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Computational imaging with a 
balanced detector
F. Soldevila1, P. Clemente2, E. Tajahuerce1, N. Uribe-Patarroyo3, P. Andrés4 & J. Lancis1

Single-pixel cameras allow to obtain images in a wide range of challenging scenarios, including broad 
regions of the electromagnetic spectrum and through scattering media. However, there still exist 
several drawbacks that single-pixel architectures must address, such as acquisition speed and imaging 
in the presence of ambient light. In this work we introduce balanced detection in combination with 
simultaneous complementary illumination in a single-pixel camera. This approach enables to acquire 
information even when the power of the parasite signal is higher than the signal itself. Furthermore, 
this novel detection scheme increases both the frame rate and the signal-to-noise ratio of the system. 
By means of a fast digital micromirror device together with a low numerical aperture collecting system, 
we are able to produce a live-feed video with a resolution of 64 × 64 pixels at 5 Hz. With advanced 
undersampling techniques, such as compressive sensing, we can acquire information at rates of 25 Hz. 
By using this strategy, we foresee real-time biological imaging with large area detectors in conditions 
where array sensors are unable to operate properly, such as infrared imaging and dealing with objects 
embedded in turbid media.

Over the past decade, single-pixel imaging (SPI) has demonstrated its viability in scenarios where traditional 
imaging techniques struggle to provide images with acceptable quality in practicable times and reasonable costs. 
Examples of this can be found in exotic regions of the light spectrum, such as infrared1, terahertz2 or X-rays3. 
Moreover, single-pixel setups have also been proposed in challenging frameworks such as photon-counting 
regimes4, imaging in scattering media5,6, multidimensional imaging7–11, two-photon microscopy12, photoacoustic 
imaging13,14, and spatial entanglement imaging15.

In SPI, the resolving power of the system is shifted from the sensor to a set of microstructured spatial masks 
that are codified onto a programmable spatial light modulator (SLM). The masks are optically projected onto the 
sample and the whole intensity is collected onto a bucket (single-pixel) sensor. The photodetector provides an 
electrical signal, proportional to the total amount of light that leaves the object. Measurements are sequentially 
made by changing the spatial mask. If many different masks are used, their shapes and the electrical signal can be 
combined to retrieve the sample16.

However, SPI still has several limitations inherent to the technique. If unmodulated light arrives to the 
object and it is collected, the signal provided by the detector is corrupted and the recovered image gets affected. 
Depending on the quantity of ambient light, recovery can be unattainable. Furthermore, the use of SLMs to meas-
ure the projections of the scene onto a set of spatial masks places an upper bound to the acquisition speed of the 
devices. The nature of SPI enforces a reciprocal relationship between the frame rate and the image size as the time 
required to capture an image scales with the number of pixels in the image. As a matter of fact, SPI usually relies 
on the use of fast SLMs such digital micromirror devices (DMDs) to codify the projecting masks. DMDs permit 
highly flexible codification of binary masks at frame rates above 20 kHz. For images about 128 ×​ 128 pixels, typical 
acquisition times tend to be around one frame per second1.

Two different approaches can be employed to overcome the above issue. On the one hand, given some rea-
sonable assumptions about the sparsity of the signal, compressive sensing (CS) dramatically reduces the number 
of measurements needed well below the number of pixels of the sample17–19. What is remarkable here is that with 
the only assumption that the signal is sparse, it is possible to avoid the measurement of the full-length signal, 
saving measurement time. More recently, adaptive sensing has been introduced as a way to circumvent the com-
putational complexity in convex optimization or greedy algorithms used in CS1,20,21. The idea is to make some 
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preliminary low-resolution measurements, and take advantage of the obtained information to avoid irrelevant 
acquisitions in further measurements. In this way, high resolution images can be obtained in a fast and compu-
tationally efficient way.

When dealing with light coming from the surroundings, measuring directly in the Fourier space and compu-
tationally filtering the frequencies of the ambient light has been proven to increase the quality of the images even 
when the ambient light has more power than the signal itself 22. Moreover, the use of complementary (or differ-
ential) measurements, which has been reported in several works1,9,23–25, also increases the signal-to-noise ratio of 
the system, helping the devices in this type of unfavorable environmental conditions.

 Here we present a novel approach, using complementary measurements and a single balanced detector. By 
using balanced detection, we improve the frame rate of the complementary measurement architectures by a factor 
of two, and we make use of all the photons arriving from the object. Furthermore, the use of a balanced detec-
tor provides environmental light immunity to the method. The key to success is the use of both reflecting arms 
provided by the DMD simultaneously, via the two sensors in the balanced detector. In addition to this, balanced 
detection also improves the signal digitization process. When we consider a single detector the detected light 
will be, on average, half the energy of the object with oscillations caused by the overlapping of each pattern with 
the object intensity distribution. The electrical signal as a function of time can be visualized as a DC term, which 
depends on the total energy of the object, and the AC term caused by the varying overlap of the patterns with 
the object. There are situations where using this approach causes loss of information because the sensitivity and 
dynamic range of both detectors and digitization systems are limited6. When using balanced detection, the DC 
term can be eliminated, and the full dynamic range of the detection system can be used to measure the small 
oscillations that are of interest to recover the image. This is another example of SPI taking advantage of the use of 
dedicated sensors that are difficult to implement in an array8,9,26.

Results
Experimental setup.  Our single-pixel camera can be seen in Fig. 1. The system resembles a conventional 
camera but the object is imaged over an array of micromirrors as opposed to the traditional array of photosensors. 
The object is illuminated by a white-light lamp (Thorlabs HPLS200). Then, the image is created onto the DMD 
surface (DLP Discovery 4100 V–7000 from ViALUX). A DMD consists of an array of electronically controlled 
micromirrors that can rotate about a hinge. The angular position of a specific micromirror admits two possible 
states (+​12° and −​12° respect to a common direction which will be referred ON and OFF respectively). In this 
way, the light can be reflected in two different directions depending on the signal applied to the mirror. If one 
looks at the DMD from one reflection direction, only the mirrors in the ON state will reflect light, and the mirrors 
in the OFF state will appear dark. In the other reflection direction there will be a complementary illumination 
pattern, as previous OFF mirrors will reflect light, whereas previous ON mirrors will not. A sequence of sampling 
patterns is codified onto the DMD and the irradiance striking the large-area single-pixel photodetector is stored. 
In one reflection direction, we have the superposition of one pattern with the object. In the other direction, we 
have the superposition of the complementary pattern and the object. Light is collected by two identical colli-
mating lenses (Thorlabs F810SMA-635), and enters two optical fibers (Thorlabs FT200EMT). The output of the 
balanced photodetector (Thorlabs PDB210A/M) corresponds to the subtraction of the two signals in the analog 
domain, amplified before the analog-to-digital conversion made by our digital acquisition system (National 
Instruments NI6251). In order to introduce ambient light in a controlled way, we used a commercial halogen 

Figure 1.  Single-pixel balanced detection camera. The object illuminated with incoherent light is imaged onto 
the surface of the DMD via a lens. Light reflected in both directions by the DMD is gathered by two collecting 
lenses and focused onto the entrance of two optical fibers, which are connected to the balanced photodetector. 
The signal is digitized and stored in the computer, which controls all the process. An external light source is 
used to introduce ambient light to the system in a controlled way with the aid of a beam splitter. ALS: ambient 
light source (halogen lamp), WLS: white-light source, OBJ: object, BS: beam splitter, L1: lens, CL: collecting 
lens, DMD: digital micromirror device, BPD: balanced photodetector, ADC: analog-to-digital converter, PC: 
computer.
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lamp. Custom software written in LabVIEW controls both the generation of the patterns in the DMD and the 
digitization process of the analog-to-digital converter (ADC).

Concerning the measurement patterns, various matrices can be employed. For instance, raster-scan style 
masks stem from the well-known raster-scan technique in which spatial pixels are measured sequentially. 
Random matrices can also be used in which each mask has a random distribution of binary values. On the other 
hand, Hadamard matrices provide a convenient codification framework because binary non-negative elements 
can easily be displayed onto the DMD (see Supplementary Information). Structured matrices avoid the need to 
store entire matrices as the entries can be computed on the fly and permit the use of recovery algorithms with a 
lower computational penalty than random matrices. Note that operation at video rates is of paramount signifi-
cance in potential applications of SPI like optical microscopy.

One important feature of the setup is the light collecting system. In our setup, light reflected by the DMD is 
collected using two identical optical fiber collimating systems. Those systems are coupled to two identical optical 
fibers. As both the optical fibers and the collimating systems have low numerical aperture (0.39 and 0.25 NA, 
respectively), light coming from directions other than the object is partially removed from the system before 
arriving to the detector. Even though this is a good feature and improves the quality of the presented images, it is 
not possible to reduce the NA of the system arbitrarily. A lower NA will decrease the field of view of the system, 
and also the total quantity of light at the detector, decreasing the overall quality of the reconstructions.

The other key element of our setup is the balanced detector. The use of balanced detection in optical exper-
iments dates from the late 60’s27. The simplest way of doing balanced detection consists of connecting two pho-
toreceptors in a way that their photocurrents cancel. If one is able to equalize the optical power arriving at each 
sensor, the effective photocurrent generated by the pair will be zero. Changes in the optical signal between both 
photoreceptors will unbalance the detector, generating a signal at the detector output. In this way, even if the opti-
cal power arriving at the detector is high, the output signal will only depend on the intensity of the fluctuations. 
This is of paramount usefulness when the information that one wants to measure relies in the light fluctuations, 
and not in the absolute value of the signals. Several optical techniques that require high signal-to-noise ratio have 
been using the principles of balanced detection for decades now. Examples range from microstructure metrol-
ogy28, light scattering microscopy29, high sensitive measurements using noisy sources30, and what may be the 
most well-known optical technique using balanced detection, optical coherence tomography31.

In our technique, the information about the object is encoded in the difference between two signals (see 
Methods). In one reflection direction of the DMD, we have the result of overlapping the object and one set of 
patterns. On the other reflection arm, we have the result of overlapping the object and the complementary set of 
patterns (switching white parts by black parts and vice versa). The difference between these two signals provides 
the mathematical projection of the object in our basis of functions: measuring this difference using balanced 
detection is straightforward. Using this idea, not only we capture all the photons reflected by the object and meas-
ure both signals at the same time (reducing acquisition time), but we also use the full dynamic range of our ADC. 
In a traditional SPI scheme (whether using complementary illumination or not), electrical signals provided by 
detectors will always be positive. ADC systems use a determined number of bits in order to digitize the signal. 
Once the voltage range is set, the number of quantization bits determines the possible digitized voltage levels and 
their precision. As voltage signals have both positive and negative values, using any ADC to measure an always 
positive electrical signal implies losing half the number of quantization values. However, in our setup we work 
directly with the subtraction of two signals, which will have both positive and negative values depending on the 
patterns generated in the DMD. The use of both reflection arms of the DMD improves the signal strength because 
we utilize the full flux of photons coming from the scene, in contrast with the classical single-pixel approach, 
which loses, on average, half of the photons. 

Lastly, the adoption of balanced detection also increases the ambient light immunity of the optical system. 
Since both sensors of the balanced detector work at the same time, temporal fluctuations of the signal are sub-
tracted automatically. This is very relevant in experimental conditions where light coming from unstable sources 
can corrupt the signal, making unfeasible the recovery of the object. This is illustrated in Fig. 2. We show several 
snapshots of the electrical signal when using balanced detection or single detection and switching ON or OFF an 
ambient halogen light source with intensity fluctuations at 100 Hz. In all four images, we see the temporal square 
signal generated by the DMD when switching between two different Walsh-Hadamard patterns at a low rate 
(around 10 Hz). When we turn on the halogen lamp, an undesirable ripple appears in the signal, with a frequency 
of 100 Hz. When using balanced detection, as the oscillating signal introduced by the halogen lamp is the same in 
both sensing arms, it does not contribute to the balanced signal. However, in the single detection case, this ripple 
persists. Using the corrupted signal to recover an object via SPI techniques would provide low quality images, as 
we will see in the following section.

Experimental results.  As a proof-of-concept, we used the experimental setup shown in Fig. 1 to record a set 
of images with different illumination conditions. The results are shown in Fig. 3. For a given fixed power of the 
halogen lamp, we changed the intensity of the light illuminating the sample object (a small part of an USAF reso-
lution test chart with 3.6 lines/mm) and acquired an image both using balanced detection (Fig. 3(a)) and only 
with one sensor (Fig. 3(b)). In both cases, we also took images with the halogen lamp turned off. The images have 
a size of 64 ×​ 64 pixels, and each pixel was arranged by grouping 4 DMD mirrors, with 13.68 μm width each. In 
order to acquire the images, the full set of 4096 (642) Walsh-Hadamard patterns was generated in the DMD. To 
ease visualization, all the images were normalized between 0 and 255 = ⋅−

−( )I 255norm
I I

I I
min( )

max( ) min( )
.

It is clear, even when the halogen lamp is much dimmer than the object source, that the non-balanced image 
has much lower quality. One can see a checkerboard-like artifact at the top of the images. This is caused by the 
temporal oscillation of the signal at a frequency of 100 Hz. As the sampling rate of the ADC is known, one could 
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digitally filter the 100 Hz component of the signal in the Fourier domain, go back to the time domain and recover 
the object suppressing this checkerboard pattern. However, this requires a priori knowledge of the power spec-
trum of the ambient and parasitic light sources. Balanced detection makes this post-processing of the electrical 
signal unnecessary. This is advantageous as post-processing procedures are time consuming, decreasing the total 
acquisition speed of the system.

Readers may observe a reduction in the quality of the images as the WLS power decreases while that of the 
halogen lamp remains constant. Here we point out two different effects. On the one hand, we have the effect of 
taking an image using a small quantity of light. On the other hand, we identify the effect of varying the power 
ratio between the two sources. For the first effect, we can look at both the second and fourth rows of Fig. 3. In 
this case, the halogen lamp is turned off and we take images decreasing the power of the lamp illuminating the 
object. We can see that as illumination decreases, noise starts to appear covering the image. This is due to the 
signal power approaching the level of the technical noise of the setup, which ultimately limits the working range 
of illumination powers in which the camera can acquire images. In order to work at different illumination levels 
or other regions of the electromagnetic spectrum, sensors can be exchanged with high sensitive photodiodes (or 
avalanche photodiodes) or even detectors with different spectral sensitivities (outside the visible region). The 
second effect depends on the ratio between the power of the two light sources. As we stated before, the halogen 
lamp produces a checkerboard-like pattern on top of the image when measuring using only one detector. If one 
compares this pattern in the third row of pictures, it is clear that decreasing the power of the lamp illuminating 
the object also increases the weight of the checkerboard pattern in the recovered image. So, with ambient lights 
much dimmer than the light coming from the object, one can recover an image which resembles the object with 
a small artifact coming from the ambient light. However, if the signal coming from the object decreases, artifacts 
will hide the object under study. This does not happen in the balanced detection case, as the sensor eliminates the 
fluctuating signal coming from the halogen lamp. Due to this, all the recovered images present similar quality, no 
matter whether the halogen lamp was turned on or off.

At this point, it is interesting to compare the results of both complementary single-pixel imaging as has been 
reported1,9,20,23,32 and our approach using balanced photodetection. Some previous work on complementary 
measurements worked with only one reflection arm of the DMD1,9,20,32, which entails the generation of each pat-
tern and its complementary sequentially. In addition of doubling the acquisition time of the system, if the scene 
changes between a pair of complementary patterns, the coefficient associated with that pair will be corrupted. 
Even in the case of using both reflection arms of the DMD and two detectors23, measuring in a non-balanced 

Figure 2.  Electrical signals in presence of ambient light. Four snapshots from the oscilloscope with different 
illumination and sensing conditions. In order to acquire the signals, two different Walsh-Hadamard patterns 
were generated periodically onto the DMD surface, thus giving a low frequency square wave. The first row of 
pictures corresponds to balanced detection with the halogen lamp ON (a) and OFF (b). It is clear that no fast 
variations appear in any case. The second row of pictures corresponds to sensing with only one of the detectors 
when the lamp is ON (c) or OFF (d). It can be seen that a ripple at a frequency of 100 Hz appears in (c). If one 
needs to measure the difference between the two intensity levels, this oscillation can corrupt the measurement, 
and thus decrease the quality of the recovered image.
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scheme introduces both electrical and quantization errors in the process. As the complementary measurements 
are made at the exact same time using the balanced detector, the technique presents a natural double frame 
rate and temporal immunity when compared to the sequential complementary approach. Furthermore, the SNR 
increase stated in the previous section also improves the quality of the recovered images. We show a comparison 
between non-complementary, sequential, and simultaneous complementary imaging in Fig. 4.

Images shown in Fig. 4 have a size of 64 ×​ 64 pixels. The total number of projections onto the Walsh-Hadamard 
basis established by the Nyquist-Shannon criterion is 4096. In order to take the single-pixel traditional 
image, we generate the 4096 patterns by placing white and black pixels onto the +​1 s and −​1 s entries of the 
Walsh-Hadamard matrix (shifting and rescaling approach, see Methods). In the sequential case, we generate 8192 
patterns and measure the projections only by using one of the reflection arms of our setup. In the balanced setup, 
the first set of 4096 patterns already generates the full set of 8192 projections by using both reflection arms of the 
DMD. It is clear that, as stated on the published reports, the complementary approach improves the SNR of the 
images23. Both sequential and balanced approaches provide very similar results, but the balanced approach works 
at double frame rate and it is insensitive to temporal oscillations caused by ambient and parasitic light.

Up to this point, we have remarked the improvement in quality produced by the use of balanced detection. 
However, there is another key feature of the technique, and it is the increased acquisition speed of the system. 
By using both reflection arms of the DMD in conjunction with the balanced detector, one can carry out comple-
mentary measurements at the same speed as single measurements. By doing this, we gather more information 
about the object at every pattern generated on the DMD, without decreasing the overall frame rate of the system. 
To show this benefit, we acquired a video of a moving scene with our setup (see Supplementary Information). 
We show some of the frames in Fig. 5. In this case, the scene consists of a moving Pac-Man eating a pellet. Every 
frame of the video is a 64 ×​ 64 pixel image. We show both SPI and CS acquisitions. The total number of patterns 
needed to recover a frame is 4096 (642), as stated by the Nyquist-Shannon criterion. As our DMD is working at a 
frequency of 20 kHz, roughly 200 ms are needed to acquire a frame. By doing this, we can achieve loss-less frame 
rates of 5 Hz.

If more speed is needed, there are several approaches that can boost the frame rate at expense of some qual-
ity loss. Here we show two more acquisitions by using undersampling and a CS approach. In order to capture a 
frame, a subset of the total Walsh-Hadamard basis with low spatial frequencies was generated on the DMD. In 

Figure 3.  Single-pixel imaging in presence of ambient light. Series of measurements using balanced detection 
(a), and a single sensor (b). For each experiment, both measurements with the halogen lamp turned on and off 
are shown. Each column represents a different power level of the source illuminating the object, as the power of 
the halogen lamp is either fixed (lamp on) or zero (lamp off). In order to ease visualization, all images have been 
normalized between 0 and 255.
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this case, we used 20% of the total number of patterns. By doing this, we can achieve frame rates of 25 Hz (second 
row of Fig. 5). It can be seen that even though the quality decreases, the objects can still be clearly identified. The 
benefit of this approach is that no post-processing is needed, so the image can be displayed in real time. This is 
a good approach for using the camera in a microscopy-like setup, where the user wants to search for zones of 
interest in a sample in a fast way. It is possible to perform real-time visualization at 25 Hz, and once the region of 
interest is in the field of view of the system, perform a loss-less acquisition at 5 Hz. There also exist several ways of 
getting high frame rates without losing so much quality in the process. In the third row of Fig. 5, we show several 
frames acquired with the same subset of patterns (a 20% of the total set) but recovered by means of CS. Even 
though the acquisition speed is 25 Hz, the post-processing time needed to use the CS algorithm hinders the live 
visualization of the scene.

Lastly, in Fig. 6 we show a comparison between the quality obtained by CS techniques whether performing 
balanced or non-balanced detection. In order to quantify the faithfulness of the undersampled images, we use the 
correlation coefficient of each undersampled acquisition with the lossless image (see Methods). The comparison 
between balanced and non-balanced imaging can be seen in Fig. 6(a). Even though both curves have the same 
behavior, it is clear that the balanced scheme improves the fidelity of the recovered images. For example, if one 
looks at the vertical dotted line in the graph, for the same compression ratio, the non-balanced acquisition pre-
sents lower correlation coefficients. Watching to the horizontal dotted line, it can be seen that in order to acquire 
the same correlation coefficient, the non-balanced approach needs to perform a higher number of measurements. 
In Fig. 6(b) we show both the balanced and non-balanced reference images and three of the undersampled images 
recovered by CS.

Here we have shown a CS approach, but several adaptive techniques can be used, with the benefits of both 
increased frame rate and also real time visualization, as they need negligible post-processing times1,21. As balanced 
detection works on the technical side of the camera (i.e. in the experimental setup), those adaptive approaches can 
directly benefit from this approach, doubling their frame rates and increasing the SNR of their measurements. In 
the Supplementary Information, we show the video comparison of the Pac-Man scene in the three cases explained 
here. With reduced resolutions of 32 ×​ 32 pixels, we could achieve frame rates of 20 Hz without undersampling. 
With measurement ratios about 20%, which are common in the literature, we could perform live video at frame 
rates of 100 Hz, enabling the capture of low-resolution live biological processes.

Discussion
We have implemented balanced photodetection in a single-pixel architecture for the first time. In conjunction 
with proper collecting optics and complementary single-pixel imaging techniques, we have studied the bene-
fits of the setup when imaging in presence of ambient light. Similar techniques based on single-pixel detection 

Figure 4.  Single-pixel imaging and complementary single-pixel imaging comparison. In the first row, we 
show images acquired when light coming from the object has 5 times more power than the ambient light.  
(a) Single-pixel image, (b) sequential complementary single-pixel image, and (c) simultaneous complementary 
image. In the second row, we present the same experiment but with images acquired when the light coming 
from the object has the same power as the ambient light. Note that even though second and third columns have 
very similar quality, the simultaneous complementary image is acquired in half the time.
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have tackled the same problem with good results22. However, the presented method does not require neither 
post-processing of the signal nor any a priori knowledge of the nature of the ambient light to work. We anticipate 
that this immunity to parasitic light will be of paramount interest in low-light-level scenarios or when an object 
is hidden inside a scattering medium, where single-pixel approaches have already started to be used4–6. The use 
of complementary measurements allows us to increase the signal-to-noise ratio of our measurements. Although 
similar proposals have been reported previously1,9,20,23,32,33, the implementation shown here increases the frame 
rate of the devices by a factor of two. We have been able to obtain 64 ×​ 64 images at a frame rate of 5 Hz without 
using advanced undersampling techniques. As the proposed technique only requires technical adaptation of the 
experimental setups, novel digital approaches, ranging from CS to adaptive techniques1,20,21, can benefit from 
both the SNR and speed boost presented here. Lastly, this kind of setup can be easily adapted to different spectral 
zones. For instance, inexpensive single-pixel detectors are already available in the infrared region. Therefore, we 
expect that SPI techniques will be able to provide full real-time imaging feedback for both medicine and indus-
trial applications in the near future.

Methods
Single-pixel and complementary single-pixel imaging.  Consider an object represented by a N-pixel 
image. This image can be arranged in a N ×​ 1 column vector x. We can express this vector in an orthonormal basis 
of functions Ψ = Ψ =

��
{ }l l

N
1. We can represent this in matrix form as α= Ψ ⋅� ��x , where Ψ​ is a N ×​ N matrix that has 

the vectors Ψ
��

{ }l  as columns and α�� is the N ×​ 1 vector with the expansion coefficients of x in our chosen basis. To 
acquire an image, SPI techniques carry out those N projections using an SLM, and recover the image of the object 
by multiplexing the acquired information. In our experiments, we work with the Walsh-Hadamard basis. The 
basis is conformed by orthogonal discrete square waves, with values either +​1 or −​1. As our SLM is binary and 
works by reflection, positive and negative reflection values cannot be readily implemented. To address this, two 
approaches can be used. The first one consists of shifting and rescaling the Walsh-Hadamard matrices so all their 
entries consist of either 1 or 0 values7. The second one, which we call complementary sensing, consists of gener-
ating a pair of matrices, related to the Walsh-Hadamard matrix by a subtraction operation. It has been reported 
that the complementary scheme improves the signal-to-noise ratio of the measurements and its better suited to 
use CS strategies23.

The process goes as follows. We have a Walsh-Hadamard matrix, H, whose entries are either 1 or −​1. We cre-
ate the complementary pair H± =​ (E ±​ H)/2, where E represents a matrix with all entries equal to 1. By doing this, 

Figure 5.  Balanced single-pixel video imaging. We show multiple frames of a live video taken with our single-
pixel camera. In the top row, we show the frames acquired without using subsampling techniques. As the images 
consist of 64 ×​ 64 pixels, the 4096 measurements required to take a frame were performed in roughly 200 ms. In 
the middle row we show frames of the same scene acquired by subsampling the scene. In this case, we used 820 
patterns, which correspond to a 20% compression ratio. Each frame was acquired in 40 ms. In the lower row we 
show a CS reconstruction of the frames obtained before. In this case, the quality drop is almost negligible and 
we still can record a video at 25 Hz. The numbers shown correspond to the frame number inside the video.
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we have one matrix H+ where the original 1 entries preserve their value, but the −​1 entries become zero valued. 
In the other matrix H−, unity-valued entries will become zero valued, and −​1 entries will have a value of 1. It is 
trivial to prove that all three matrices are related by H =​ H+ −​ H−. As the SPI measuring process is linear, one can 
acquire the projection of the object under the Walsh-Hadamard basis by measuring the projections under H+ and 
H− and calculating the difference between them.

This procedure reduces the noise introduced by light coming from outside the scene under study. Consider an 
object, X, expressed as a square matrix. Under homogeneous illumination (P0), and considering the parasite light as 
homogeneous additive noise (N) added after object illumination, the light distribution in the DMD plane will be given 
by F =​ X · P0 +​ N · E. Here the products are done element-wise. The measured intensities will be I± =​ P0 · X · H± +​ N · E · H±. 
Given the nature of the Hadamard matrices, E · H =​ 0, and by using this property it is easy to prove that the subtraction 
of the two signals is given by ∆ = − = ⋅ ⋅ − + − = ⋅ ⋅+ − + −I I I P X H H P X H( ) N N

0 2 2 0 .

Compressive Sensing.  CS provides a method to acquire a picture with M <​ N measurements, with quality 
determined by the measurement ratio M

N
. By choosing a measurement basis Φ =

��
{ }m m

M
1, we can express the measure-

ment process as

= Φ ⋅ �
��y x, (1)

where ��y is a M ×​ 1 vector containing the measured projections and Φ​ is a M ×​ N matrix called sensing matrix. As 
the transformation from x to ��y entails a dimension reduction, there is loss of information in the process. Given 
that M <​ N, there exist infinite ′x  that satisfy Φ ⋅ ′ =� ��x y. CS theory demonstrates that it is possible to recover an 
approximation to x17.

To recover the image x one needs to solve the underdetermined matrix relation obtained after the measure-
ment process. There are several methods to solve this problem, such as basis pursuit or Dantzig Selector34. When 
working with images, it is also possible to use a model based on the gradient sparsity. Once the discrete gradient 
of the image is estimated, it is possible to minimize the total variation (TV), which works as a merit function of 
the gradient, and recover the approximated object. In our experiments, we use the Min-TV with equality con-
straints algorithm35, that solves the following problem

Figure 6.  Balanced detection compressive imaging. (a) comparison between the correlation coefficient 
of several images with a reference lossless image in both balanced and non-balanced approaches. Vertical 
and horizontal dotted lines are included to ease the comparison between both approaches. For the same 
compression ratio, the balanced approach provides higher fidelity. In order to get the same quality, the non-
balanced approach needs to perform more acquisitions. In (b) we show both reference images for balanced and 
non-balanced imaging, and different undersampled images (with 10%, 50% and 90% compression ratios).
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′ Φ ⋅ ′ = .� � ��x x ymin TV( ) subject to (2)

Image comparison by correlation coefficient.  In order to compare image acquisitions, we have used 
the correlation coefficient of the undersampled images with a reference image. This coefficient ranges from zero 
to one, depending on the resemblance of both images. Our reference image is always the image acquired without 
undersampling (i.e. measuring at the Nyquist-Shannon criterion). The correlation coefficient is calculated with 
the corr2 Matlab function

= ∑ ∑ − ⋅ −

∑ ∑ − ⋅ ∑ ∑ −
r

A A B B

A A B B

( ) ( )

( ) ( ( ) ) (3)

m n mn mn

m n mn m n mn
2 2

where A and B are the image matrices with indexes m and n. A, B represent the mean of the elements in A and B.
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