, Ghigo E, Ghosh D, Giammarioli AM, Giampieri F, Giampietri C, Giatromanolaki A, Gibbings DJ, Gibellini L, Gibson SB, Ginet V, Giordano A, Giorgini F, Giovannetti E, Girardin SE, Gispert S, Giuliano S, Gladson CL, Glavic A, Gleave M, Godefroy N, Gogal RM, Jr, Gokulan K, Goldman GH, Goletti D, Goligorsky MS, Gomes AV, Gomes LC, Gomez H, Gomez-Manzano C, Gómez-Sánchez R, Gonçalves DA, Goncu E, Gong Q, Gongora C, Gonzalez CB, Gonzalez-Alegre P, Gonzalez-Cabo P, González-Polo RA, Goping IS, Gorbea C, Gorbunov NV, Goring DR, Gorman AM, Gorski SM, Goruppi S, Goto-Yamada S, Gotor C, Gottlieb RA, Gozes I, Gozuacik D, Graba Y, Graef M, Granato GE, Grant GD, Grant S, Gravina GL, Green DR, Greenhough A, Greenwood MT, Grimaldi B, Gros F, Grose C, Groulx JF, Gruber F, Grumati P, Grune T, Guan JL, Guan KL, Guerra B, Guillen C, Gulshan K, Gunst J, Guo C, Guo L, Guo M, Guo W, Guo XG, Gust AA, Gustafsson ÅB, Gutierrez E, Gutierrez MG, Gwak HS, Haas A, Haber JE, Hadano S, Hagedorn M, Hahn DR, Halayko AJ, Hamacher-Brady A, Hamada K, Hamai A, Hamann A, Hamasaki M, Hamer I, Hamid Q, Hammond EM, Han F, Han W, Handa JT, Hanover JA, Hansen M, Harada M, Harhaji-Trajkovic L, Harper JW, Harrath AH, Harris AL, Harris J, Hasler U, Hasselblatt P, Hasui K, Hawley RG, Hawley TS, He C, He CY, He F, He G, He RR, He XH, He YW, He YY, Heath JK, Hébert MJ, Heinzen RA, Helgason GV, Hensel M, Henske EP, Her C, Herman PK, Hernández A, Hernandez C, Hernández-Tiedra S, Hetz C, Hiesinger PR, Higaki K, Hilfiker S, Hill BG, Hill JA, Hill WD, Hino K, Hofius D, Hofman P, Höglinger GU, Höhfeld J, Holz MK, Hong Y, Hood DA, Hoozemans JJ, Hoppe T, Hsu C, Hsu CY, Hsu LC, Hu D, Hu G, Hu HM, Hu H, Hu MC, Hu YC, Hu ZW, Hua F, Hua Y, Huang C, Huang HL, Huang KH, Huang KY, Huang S, Huang S, Huang WP, Huang YR, Huang Y, Huang Y, Huber TB, Huebbe P, Huh WK, Hulmi JJ, Hur GM, Hurley JH, Husak Z, Hussain SN, Hussain S, Hwang JJ, Hwang S, Hwang TI, Ichihara A, Imai Y, Imbriano C, Inomata M, Into T, Iovane V, Iovanna JL, Iozzo RV, Ip NY, Irazoqui JE, Iribarren P, Isaka Y, Isakovic AJ, Ischiropoulos H, Isenberg JS, Ishaq M, Ishida H, Ishii I, Ishmael JE, Isidoro C, Isobe KI, Isono E, Issazadeh-Navikas S, Itahana K, Itakura E, Ivanov AI, Iyer AK, Izquierdo JM, Izumi Y, Izzo V, Jäättelä M, Jaber N, Jackson DJ, Jackson WT, Jacob TG, Jacques TS, Jagannath C, Jain A, Jana NR, Jang BK, Jani A, Janji B, Jannig PR, Jansson PJ, Jean S, Jendrach M, Jeon JH, Jessen N, Jeung EB, Jia K, Jia L, Jiang H, Jiang H, Jiang L, Jiang T, Jiang X, Jiang X, Jiang X, Jiang Y, Jiang Y, Jiménez A, Jin C, Jin H, Jin L, Jin M, Jin S, Jinwal UK, Jo EK, Johansen T, Johnson DE, Johnson GV, Johnson JD, Jonasch E, Jones C, Joosten LA, Jordan J, Joseph AM, Joseph B, Joubert AM, Ju D, Ju J, Juan HF, Juenemann K, Juhász G, Jung HS, Jung JU, Jung YK, Jungbluth H, Justice MJ, Jutten B, Kaakoush NO, Kaarniranta K, Kaasik A, Kabuta T, Kaeffer B, Kågedal K, Kahana A, Kajimura S, Kakhlon O, Kalia M, Kalvakolanu DV, Kamada Y, Kambas K, Kaminskyy VO, Kampinga HH, Kandouz M, Kang C, Kang R, Kang TC, Kanki T, Kanneganti TD, Kanno H, Kanthasamy AG, Kantorow M, Kaparakis-Liaskos M, Kapuy O, Karantza V, Karim MR, Karmakar P, Kaser A, Kaushik S, Kawula T, Kaynar AM, Ke PY, Ke ZJ, Kehrl JH, Keller KE, Kemper JK, Kenworthy AK, Kepp O, Kern A, Kesari S, Kessel D, Ketteler R, Kettelhut ID, Khambu B, Khan MM, Khandelwal VK, Khare S, Kiang JG, Kiger AA, Kihara A, Kim AL, Kim CH, Kim DR, Kim DH, Kim EK, Kim HY, Kim HR, Kim JS, Kim JH, Kim JC, Kim JH, Kim KW, Kim MD, Kim MM, Kim PK, Kim SW, Kim SY, Kim YS, Kim Y, Kimchi A, Kimmelman AC, Kimura T, King JS, Kirkegaard K, Kirkin V, Kirshenbaum LA, Kishi S, Kitajima Y, Kitamoto K, Kitaoka Y, Kitazato K, Kley RA, Klimecki WT, Klinkenberg M, Klucken J, Knævelsrud H, Knecht E, Knuppertz L, Ko JL, Kobayashi S, Koch JC, Koechlin-Ramonatxo C, Koenig U, Koh YH, Köhler K, Kohlwein SD, Koike M, Komatsu M, Kominami E, Kong D, Kong HJ, Konstantakou EG, Kopp BT, Korcsmaros T, Korhonen L, Korolchuk VI, Koshkina NV, Kou Y, Koukourakis MI, Koumenis C, Kovács AL, Kovács T, Kovacs WJ, Koya D, Kraft C, Krainc D, Kramer H, Kravic-Stevovic T, Krek W, Kretz-Remy C, Krick R, Krishnamurthy M, Kriston-Vizi J, Kroemer G, Kruer MC, Kruger R, Ktistakis NT, Kuchitsu K, Kuhn C, Kumar AP, Kumar A, Kumar A, Kumar D, Kumar D, Kumar R, Kumar S, Kundu M, Kung HJ, Kuno A, Kuo SH, Kuret J, Kurz T, Kwok T, Kwon TK, Kwon YT, Kyrmizi I, La Spada AR, Lafont F, Lahm T, Lakkaraju A, Lam T, Lamark T, Lancel S, Landowski TH, Lane DJ, Lane JD, Lanzi C, Lapaquette P, Lapierre LR, Laporte J, Laukkarinen J, Laurie GW, Lavandero S, Lavie L, LaVoie MJ, Law BY, Law HK, Law KB, Layfield R, Lazo PA, Le Cam L, Le Roch KG, Le Stunff H, Leardkamolkarn V, Lecuit M, Lee BH, Lee CH, Lee EF, Lee GM, Lee HJ, Lee H, Lee JK, Lee J, Lee JH, Lee JH, Lee M, Lee MS, Lee PJ, Lee SW, Lee SJ, Lee SJ, Lee SY, Lee SH, Lee SS, Lee SJ, Lee S, Lee YR, Lee YJ, Lee YH, Leeuwenburgh C, Lefort S, Legouis R, Lei J, Lei QY, Leib DA, Leibowitz G, Lekli I, Lemaire SD, Lemasters JJ, Lemberg MK, Lemoine A, Leng S, Lenz G, Lenzi P, Lerman LO, Lettieri Barbato D, Leu JI, Leung HY, Levine B, Lewis PA, Lezoualc'h F, Li C, Li F, Li FJ, Li J, Li K, Li L, Li M, Li M, Li Q, Li R, Li S, Li W, Li W, Li X, Li Y, Lian J, Liang C, Liang Q, Liao Y, Liberal J, Liberski PP, Lie P, Lieberman AP, Lim HJ, Lim KL, Lim K, Lima RT, Lin CS, Lin CF, Lin F, Lin F, Lin FC, Lin K, Lin KH, Lin PH, Lin T, Lin WW, Lin YS, Lin Y, Linden R, Lindholm D, Lindqvist LM, Lingor P, Linkermann A, Liotta LA, Lipinski MM, Lira VA, Lisanti MP, Liton PB, Liu B, Liu C, Liu CF, Liu F, Liu HJ, Liu J, Liu JJ, Liu JL, Liu K, Liu L, Liu L, Liu Q, Liu RY, Liu S, Liu S, Liu W, Liu XD, Liu X, Liu XH, Liu X, Liu X, Liu X, Liu Y, Liu Y, Liu Z, Liu Z, Liuzzi JP, Lizard G, Ljujic M, Lodhi IJ, Logue SE, Lokeshwar BL, Long YC, Lonial S, Loos B, López-Otín C, López-Vicario C, Lorente M, Lorenzi PL, Lõrincz P, Los M, Lotze MT, Lovat PE, Lu B, Lu B, Lu J, Lu Q, Lu SM, Lu S, Lu Y, Luciano F, Luckhart S, Lucocq JM, Ludovico P, Lugea A, Lukacs NW, Lum JJ, Lund AH, Luo H, Luo J, Luo S, Luparello C, Lyons T, Ma J, Ma Y, Ma Y, Ma Z, Machado J, Machado-Santelli GM, Macian F, MacIntosh GC, MacKeigan JP, Macleod KF, MacMicking JD, MacMillan-Crow LA, Madeo F, Madesh M, Madrigal-Matute J, Maeda A, Maeda T, Maegawa G, Maellaro E, Maes H, Magariños M, Maiese K, Maiti TK, Maiuri L, Maiuri MC, Maki CG, Malli R, Malorni W, Maloyan A, Mami-Chouaib F, Man N, Mancias JD, Mandelkow EM, Mandell MA, Manfredi AA, Manié SN, Manzoni C, Mao K, Mao Z, Mao ZW, Marambaud P, Marconi AM, Marelja Z, Marfe G, Margeta M, Margittai E, Mari M, Mariani FV, Marin C, Marinelli S, Mariño G, Markovic I, Marquez R, Martelli AM, Martens S, Martin KR, Martin SJ, Martin S, Martin-Acebes MA, Martín-Sanz P, Martinand-Mari C, Martinet W, Martinez J, Martinez-Lopez N, Martinez-Outschoorn U, Martínez-Velázquez M, Martinez-Vicente M, Martins WK, Mashima H, Mastrianni JA, Matarese G, Matarrese P, Mateo R, Matoba S, Matsumoto N, Matsushita T, Matsuura A, Matsuzawa T, Mattson MP, Matus S, Maugeri N, Mauvezin C, Mayer A, Maysinger D, Mazzolini GD, McBrayer MK, McCall K, McCormick C, McInerney GM, McIver SC, McKenna S, McMahon JJ, McNeish IA, Mechta-Grigoriou F, Medema JP, Medina DL, Megyeri K, Mehrpour M, Mehta JL, Mei Y, Meier UC, Meijer AJ, Meléndez A, Melino G, Melino S, de Melo EJ, Mena MA, Meneghini MD, Menendez JA, Menezes R, Meng L, Meng LH, Meng S, Menghini R, Menko AS, Menna-Barreto RF, Menon MB, Meraz-Ríos MA, Merla G, Merlini L, Merlot AM, Meryk A, Meschini S, Meyer JN, Mi MT, Miao CY, Micale L, Michaeli S, Michiels C, Migliaccio AR, Mihailidou AS, Mijaljica D, Mikoshiba K, Milan E, Miller-Fleming L, Mills GB, Mills IG, Minakaki G, Minassian BA, Ming XF, Minibayeva F, Minina EA, Mintern JD, Minucci S, Miranda-Vizuete A, Mitchell CH, Miyamoto S, Miyazawa K, Mizushima N, Mnich K, Mograbi B, Mohseni S, Moita LF, Molinari M, Molinari M, Møller AB, Mollereau B, Mollinedo F, Mongillo M, Monick MM, Montagnaro S, Montell C, Moore DJ, Moore MN, Mora-Rodriguez R, Moreira PI, Morel E, Morelli MB, Moreno S, Morgan MJ, Moris A, Moriyasu Y, Morrison JL, Morrison LA, Morselli E, Moscat J, Moseley PL, Mostowy S, Motori E, Mottet D, Mottram JC, Moussa CE, Mpakou VE, Mukhtar H, Mulcahy Levy JM, Muller S, Muñoz-Moreno R, Muñoz-Pinedo C, Münz C, Murphy ME, Murray JT, Murthy A, Mysorekar IU, Nabi IR, Nabissi M, Nader GA, Nagahara Y, Nagai Y, Nagata K, Nagelkerke A, Nagy P, Naidu SR, Nair S, Nakano H, Nakatogawa H, Nanjundan M, Napolitano G, Naqvi NI, Nardacci R, Narendra DP, Narita M, Nascimbeni AC, Natarajan R, Navegantes LC, Nawrocki ST, Nazarko TY, Nazarko VY, Neill T, Neri LM, Netea MG, Netea-Maier RT, Neves BM, Ney PA, Nezis IP, Nguyen HT, Nguyen HP, Nicot AS, Nilsen H, Nilsson P, Nishimura M, Nishino I, Niso-Santano M, Niu H, Nixon RA, Njar VC, Noda T, Noegel AA, Nolte EM, Norberg E, Norga KK, Noureini SK, Notomi S, Notterpek L, Nowikovsky K, Nukina N, Nürnberger T, O'Donnell VB, O'Donovan T, O'Dwyer PJ, Oehme I, Oeste CL, Ogawa M, Ogretmen B, Ogura Y, Oh YJ, Ohmuraya M, Ohshima T, Ojha R, Okamoto K, Okazaki T, Oliver FJ, Ollinger K, Olsson S, Orban DP, Ordonez P, Orhon I, Orosz L, O'Rourke EJ, Orozco H, Ortega AL, Ortona E, Osellame LD, Oshima J, Oshima S, Osiewacz HD, Otomo T, Otsu K, Ou JJ, Outeiro TF, Ouyang DY, Ouyang H, Overholtzer M, Ozbun MA, Ozdinler PH, Ozpolat B, Pacelli C, Paganetti P, Page G, Pages G, Pagnini U, Pajak B, Pak SC, Pakos-Zebrucka K, Pakpour N, Palková Z, Palladino F, Pallauf K, Pallet N, Palmieri M, Paludan SR, Palumbo C, Palumbo S, Pampliega O, Pan H, Pan W, Panaretakis T, Pandey A, Pantazopoulou A, Papackova Z, Papademetrio DL, Papassideri I, Papini A, Parajuli N, Pardo J, Parekh VV, Parenti G, Park JI, Park J, Park OK, Parker R, Parlato R, Parys JB, Parzych KR, Pasquet JM, Pasquier B, Pasumarthi KB, Patschan D, Patterson C, Pattingre S, Pattison S, Pause A, Pavenstädt H, Pavone F, Pedrozo Z, Peña FJ, Peñalva MA, Pende M, Peng J, Penna F, Penninger JM, Pensalfini A, Pepe S, Pereira GJ, Pereira PC, Pérez-de la Cruz V, Pérez-Pérez ME, Pérez-Rodríguez D, Pérez-Sala D, Perier C, Perl A, Perlmutter DH, Perrotta I, Pervaiz S, Pesonen M, Pessin JE, Peters GJ, Petersen M, Petrache I, Petrof BJ, Petrovski G, Phang JM, Piacentini M, Pierdominici M, Pierre P, Pierrefite-Carle V, Pietrocola F, Pimentel-Muiños FX, Pinar M, Pineda B, Pinkas-Kramarski R, Pinti M, Pinton P, Piperdi B, Piret JM, Platanias LC, Platta HW, Plowey ED, Pöggeler S, Poirot M, Polčic P, Poletti A, Poon AH, Popelka H, Popova B, Poprawa I, Poulose SM, Poulton J, Powers SK, Powers T, Pozuelo-Rubio M, Prak K, Prange R, Prescott M, Priault M, Prince S, Proia RL, Proikas-Cezanne T, Prokisch H, Promponas VJ, Przyklenk K, Puertollano R, Pugazhenthi S, Puglielli L, Pujol A, Puyal J, Pyeon D, Qi X, Qian WB, Qin ZH, Qiu Y, Qu Z, Quadrilatero J, Quinn F, Raben N, Rabinowich H, Radogna F, Ragusa MJ, Rahmani M, Raina K, Ramanadham S, Ramesh R, Rami A, Randall-Demllo S, Randow F, Rao H, Rao VA, Rasmussen BB, Rasse TM, Ratovitski EA, Rautou PE, Ray SK, Razani B, Reed BH, Reggiori F, Rehm M, Reichert AS, Rein T, Reiner DJ, Reits E, Ren J, Ren X, Renna M, Reusch JE, Revuelta JL, Reyes L, Rezaie AR, Richards RI, Richardson DR, Richetta C, Riehle MA, Rihn BH, Rikihisa Y, Riley BE, Rimbach G, Rippo MR, Ritis K, Rizzi F, Rizzo E, Roach PJ, Robbins J, Roberge M, Roca G, Roccheri MC, Rocha S, Rodrigues CM, Rodríguez CI, de Cordoba SR, Rodriguez-Muela N, Roelofs J, Rogov VV, Rohn TT, Rohrer B, Romanelli D, Romani L, Romano PS, Roncero MI, Rosa JL, Rosello A, Rosen KV, Rosenstiel P, Rost-Roszkowska M, Roth KA, Roué G, Rouis M, Rouschop KM, Ruan DT, Ruano D, Rubinsztein DC, Rucker EB, 3rd, Rudich A, Rudolf E, Rudolf R, Ruegg MA, Ruiz-Roldan C, Ruparelia AA, Rusmini P, Russ DW, Russo GL, Russo G, Russo R, Rusten TE, Ryabovol V, Ryan KM, Ryter SW, Sabatini DM, Sacher M, Sachse C, Sack MN, Sadoshima J, Saftig P, Sagi-Eisenberg R, Sahni S, Saikumar P, Saito T, Saitoh T, Sakakura K, Sakoh-Nakatogawa M, Sakuraba Y, Salazar-Roa M, Salomoni P, Saluja AK, Salvaterra PM, Salvioli R, Samali A, Sanchez AM, Sánchez-Alcázar JA, Sanchez-Prieto R, Sandri M, Sanjuan MA, Santaguida S, Santambrogio L, Santoni G, Dos Santos CN, Saran S, Sardiello M, Sargent G, Sarkar P, Sarkar S, Sarrias MR, Sarwal MM, Sasakawa C, Sasaki M, Sass M, Sato K, Sato M, Satriano J, Savaraj N, Saveljeva S, Schaefer L, Schaible UE, Scharl M, Schatzl HM, Schekman R, Scheper W, Schiavi A, Schipper HM, Schmeisser H, Schmidt J, Schmitz I, Schneider BE, Schneider EM, Schneider JL, Schon EA, Schönenberger MJ, Schönthal AH, Schorderet DF, Schröder B, Schuck S, Schulze RJ, Schwarten M, Schwarz TL, Sciarretta S, Scotto K, Scovassi AI, Screaton RA, Screen M, Seca H, Sedej S, Segatori L, Segev N, Seglen PO, Seguí-Simarro JM, Segura-Aguilar J, Seki E, Seiliez I, Sell C, Semenkovich CF, Semenza GL, Sen U, Serra AL, Serrano-Puebla A, Sesaki H, Setoguchi T, Settembre C, Shacka JJ, Shajahan-Haq AN, Shapiro IM, Sharma S, She H, Shen CJ, Shen CC, Shen HM, Shen S, Shen W, Sheng R, Sheng X, Sheng ZH, Shepherd TG, Shi J, Shi Q, Shi Q, Shi Y, Shibutani S, Shibuya K, Shidoji Y, Shieh JJ, Shih CM, Shimada Y, Shimizu S, Shin DW, Shinohara ML, Shintani M, Shintani T, Shioi T, Shirabe K, Shiri-Sverdlov R, Shirihai O, Shore GC, Shu CW, Shukla D, Sibirny AA, Sica V, Sigurdson CJ, Sigurdsson EM, Sijwali PS, Sikorska B, Silveira WA, Silvente-Poirot S, Silverman GA, Simak J, Simmet T, Simon AK, Simon HU, Simone C, Simons M, Simonsen A, Singh R, Singh SV, Singh SK, Sinha D, Sinha S, Sinicrope FA, Sirko A, Sirohi K, Sishi BJ, Sittler A, Siu PM, Sivridis E, Skwarska A, Slack R, Slaninová I, Slavov N, Smaili SS, Smalley KS, Smith DR, Soenen SJ, Soleimanpour SA, Solhaug A, Somasundaram K, Son JH, Sonawane A, Song C, Song F, Song HK, Song JX, Song W, Soo KY, Sood AK, Soong TW, Soontornniyomkij V, Sorice M, Sotgia F, Soto-Pantoja DR, Sotthibundhu A, Sousa MJ, Spaink HP, Span PN, Spang A, Sparks JD, Speck PG, Spector SA, Spies CD, Springer W, Clair DS, Stacchiotti A, Staels B, Stang MT, Starczynowski DT, Starokadomskyy P, Steegborn C, Steele JW, Stefanis L, Steffan J, Stellrecht CM, Stenmark H, Stepkowski TM, Stern ST, Stevens C, Stockwell BR, Stoka V, Storchova Z, Stork B, Stratoulias V, Stravopodis DJ, Strnad P, Strohecker AM, Ström AL, Stromhaug P, Stulik J, Su YX, Su Z, Subauste CS, Subramaniam S, Sue CM, Suh SW, Sui X, Sukseree S, Sulzer D, Sun FL, Sun J, Sun J, Sun SY, Sun Y, Sun Y, Sun Y, Sundaramoorthy V, Sung J, Suzuki H, Suzuki K, Suzuki N, Suzuki T, Suzuki YJ, Swanson MS, Swanton C, Swärd K, Swarup G, Sweeney ST, Sylvester PW, Szatmari Z, Szegezdi E, Szlosarek PW, Taegtmeyer H, Tafani M, Taillebourg E, Tait SW, Takacs-Vellai K, Takahashi Y, Takáts S, Takemura G, Takigawa N, Talbot NJ, Tamagno E, Tamburini J, Tan CP, Tan L, Tan ML, Tan M, Tan YJ, Tanaka K, Tanaka M, Tang D, Tang D, Tang G, Tanida I, Tanji K, Tannous BA, Tapia JA, Tasset-Cuevas I, Tatar M, Tavassoly I, Tavernarakis N, Taylor A, Taylor GS, Taylor GA, Taylor JP, Taylor MJ, Tchetina EV, Tee AR, Teixeira-Clerc F, Telang S, Tencomnao T, Teng BB, Teng RJ, Terro F, Tettamanti G, Theiss AL, Theron AE, Thomas KJ, Thomé MP, Thomes PG, Thorburn A, Thorner J, Thum T, Thumm M, Thurston TL, Tian L, Till A, Ting JP, Titorenko VI, Toker L, Toldo S, Tooze SA, Topisirovic I, Torgersen ML, Torosantucci L, Torriglia A, Torrisi MR, Tournier C, Towns R, Trajkovic V, Travassos LH, Triola G, Tripathi DN, Trisciuoglio D, Troncoso R, Trougakos IP, Truttmann AC, Tsai KJ, Tschan MP, Tseng YH, Tsukuba T, Tsung A, Tsvetkov AS, Tu S, Tuan HY, Tucci M, Tumbarello DA, Turk B, Turk V, Turner RF, Tveita AA, Tyagi SC, Ubukata M, Uchiyama Y, Udelnow A, Ueno T, Umekawa M, Umemiya-Shirafuji R, Underwood BR, Ungermann C, Ureshino RP, Ushioda R, Uversky VN, Uzcátegui NL, Vaccari T, Vaccaro MI, Váchová L, Vakifahmetoglu-Norberg H, Valdor R, Valente EM, Vallette F, Valverde AM, Van den Berghe G, Van Den Bosch L, van den Brink GR, van der Goot FG, van der Klei IJ, van der Laan LJ, van Doorn WG, van Egmond M, van Golen KL, Van Kaer L, van Lookeren Campagne M, Vandenabeele P, Vandenberghe W, Vanhorebeek I, Varela-Nieto I, Vasconcelos MH, Vasko R, Vavvas DG, Vega-Naredo I, Velasco G, Velentzas AD, Velentzas PD, Vellai T, Vellenga E, Vendelbo MH, Venkatachalam K, Ventura N, Ventura S, Veras PS, Verdier M, Vertessy BG, Viale A, Vidal M, Vieira H, Vierstra RD, Vigneswaran N, Vij N, Vila M, Villar M, Villar VH, Villarroya J, Vindis C, Viola G, Viscomi MT, Vitale G, Vogl DT, Voitsekhovskaja OV, von Haefen C, von Schwarzenberg K, Voth DE, Vouret-Craviari V, Vuori K, Vyas JM, Waeber C, Walker CL, Walker MJ, Walter J, Wan L, Wan X, Wang B, Wang C, Wang CY, Wang C, Wang C, Wang C, Wang D, Wang F, Wang F, Wang G, Wang HJ, Wang H, Wang HG, Wang H, Wang HD, Wang J, Wang J, Wang M, Wang MQ, Wang PY, Wang P, Wang RC, Wang S, Wang TF, Wang X, Wang XJ, Wang XW, Wang X, Wang X, Wang Y, Wang Y, Wang Y, Wang YJ, Wang Y, Wang Y, Wang YT, Wang Y, Wang ZN, Wappner P, Ward C, Ward DM, Warnes G, Watada H, Watanabe Y, Watase K, Weaver TE, Weekes CD, Wei J, Weide T, Weihl CC, Weindl G, Weis SN, Wen L, Wen X, Wen Y, Westermann B, Weyand CM, White AR, White E, Whitton JL, Whitworth AJ, Wiels J, Wild F, Wildenberg ME, Wileman T, Wilkinson DS, Wilkinson S, Willbold D, Williams C, Williams K, Williamson PR, Winklhofer KF, Witkin SS, Wohlgemuth SE, Wollert T, Wolvetang EJ, Wong E, Wong GW, Wong RW, Wong VK, Woodcock EA, Wright KL, Wu C, Wu D, Wu GS, Wu J, Wu J, Wu M, Wu M, Wu S, Wu WK, Wu Y, Wu Z, Xavier CP, Xavier RJ, Xia GX, Xia T, Xia W, Xia Y, Xiao H, Xiao J, Xiao S, Xiao W, Xie CM, Xie Z, Xie Z, Xilouri M, Xiong Y, Xu C, Xu C, Xu F, Xu H, Xu H, Xu J, Xu J, Xu J, Xu L, Xu X, Xu Y, Xu Y, Xu ZX, Xu Z, Xue Y, Yamada T, Yamamoto A, Yamanaka K, Yamashina S, Yamashiro S, Yan B, Yan B, Yan X, Yan Z, Yanagi Y, Yang DS, Yang JM, Yang L, Yang M, Yang PM, Yang P, Yang Q, Yang W, Yang WY, Yang X, Yang Y, Yang Y, Yang Z, Yang Z, Yao MC, Yao PJ, Yao X, Yao Z, Yao Z, Yasui LS, Ye M, Yedvobnick B, Yeganeh B, Yeh ES, Yeyati PL, Yi F, Yi L, Yin XM, Yip CK, Yoo YM, Yoo YH, Yoon SY, Yoshida KI, Yoshimori T, Young KH, Yu H, Yu JJ, Yu JT, Yu J, Yu L, Yu WH, Yu XF, Yu Z, Yuan J, Yuan ZM, Yue BY, Yue J, Yue Z, Zacks DN, Zacksenhaus E, Zaffaroni N, Zaglia T, Zakeri Z, Zecchini V, Zeng J, Zeng M, Zeng Q, Zervos AS, Zhang DD, Zhang F, Zhang G, Zhang GC, Zhang H, Zhang H, Zhang H, Zhang H, Zhang J, Zhang J, Zhang J, Zhang J, Zhang JP, Zhang L, Zhang L, Zhang L, Zhang L, Zhang MY, Zhang X, Zhang XD, Zhang Y, Zhang Y, Zhang Y, Zhang Y, Zhang Y, Zhao M, Zhao WL, Zhao X, Zhao YG, Zhao Y, Zhao Y, Zhao YX, Zhao Z, Zhao ZJ, Zheng D, Zheng XL, Zheng X, Zhivotovsky B, Zhong Q, Zhou GZ, Zhou G, Zhou H, Zhou SF, Zhou XJ, Zhu H, Zhu H, Zhu WG, Zhu W, Zhu XF, Zhu Y, Zhuang SM, Zhuang X, Ziparo E, Zois CE, Zoladek T, Zong WX, Zorzano A, Zughaier SM. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy. (3rd) 2016 Jan 2;12(1):1–222. [Google Scholar]
- 82.Polge C, Attaix D, Taillandier D. Role of E2-ub-conjugating enzymes during skeletal muscle atrophy. Front Physiol. 2015;6:59. doi: 10.3389/fphys.2015.00059. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 83.Schakman O, Kalista S, Barbe C, Loumaye A, Thissen JP. Glucocorticoid- induced skeletal muscle atrophy. Int J Biochem Cell Biol. 2013;45:2163–2172. doi: 10.1016/j.biocel.2013.05.036. [DOI] [PubMed] [Google Scholar]
- 84.Bodine SC, Baehr LM. Skeletal muscle atrophy and the E3 ubiquitin ligases murf1 and mafbx/atrogin-1. Am J Physiol Endocrinol Metabol. 2014;307:E469–484. doi: 10.1152/ajpendo.00204.2014. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 85.Brooks NE, Myburgh KH. Skeletal muscle wasting with disuse atrophy is multidimensional: The response and interaction of myonuclei, satellite cells and signaling pathways. Front Physiol. 2014;5:99. doi: 10.3389/fphys.2014.00099. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 86.Glass DJ. Pi3 kinase regulation of skeletal muscle hypertrophy and atrophy. Curr Top Microbiol Immunol. 2010;346:267–278. doi: 10.1007/82_2010_78. [DOI] [PubMed] [Google Scholar]
- 87.Schiaffino S, Mammucari C. Regulation of skeletal muscle growth by the IGF1- Akt/PKB pathway: Insights from genetic models. Skeletal muscle. 2011;1:4. doi: 10.1186/2044-5040-1-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 88.Sanchez AM, Candau RB, Bernardi H. Foxo transcription factors: Their roles in the maintenance of skeletal muscle homeostasis. Cell Mol Life Sci. 2014;71:1657–1671. doi: 10.1007/s00018-013-1513-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 89.Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012;149:274–293. doi: 10.1016/j.cell.2012.03.017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 90.Wang P, Drackley JK, Stamey-Lanier JA, Keisler D, Loor JJ. Effects of level of nutrient intake and age on mammalian target of rapamycin, insulin, and insulin-like growth factor-1 gene network expression in skeletal muscle of young holstein calves. J Dairy Sci. 2014;97:383–391. doi: 10.3168/jds.2013-7042. [DOI] [PubMed] [Google Scholar]
- 91.Bar-Peled L, Sabatini DM. Regulation of mTORC1 by amino acids. Trends Cell Biol. 2014;24:400–406. doi: 10.1016/j.tcb.2014.03.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 92.Braun TP, Marks DL. The regulation of muscle mass by endogenous glucocorticoids. Front Physiol. 2015;6:12. doi: 10.3389/fphys.2015.00012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 93.Orellana RA, Jeyapalan A, Escobar J, Frank JW, Nguyen HV, Suryawan A, Davis TA. Amino acids augment muscle protein synthesis in neonatal pigs during acute endotoxemia by stimulating mtor-dependent translation initiation. Am J Physiol Endocrinol Metabol. 2007;293:E1416–1425. doi: 10.1152/ajpendo.00146.2007. [DOI] [PubMed] [Google Scholar]
- 94.O’Connor PM, Kimball SR, Suryawan A, Bush JA, Nguyen HV, Jefferson LS, Davis TA. Regulation of translation initiation by insulin and amino acids in skeletal muscle of neonatal pigs. Am J Physiol Endocrinol Metabol. 2003;285:E40–53. doi: 10.1152/ajpendo.00563.2002. [DOI] [PubMed] [Google Scholar]
- 95.Gorelick-Feldman J, Maclean D, Ilic N, Poulev A, Lila MA, Cheng D, Raskin I. Phytoecdysteroids increase protein synthesis in skeletal muscle cells. J Agric Food Chem. 2008;56:3532–3537. doi: 10.1021/jf073059z. [DOI] [PubMed] [Google Scholar]
- 96.Gorelick-Feldman J, Cohick W, Raskin I. Ecdysteroids elicit a rapid Ca2+ flux leading to Akt activation and increased protein synthesis in skeletal muscle cells. Steroids. 2010;75:632–637. doi: 10.1016/j.steroids.2010.03.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 97.Kizelsztein P, Govorko D, Komarnytsky S, Evans A, Wang Z, Cefalu WT, Raskin I. 20-hydroxyecdysone decreases weight and hyperglycemia in a diet-induced obesity mice model. Am J Physiol Endocrinol Metab. 2009;296:E433–439. doi: 10.1152/ajpendo.90772.2008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 98.Anthony TG, Mirek ET, Bargoud AR, Phillipson-Weiner L, DeOliveira CM, Wetstein B, Graf BL, Kuhn PE, Raskin I. Evaluating the effect of 20-hydroxyecdysone (20HE) on mechanistic target of rapamycin complex 1 (mTORC1) signaling in the skeletal muscle and liver of rats. Appl Physiol Nutr Metabol. 2015;40:1324–1328. doi: 10.1139/apnm-2015-0301. [DOI] [PubMed] [Google Scholar]
- 99.Rodriguez J, Vernus B, Chelh I, Cassar-Malek I, Gabillard JC, Hadj Sassi A, Seiliez I, Picard B, Bonnieu A. Myostatin and the skeletal muscle atrophy and hypertrophy signaling pathways. Cell Mol Life Sci. 2014;71:4361–4371. doi: 10.1007/s00018-014-1689-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 100.Han HQ, Zhou X, Mitch WE, Goldberg AL. Myostatin/activin pathway antagonism: Molecular basis and therapeutic potential. Int J Biochem Cell Biol. 2013;45:2333–2347. doi: 10.1016/j.biocel.2013.05.019. [DOI] [PubMed] [Google Scholar]
- 101.Ebert SM, Monteys AM, Fox DK, Bongers KS, Shields BE, Malmberg SE, Davidson BL, Suneja M, Adams CM. The transcription factor ATF4 promotes skeletal myofiber atrophy during fasting. Mol Endocrinol. 2010;24:790–799. doi: 10.1210/me.2009-0345. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 102.Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, Sadri N, Yun C, Popko B, Paules R, Stojdl DF, Bell JC, Hettmann T, Leiden JM, Ron D. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell. 2003;11:619–633. doi: 10.1016/s1097-2765(03)00105-9. [DOI] [PubMed] [Google Scholar]
- 103.Dey S, Baird TD, Zhou D, Palam LR, Spandau DF, Wek RC. Both transcriptional regulation and translational control of ATF4 are central to the integrated stress response. J Biol Chem. 2010;285:33165–33174. doi: 10.1074/jbc.M110.167213. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 104.Ebert SM, Dyle MC, Bullard SA, Dierdorff JM, Murry DJ, Fox DK, Bongers KS, Lira VA, Meyerholz DK, Talley JJ, Adams CM. Identification and small molecule inhibition of an ATF4-dependent pathway to age-related skeletal muscle weakness and atrophy. J Biol Chem. 2015 doi: 10.1074/jbc.M115.681445. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 105.Dyle MC, Ebert SM, Cook DP, Kunkel SD, Fox DK, Bongers KS, Bullard SA, Dierdorff JM, Adams CM. Systems-based discovery of tomatidine as a natural small molecule inhibitor of skeletal muscle atrophy. J Biol Chem. 2014;289:14913–14924. doi: 10.1074/jbc.M114.556241. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 106.Kunkel SD, Elmore CJ, Bongers KS, Ebert SM, Fox DK, Dyle MC, Bullard SA, Adams CM. Ursolic acid increases skeletal muscle and brown fat and decreases diet-induced obesity, glucose intolerance and fatty liver disease. PloS one. 2012;7:e39332. doi: 10.1371/journal.pone.0039332. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 107.Kunkel SD, Suneja M, Ebert SM, Bongers KS, Fox DK, Malmberg SE, Alipour F, Shields RK, Adams CM. mRNA expression signatures of human skeletal muscle atrophy identify a natural compound that increases muscle mass. Cell Metab. 2011;13:627–638. doi: 10.1016/j.cmet.2011.03.020. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 108.Adams CM, Ebert SM, Dyle MC. Use of mRNA expression signatures to discover small molecule inhibitors of skeletal muscle atrophy. Curr Opin Clin Nutr Metab Care. 2015;18:263–268. doi: 10.1097/MCO.0000000000000159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 109.Levine ME, Suarez JA, Brandhorst S, Balasubramanian P, Cheng CW, Madia F, Fontana L, Mirisola MG, Guevara-Aguirre J, Wan J, Passarino G, Kennedy BK, Wei M, Cohen P, Crimmins EM, Longo VD. Low protein intake is associated with a major reduction in IGF-I, cancer, and overall mortality in the 65 and younger but not older population. Cell Metab. 2014;19:407–417. doi: 10.1016/j.cmet.2014.02.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 110.Mirzaei H, Suarez JA, Longo VD. Protein and amino acid restriction, aging and disease: From yeast to humans. Trends Endocrinol Metab. 2014;25:558–566. doi: 10.1016/j.tem.2014.07.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 111.Drake JC, Bruns DR, Peelor FF, 3rd, Biela LM, Miller RA, Miller BF, Hamilton KL. Long-lived snell dwarf mice display increased proteostatic mechanisms that are not dependent on decreased mTORC1 activity. Aging Cell. 2015;14:474–482. doi: 10.1111/acel.12329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 112.Aguilaniu H. The mysterious relationship between reproduction and longevity. Worm. 2015;4:e1020276. doi: 10.1080/21624054.2015.1020276. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 113.Adler MI, Cassidy EJ, Fricke C, Bonduriansky R. The lifespan-reproduction trade-off under dietary restriction is sex-specific and context-dependent. Exp Gerontol. 2013;48:539–548. doi: 10.1016/j.exger.2013.03.007. [DOI] [PubMed] [Google Scholar]
- 114.Mattson MP. Hormesis defined. Ageing Res Rev. 2008;7:1–7. doi: 10.1016/j.arr.2007.08.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 115.Hine CM, Mitchell JR. Nrf2 and the phase ii response in acute stress resistance induced by dietary restriction. J Clin Exp Pathol. 2012:S4. doi: 10.4172/2161-0681.S4-004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 116.Du M, Zhu MJ, Means WJ, Hess BW, Ford SP. Nutrient restriction differentially modulates the mammalian target of rapamycin signaling and the ubiquitin-proteasome system in skeletal muscle of cows and their fetuses. J Anim Sci. 2005;83:117–123. doi: 10.2527/2005.831117x. [DOI] [PubMed] [Google Scholar]
- 117.Wang H, Wilson GJ, Zhou D, Lezmi S, Chen X, Layman DK, Pan YX. Induction of autophagy through the activating transcription factor 4 (atf4)-dependent amino acid response pathway in maternal skeletal muscle may function as the molecular memory in response to gestational protein restriction to alert offspring to maternal nutrition. Br J Nutr. 2015:1–14. doi: 10.1017/S0007114515002172. [DOI] [PubMed] [Google Scholar]
- 118.Oster M, Murani E, Metges CC, Ponsuksili S, Wimmers K. A gestational high protein diet affects the abundance of muscle transcripts related to cell cycle regulation throughout development in porcine progeny. PloS ONE. 2012;7:e34519. doi: 10.1371/journal.pone.0034519. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 119.Roland L, Drillich M, Klein-Jobstl D, Iwersen M. Invited review: Influence of climatic conditions on the development, performance, and health of calves. J Dairy Sci. 2016 doi: 10.3168/jds.2015-9901. [DOI] [PubMed] [Google Scholar]