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Inflammation has a central role in the progression of coronary atherosclerosis. Recent 
developments in cardiovascular imaging with the advent of hybrid positron emission 
tomography have provided a window into the molecular pathophysiology underlying 
coronary plaque inflammation. Using novel radiotracers targeted at specific cellular pathways, 
the potential exists to observe inflammation, apoptosis, cellular hypoxia, microcalcification 
and angiogenesis in vivo. Several clinical studies are now underway assessing the ability 
of this hybrid imaging modality to inform about atherosclerotic disease activity and the 
prediction of future cardiovascular risk. A better understanding of the molecular mechanisms 
governing coronary atherosclerosis may be the first step toward offering patients a more 
stratified, personalized approach to treatment.
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Advances in cardiovascular molecular imaging offer the potential to unravel the complex in vivo 
cellular pathophysiology of a variety of cardiovascular disorders. Through a greater understanding 
of the pathogenesis of cardiovascular disease, molecular imaging may highlight novel risk factors 
and key targets for future treatments. Whereas traditional structural imaging modalities yield a 
generic approach to patient care, molecular imaging modalities give complementary information 
at the cellular level, informing about disease activity with the potential to facilitate personalized 
disease monitoring and therapy.

Atherosclerosis is a chronic inflammatory disease characterized by the formation of lipid-rich 
plaques. As early as the mid-19th century, Ruldoph Virchow advocated the role inflammation 
plays in the formation of Grützbalg (grit follicles) within the coronary vasculature, namely that 
‘inflammation of the inner arterial coat be the starting point of atheromatous degeneration’ [1]. Our 
understanding of the pro-inflammatory mechanisms associated with atherosclerotic events subse-
quently expanded through pathological studies of autopsy specimens and preclinical models [2–5]. 
These demonstrated inflammation to be a central process at almost every stage of atherosclerosis 
but particularly important in the precipitation of acute plaque rupture, with macrophages secret-
ing matrix metalloproteinases that serve to weaken the fibrous cap. Inflammation is, therefore, a 
key feature of plaques at risk of rupture in addition to other related characteristics, such as a large 
necrotic core, a thin fibrous cap, angiogenesis and microcalcification. Each represents a potential 
imaging target, with molecular imaging well placed to measure noninvasively the in vivo activity 
of these key processes.
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The emergence of hybrid coronary positron 
emission tomography (PET) in conjunction 
with computed tomography (CT) or magnetic 
resonance offers the opportunity to investigate 
pathophysiological processes on a molecular 
scale. Potentially any pathological feature can 
be targeted depending on the availability of 
an appropriate radiopharmaceutical. Current 
approaches have made use of established radi-
otracers developed for oncological imaging. 
However, the potential exists to create bespoke 
tracers targeted specifically at high-risk athero-
sclerotic plaque features, thereby providing even 
more accurate imaging. This review will inves-
tigate current and emerging PET tracers that 
hold promise in resolving the activity of these 
key processes underlying events and the progres-
sion of atherosclerosis in humans. It will also 
examine some of the technological challenges 
that will need to be met in order to translate 
these approaches in to the coronary arteries.

18F-fluorodeoxyglucose & macrophage 
metabolism
2-(18F)-f luoro-2-deoxy-d-glucose (18F-FDG) 
is a glucose analog that enters cells express-
ing glucose transporters (known as solute 
carrier family 2, facilitated glucose transport 
member [GLUT] 1 and 3) by facilitated dif-
fusion. It accumulates in the cytosol following 
phosphorylation by hexokinase to 18F-FDG-6-
phosphate. The stoichiometry of 18F-FDG-6-
phosphate prohibits further breakdown via the 
glycolytic pathway leading to a rise in concen-
tration of 18F-FDG-6-phosphate that is propor-
tional to the metabolic demand of the cell  [6]. 
Macrophages are the key cellular constituent of 
active, inflamed atheroma and have increased 
metabolic demands compared with surround-
ing cells in the vasculature. Ex vivo studies 
have demonstrated a close histological correla-
tion between 18F-FDG uptake and macrophage 
density [7]. Macrophage density correlates with 
plaque progression and the size of the necrotic 
core [8,9]. Preclinical mouse models suggest that 
18F-FDG may signal inflammation during the 
early phase of atherogenesis at the point of foam 
cell formation, while clinical studies have sug-
gested uptake is less evident once macroscopic 
calcium has formed within the plaque  [10,11]. 
Satomi et al. reported that the polarization of 
macrophages toward a pro-inflammatory M1 
subtype results in increased tritiated fluoro-
deoxyglucose (3H-FDG) uptake through the 

upregulation of glucose transporters compared 
with a reparative M2 subtype  [12]. A two-fold 
increase in 3H-FDG was associated with an 
increase in GLUT-1 and 3 and hexokinase gene 
expression in M1 macrophages. Additionally, 
there was downregulation of glucose-6-phos-
phorylase, the reverse reaction of hexokinase. 
The same was not observed in M2 macrophages, 
which instead appear to decrease their depend-
ence on glycolysis, perhaps in order to gain a 
survival advantage in the hostile inflammatory 
environment [13].

The pivotal work of Rudd et al. demonstrated 
that 18F-FDG uptake can be visualized in the 
atheromatous walls of the carotid artery [14]. In 
eight patients with symptomatic carotid lesions, 
there were higher estimated 18F-FDG accumula-
tion rates compared with asymptomatic lesions 
and no significant uptake in angiographically 
normal arteries. The carotids are especially 
well suited to vascular PET imaging because of 
their relatively large caliber, stationary nature 
and because vascular tissue is readily available 
for histological validation following endarter-
ectomy. Optimization of scanning protocols to 
determine the appropriate injected dose, circula-
tion time and prescan fasting glucose have been 
conducted allowing quantification of carotid 
18F-FDG with excellent scan-rescan reproduc-
ibility  [15–18]. This means that relatively few 
patients are required for clinical trials testing the 
anti-inflammatory effects of novel medication. 
This has facilitated the use of FDG–PET as a 
surrogate end point in Phase II clinical trials of 
novel pharmaceuticals, with the results closely 
monitoring the outcomes of subsequent studies 
focusing on clinical end points [19–21]. Whether 
this approach will expedite the translation of 
drug discovery toward successful Phase III trials 
remains to be seen with several Phase IIa studies 
using 18F-FDG uptake as a primary end point 
due to report later this year.

Translating 18F-FDG PET in to the coronary 
arteries is more challenging owing to the lim-
ited spatial resolution of clinical PET platforms 
and the impact of coronary motion. Assessment 
of the proximal coronary arteries and aortic 
root appears feasible with increased uptake 
observed in patients with recent acute coronary 
syndrome  [22]. However, more detailed analy-
sis of the mid and distal coronary vasculature 
is limited by spillover of signal from the myo-
cardium, such that even with optimal myocar-
dial suppression protocols, half of all coronary 
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territories cannot be interpreted [23,24]. Clinical 
studies examining alternative methods for reduc-
ing physiological 18F-FDG uptake in the myo-
cardium are under investigation in the hope 
that they will improve visualization of coronary 
activity. Combined with the multitude of factors 
that may account for increased 18F-FDG uptake, 
these limitations have shifted attention to find 
more specific radiotracers that target inflamma-
tory pathways, however none of these have made 
it through to clinical application to date.

18F-FDG & biomarkers of inflammation
The association between 18F-FDG uptake and 
other biomarkers of inflammation offers insight 
into the complex processes governing athero-
sclerotic progression. Following the publication 
of the JUPITER trial, interest in evaluating the 
inflammatory state of atherosclerotic plaques 
continues to grow [25]. The use of high sensitivity 
C-reactive protein provides a snapshot of inflam-
matory activation within the body; however, it 
cannot localize this activity to the vasculature 
let alone specific vascular territories or plaques. 
By contrast, colocalization of 18F-FDG to the 
arterial wall gives a clearer signal of focal athero-
sclerotic inflammation. Unraveling the complex 
relationship between systemic inflammation 
and 18F-FDG uptake is challenging, especially 
as plaque rupture events following myocar-
dial infarction may exacerbate atherosclerotic 
inflammation at remote sites [26,27]. Importantly, 
18F-FDG plaque imaging appears more sensitive 
in detecting the anti-inflammatory effects of 
novel atherosclerosis therapies making it a use-
ful end point for Phase II clinical trials  [20,28]. 
From a clinical standpoint, identifying 18F-FDG 
uptake within carotid arteries improves cardio-
vascular risk stratification independent of high 
sensitivity C-reactive protein suggesting that 
18F-FDG offers incremental information to the 
assessment of atherosclerotic inflammation [29].

Preclinical 18F-FDG imaging has provided a 
deeper understanding of plaque pathophysiol-
ogy and temporal fluctuations in plaque activ-
ity. Murine models using ApoE-/- mice fed on 
a high-fat western diet exhibit higher 18F-FDG 
uptake within the descending aorta at 16 weeks. 
Lipid-rich plaques that display focal regions of 
18F-FDG uptake recruit macrophages through 
the expression of VCAM-1. Associations between 
plaque inflammation and subsequent calcifica-
tion have also been observed using 18F-FDG. 
18F-FDG highlights regions of the vasculature 

associated with osteopontin, a marker of early 
vascular calcification, which has prognostic sig-
nificance in human coronary atherosclerosis [30]. 
High osteopontin levels are associated with 
increased major adverse cardiovascular events 
following myocardial infarction, stable coronary 
artery disease and in patients undergoing coro-
nary intervention [31–33]. Over 5-years follow-up, 
focal 18F-FDG uptake identified locations of sub-
sequent calcium deposition and calcium progres-
sion in the thoracic aorta. While plaques with 
novel calcification were associated with increased 
arterial inflammation, regions of dense calcifica-
tion were associated with a decreased level of 
inflammatory activity [34,35]. Understanding the 
exact link between inflammation and calcifica-
tion in atherosclerosis is a key topic of investiga-
tion, which may be aided by 18F-fluoride PET 
imaging and is discussed in greater detail below.

Link between inflammation & calcification
Vascular calcification is a key process in athero-
sclerosis although its exact role remains incom-
pletely understood. Large macroscopic calcific 
deposits can be visualized on CT and are usually 
associated with advanced stable atherosclerotic 
plaque. Nevertheless, CT-determined calcium 
predicts future adverse events presumably on 
the basis that patients with high calcium scores 
will also have more noncalcific plaques at risk of 
rupture and causing an event. By contrast, the 
early stages of calcification appear to be associ-
ated with plaque instability and increased risk 
of rupture and events. Ruptured and culprit 
plaques often demonstrate regions of microc-
alcification on histopathology. In keeping with 
this hypothesis low-density calcium deposition 
on CT is associated with an increased risk of 
events compared with high-density calcium [36]. 
Similarly, the early stages of ‘spotty’ macrocalci-
fication on CT appear to mark out a higher risk 
stage of the disease than the larger macroscopic 
deposits found in stable plaques [37]. CT imaging 
however, is unable to resolve true microcalci-
fication, prompting investigation of alternative 
approaches with the capacity to detect this early 
form of calcium.

The association between plaque inflammation 
and subsequent calcification has been studied 
using molecular imaging in preclinical models 
of atherosclerosis. High-resolution molecular 
imaging with a bisphosphonate-derived near-
infrared imaging agent (OsteoSense) identi-
fies distinct regions of calcification activity 
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Figure 1. 18F-sodium fluoride and plaque rupture. Patient presenting with acute myocardial 
infarction. (A) Computed tomography demonstrating high-risk features (spotty calcification and 
low attenuation plaque) in that region. (B & C) The culprit plaque also demonstrated increased 
18F-fluoride positron emission tomography activity on hybrid positron emission tomography/CT 
image.
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in the vasculature that can be compared with 
macrophage staining  [38]. Indeed, OsteoSense 
binds preferentially to nascent, nanocrystal-
line deposits of hydroxyapatite that coalesce to 
form spheres of microcalcification of <50 μm. 
Microscopic analysis of these particles reveals 
a range in size from 5 μm down to individual 
matrix vesicles that are only 100 nm [39]. Cell-
derived matrix vesicles containing nanocrystals 
of hydroxyapatite are exocytosed from the cell 
membranes of macrophages and vascular smooth 
muscle cells. These are then released into the 
extracellular space where they form a nidus for 
microcalcification, which then aggregate to form 
larger macroscopic deposits [40,41]. This process is 
most evident in the necrotic core where nuclea-
tion and calcification growth occur in regions 
of collagen degradation  [41]. Interestingly, 
hydroxyapatite may also be a contributor to the 
inflammatory process, rather than merely an end 
product. Ectopic needle-shaped hydroxyapa-
tite crystals stimulate IL-1β/IL-18-dependent 
inflammatory pathways  [42]. Additionally, if 
pairs of microcalcified spheres migrate into the 
fibrous cap, increases in local mechanical stresses 
due to interfacial debonding can lead to plaque 
rupture [43].

18F-sodium fluoride & microcalcification
(18F)-sodium fluoride (18F-fluoride) has been 
used as an oncological radiotracer for the past 
40 years. 18F-Fluoride binds to hydroxyapatite 
by substitution with a hydroxyl group on the 
surface of the hydroxyapatite matrix to form 
fluoroapatite (Ca

10
[PO

4
]

6
F

2
) [44]. As hydroxyapa-

tite is the dominant in vivo form of crystalline 

calcium, 18F-fluoride has been used to define 
areas of increased bone activity with greater 
accuracy in detecting bone metastases than other 
conventional imaging techniques [45].

Hydroxyapatite is also the major component 
of vascular calcification leading to interest in 
using 18F-fluoride as a marker of vascular calcifi-
cation activity. Early studies demonstrated areas 
of increased PET uptake in the aorta, the valves 
of patients with aortic stenosis and the coro-
nary arteries [24,46–49]. The latter is of particular 
interest with 18F-fluoride localizing to individual 
plaques with excellent S/N and very low uptake 
in the surrounding myocardium [50,51].

18F-f luoride appears to provide different 
information to CT calcium scoring. Detailed 
electron microscopic analysis of carotid endar-
terectomy specimens has shown that fluoride, 
like OsteoSense, binds preferentially to regions 
of microcalcification compared with the mac-
roscopic deposits observed using CT  [52]. This 
perhaps ref lects the greater exposed surface 
area of hydroxyapatite in these nanocrystalline 
areas [52]. Indeed, 41% of patients with coronary 
artery calcium scores >1000 do not have any evi-
dence of increased 18F-fluoride uptake  [24]. As 
previously discussed, microcalcification is a key 
component of high-risk atherosclerotic plaques 
and consistent with this, plaques with increased 
18F-fluoride uptake have been shown to have 
multiple high-risk characteristics on histology 
and intravascular ultrasound including inflam-
mation, positive remodeling, microcalcification 
and a large necrotic core (Figure 1). Moreover, 
in patients with recent myocardial infarction 
increased 18F-fluoride uptake has been observed 
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in >90% of the culprit plaques responsible for 
that event [23]. The clinical challenge is to now 
determine whether identification of microcalcifi-
cation in the coronary arteries using 18F-fluoride 
PET can improve risk stratification in individu-
als at high risk of future coronary thrombotic 
events  [53]. This hypothesis forms part of the 
on going PRE18FFIR study (ClinicalTrials.
gov: NCT02278211). Briefly, this multicenter 
PET study will recruit 700 participants with 
multivessel coronary artery disease and recent 
myocardial infarction to perform 18F-fluoride 
imaging to evaluate whether increased coronary 
uptake can predict future cardiovascular events 
over 2-years follow-up.

Developments in coronary artery PET
The development and expansion of PET will 
depend on the development of novel trac-
ers targeting a range of different pathological 
processes (Figure 2). A number of tracers are in 
development with many centered on providing 
more specific imaging of inflammation, while 
others have been targeted to related processes 
associated with active atheroma, disease progres-
sion and plaque rupture (Table 1). In addition, 
improvements in spatial resolution and tech-
niques for correcting cardiac motion will be 
required if these new tracers are to prove of use 
in the small and highly mobile coronary arteries.

Novel tracers
●● 68Ga-DOTATATE & macrophage 

somatostatin receptors
Somatostatin receptors are G-protein-coupled 
receptors that are expressed in a wide variety 
of tissues. 68Ga-DOTATATE binds to SSTR2, 
which are expressed by the lipopolysaccharide-
activated macrophages associated with plaque 
vulnerability  [67]. Whereas 18F-FDG is ham-
pered by diffuse myocardial uptake that often 
obscures coronary activity, 68Ga-DOTATATE 
permits clearer detection of macrophage accu-
mulation in coronary plaques (Figure 3). In a 
retrospective analysis in 70 patients with neu-
roendocrine tumors, 44% had colocalization 
of 68Ga-DOTATATE to atheromatous plaques 
in the proximal coronary arteries  [54]. While 
in another retrospective study of 44 cancer 
patients 68Ga-DOTATATE again accumu-
lated in individual coronary lesions suggesting 
that it may ultimately prove a better marker 
of inflammation activity in these vessels that 
18F-FDG [55]. This is the subject of the ongoing 

prospective VISION study (ClinicalTrials.gov: 
NCT02021188).

●● 11C-PK11195 & translocator 
protein/peripheral benzodiazepine 
receptors
(11C)-PK11195 is an isoquinoline-derived ligand 
of the TSPO, previously known as the periph-
eral benzodiazepine receptor that is found on 
the outer mitochondrial membrane. TSPO is 
involved in cholesterol transport across the mito-
chondrial intermembrane space and regulation 
of the mitochondrial respiratory chain. This crit-
ical role means that TSPO is widely expressed 
in cardiac tissues, however, the highest density 
of receptors are found in activated macrophages 
undergoing bursts of oxidative stress [68,69]. In a 
proof of concept study, Pugliese et al. visualized 
11C-PK11195 uptake in six patients with large 
vessel vasculitis in the aortic arch and carotid 
arteries  [70]. Symptomatic patients with active 
disease had higher signals in the vascular wall 
compared with asymptomatic patients with 
quiescent vasculitis. The same group performed 
11C-PK11195 imaging in patients with carotid 
atherosclerosis demonstrating increased tracer 
uptake in the ipsilateral culprit carotid plaque 
of patients post stroke/transient ischemic attack 
(TIA) [56]. In eight patients undergoing carotid 
endarterectomy, ex vivo autoradiography using 
3H-PK11195 confirmed radiotracer colocaliza-
tion with CD68+ macrophages. While encourag-
ing, wider application of 11C-PK11195 may prove 
limited due to variance in expression of a com-
mon polymorphism in the TSPO gene (rs6971) 
that affects the binding affinity of ligands and 
the quantification of TSPO derived PET tracers 
in approximately 30% of Caucasians [71]. Larger 
prospective clinical outcome studies will need 
to account for the frequency of TSPO poly-
morphisms in the population if accurate in vivo 
measurements are to be used for diagnosis and 
monitoring of therapeutic effects [57].

●● 18F-fluoro-d-mannose & M2 macrophages
Mannose, an isomer of glucose, also serves as a 
substrate for glycolysis in metabolically active 
macrophages. Similar to glucose, it is incorpo-
rated into cells through glucose transporters, but 
also binds to mannose receptors expressed on M2 
macrophages [72]. As such, radio labeled 2-deoxy-
2-(18F)fluoro-d-mannose (18F-FDM) has been 
explored as a viable alternative to 18F-FDG for 
imaging inflammation in atherosclerosis  [59]. 
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Figure 2. Radiotracer accumulation in atherosclerotic plaques as markers of inflammation, 
hypoxia, apoptosis and microcalcification activity. Inflammatory pathways can be visualized 
in vivo using specific radiolabeled positron emission tomography ligands. 18F-FDG accumulates in 
activated macrophages, but can also be influenced by local hypoxia. Other radiotracers, such as 
68Ga-DOTATATE and 11C-PK11195, may be more specific markers of macrophage activity than 18F-FDG. 
An imbalance in metabolic substrates reduces the oxygen tension in the plaque promoting necrosis 
and apoptosis of macrophages and smooth muscle cells. Generation of reactive oxygen species, 
externalization of phosphatidylserine and the extrusion of microcrystalline hydroxyapatite can be 
detected by 18F-FMISO, 68Ga-Annexin 5 and 18F-fluoride, respectively. 
FDG: Fluorodeoxyglucose; FDG-p: Fluorodexoyglucose-6-phosphate; FMISO: Fluoromisonadazole.
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This preclinical study highlighted an improved 
pharmacokinetic profile using 18F-FDM com-
pared with 18F-FDG, which resulted in higher 
levels of 18F-FDM uptake in macrophages, pre-
dominantly due to less inhibition of hexokinase 
activity than is observed with 18F-FDG. Clinical 
translation of these results is now awaited.

Detection of M2 macrophages may serve as 
an indirect measure of plaque hemorrhage, since 
macrophage clearance of intracellular iron and 
hemoglobin generates an M2 subtype character-
ized by high mannose receptor expression  [72]. 
Intraplaque hemorrhage results in rapid expan-
sion of the necrotic core following the sudden 
release of cholesterol-rich erythrocyte mem-
branes. It is therefore an important contributor 
to episodic plaque growth and may account for 
the sudden transformation of stable coronary 
artery disease to active disease state at increased 
risk of rupture [73].

●● 18F-fluoromisonidazole & hypoxia
Hypoxia is a key feature of both the expand-
ing necrotic core and atherosclerotic plaque 
growth. In early plaques oxygen freely dif-
fuses across the initima and the adventitial 
vasa vasorum. However with plaque expansion, 
this oxygen diffusion falls [74]. Combined with 
the increasing metabolic demand from activated 
macrophages, an oxygen debt builds up that 
renders these advanced atherosclerotic plaques 
severely hypoxic. 18F-FDG may provide an indi-
rect measure of oxygen sufficiency as expression 
of reactive oxygen species and hypoxia induc-
ible factors stimulate 18F-FDG uptake  [75,76]. 
However, radiolabeled nitroimidazoles offer 
greater specificity as they accumulate in tissues 
that lack oxygen, acting as an electron carrier in 
the mitochondrial respiratory chain. Uptake of 
nitroimidazoles is inversely proportional to the 
oxygen tension, such that 3H-fluoromisonidazole 
uptake increases by 20 fold at low partial pres-
sures of oxygen  [77]. 18F-f luoromisonidazole 
(18F-FMISO) has been used extensively in tumor 
imaging and is now under investigation in ather-
osclerosis [62]. In a preclinical study, 18F-FMISO 
uptake colocalized with pimonidazole defined 
regions of hypoxia that were nestled in deep in 
macrophage-dense cores. By contrast, superficial 
macrophages in a subintimal location were not 
hypoxic and less inflamed. Clinical studies with 
a similar nitroimidazole analog ([18F]-2-(4-((2-
nitro-1H-imidazol-1-yl)methyl)-1H-1,2,3-tria-
zol-1-yl)propan-1-ol) have recently been reported 

demonstrating increased uptake in patients with 
carotid stenoses [63].

●● 18F-fluciclatide & αVβ3 integrin receptors
Angiogenesis occurs in response to atheroscle-
rotic plaque hypoxia, with fragile microvessels 
sprouting from the adventitial vasa vasorum to 
provide the necrotic core with a new blood sup-
ply. These thin-walled vessels have poor struc-
tural integrity and are prone to leakage, rupture 
and ultimately hemorrhage in to the plaque [78]. 
The vascular endothelial cells responsible for 
establishing this microvasculature express 
α

V
β

3
 integrin, part of the integrin superfamily 

of heterodimeric receptors responsible for cell 
adhesion and signaling. The α

V
β

3
 receptor is 

upregulated in immature endothelial cells as 
a response to angiogenic guidance molecules. 
The arginine–glycine–aspartate (RGD) motif 
has allowed investigators to target the α

V
β

3
 

binding site to inhibit atherosclerotic progres-
sion [79]. 18F-Fluciclatide successfully visualizes 
tumor angiogenesis and can detect treatment 
responses to chemotherapy  [80,81]. Preclinical 
experiments with a similar analog, 18F-RGD-K5, 
demonstrated a moderate correlation between 
PET uptake and endothelial cell staining of 
ex vivo carotid plaques  [65]. Our group has 
recently performed the first prospective clinical 
study (ClinicalTrials.gov: NCT01813045) using 
18F-fluciclatide to assess aortic atherosclerotic 
uptake, with data due to be reported shortly [64].

●● 68Ga-annexin A5 & macrophage apoptosis
The lipid-rich necrotic core is a key feature of 
the vulnerable plaque and is derived from the 
death of macrophages and smooth muscle cells 
within the plaque due to a combination of apop-
tosis and necrosis. Externalization of phosphati-
dylserine onto the extracellular surface of the 
plasma membrane is an almost universal feature 
of apoptosis. This makes it a useful target for 
detection using annexin-based radiotracers [82].

Clinical SPECT imaging of atherosclerotic 
apoptosis using 99mTc-annexin A5 was first 
performed by Kietselaer et al. in four patients 
prior to carotid endarterectomy. In two patients 
who had suffered a recent TIA, the ipsilateral 
carotid artery showed annexin A5 uptake  [83]. 
Interestingly, the other two patients with remote 
TIAs (3–4 months) had no observable annexin 
A5 uptake. Histology demonstrated a correla-
tion between annexin A5 binding and both mac-
rophage staining and intra-plaque hemorrhage. 
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Figure 3. Coronary radiotracer uptake in calcified proximal left anterior descending arteries. 
Comparison of different radiotracers in the proximal left anterior descending artery of three 
different patients. The relatively low diffuse 2-(18F)-fluoro-2-deoxy-d-glucose signal (A) contrasts with 
enhanced focal uptake of 68Ga-DOTATATE (modified with permission from [22]) (B) and 18F-fluoride 
(reproduced with permission from [55]) (C). Individual radiotracers can discriminate between the 
upregulation of different molecular pathways in macroscopically similar plaques.

A B C
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Development of the PET tracer 68Ga-annexin A5 
has demonstrated promise in murine models of 
myocardial infarction. However, translation into 
clinical studies has been delayed because of sub-
optimal pharmacokinetics with accumulation in 
the liver and kidneys [61]. Interestingly, annexin 
A5 also colocalizes with matrix vesicles contain-
ing hydroxyapatite in atherosclerosis, indicating 
that cell death may be an important trigger to 
microcalcification [40].

Improving image quality
●● Technical aspects of coronary PET imaging

Clinical application of PET imaging to coro-
nary atherosclerosis will require technical 
improvement with respect to spatial resolu-
tion and motion correction. Clinical PET has 
a fundamental limit of spatial resolution in 
the range of 4–5 mm for 18F-radiotracers. This 
means assessment of the coronary arteries with 
a luminal diameter of 2–5 mm is at the very 
limit of the capabilities of current clinical PET 
systems. This is a particular problem because 
of the complex motion of the coronary vessels, 
which can displace the right coronary artery by 
as much as 20 mm [84]. Visualizing and quan-
tifying radiotracer uptake on this scale is addi-
tionally confounded by partial volume effects. 
Namely, the signal increases when surrounded 
by areas of high activity (e.g., myocardium with 
18F-FDG) and attenuates when surrounded by 
areas of low activity (e.g.,  the lung with most 
tracers) [85]. This combination of image blurring 
(limited spatial resolution) and partial voluming 
(distribution of signal across voxels) can result 
in discrepancy between fused PET and CT data 

sets, requiring careful coalignment to delineate 
coronary artery segments with increased radi-
otracer uptake. ECG gating of the PET data can 
help substantially, but necessitates discarding 
much of the data resulting in reduced counts 
and noise. Cardiac motion correction algorithms 
that make use of all of the data are emerging and 
appear to improve the accuracy of coregistra-
tion [86,87]. A recent feasibility study has found 
that these algorithms can improve signal detec-
tion in the coronary arteries by a third, with 
particular reductions in the blurring of the PET 
image and background noise [88].

●● PET magnetic resonance
Hybrid PET is now being explored in conjunc-
tion with magnetic resonance (MR) platforms. 
Given that radiotracer uptake resides in the vessel 
wall rather than the coronary lumen, PET/MR 
can potentially provide additional information 
on soft tissue characterization, of particular use 
in assessing carotid plaque characteristics  [89]. 
Ripa et al. performed the first feasibility study of 
carotid atherosclerotic imaging using 18F-FDG 
PET/MR in six patients without flow-limiting 
luminal stenosis [90]. There was a strong corre-
lation between PET/MR and PET/CT meas-
urements in the absence of significant disease. 
While the attenuation corrected CT and mag-
netic resonance maps differ across the two 
platforms, quantification of radiotracer uptake 
appears to be comparable  [91]. Enthusiasm for 
extending the use of PET/MR to assessment of 
the coronary vasculature in high-risk groups is 
tempered by the temporal and spatial resolution 
required for coronary imaging and compounded 
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by artifact from coronary stenting. However 
reliable imaging of the proximal vessels using 
MRA is now possible and one major potential 
advantage is the ability to continuously moni-
tor cardiac motion using magnetic resonance, 
which can then be used to correct the PET data. 
In addition, radiation exposure can potentially 
be reduced by more than half. Studies are cur-
rently underway to further explore the utility of 
cardiac PET/MR imaging (ClinicalTrials.gov: 
NCT01418313).

Conclusion & future perspective
While an increasing number of radiotracers are 
in development to specifically evaluate coro-
nary atherosclerosis, what steps are required to 
take PET imaging in to the primetime of non-
invasive coronary imaging? For aspirations to 
become a clinical reality, we believe the next 
decade of coronary artery PET research should 
focus on addressing three key objectives. First, 
can PET imaging identify individuals at risk 
of future cardiovascular events? Following the 

model established by other noninvasive imaging 
modalities, clinical outcome studies should eval-
uate whether PET imaging can stratify individu-
als at the greatest risk of myocardial infarction 
or cardiovascular death in primary and second-
ary disease settings. Second, can PET imag-
ing assess an individual’s response to therapy? 
Identifying whether individuals are responders 
or nonresponders to treatment is a perceived 
strength of molecular imaging and this may 
allow clinicians to ‘bridge the gap’ toward the 
delivery of personalized medicine, particularly 
when integrated with genetic profiling. Finally 
and possibly the highest bar for any imaging test 
to attain, can PET imaging assist in the selec-
tion of appropriate therapy to improve cardio-
vascular outcomes and save lives? This is likely 
to require randomized controlled trials testing 
whether the addition of molecular imaging can 
improve current paradigms. Ultimately if PET 
imaging is to have a clinical role this is likely to 
be in refining risk stratification in those already 
felt to be at risk.

EXECUTIVE SUMMARY
Inflammation & coronary atherosclerosis

●● 	Macrophage infiltration is a key precipitant of atherosclerotic plaque rupture and adverse cardiovascular events.

●● 	Activated macrophages secrete matrix metalloproteinases that weaken fibrous caps rendering atherosclerotic plaques 
prone to rupture.

Markers of macrophage activation

●● 	2-(18F)-fluoro-2-deoxy-d-glucose is a positron emission tomography (PET) tracer and glucose analog that is taken up 
cells with high metabolic requirements including vascular macrophages.

●● 	Although 2-(18F)-fluoro-2-deoxy-d-glucose PET has become a useful marker of vascular inflammation in the carotid 
arteries and aorta, physiological uptake by the myocardium currently limits its use in the coronary arteries.

●● 	More specific markers of macrophage activation including 68Ga-DOTATATE and 11C-PK11195 are being developed.
18F-sodium fluoride & microcalcification

●● 	Microcalcification is associated with high-risk atherosclerotic plaques and is believed to form in response to cell death 
and inflammatory processes within these lesions.

●● 	18F-fluoride binds preferentially to areas of vascular microcalcification, localizing to culprit and high-risk plaques in the 
coronary vasculature.

Technical improvements in coronary PET imaging

●● 	Motion correction algorithms improve the evaluation of radiotracer uptake in coronary arteries.

●● 	PET/magnetic resonance potentially allows for improved soft tissue characterization of atherosclerotic plaques in the 
carotid arteries and in the coronaries may facilitate enhanced motion correction while reducing radiation exposure.

Conclusion & future perspective

●● 	Hybrid PET can be used to observe the molecular pathways involved in coronary atherosclerosis and as a marker of 
disease activity.
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Hybrid PET provides insight into the patho-
physiology of atherosclerosis that until recently 
has been available only through autopsy exami-
nations. The rapidly expanding number of radi-
otracers for the assessment of atherosclerosis 
now allows us to measure directly the disease 
activity and to evaluate the molecular mecha-
nisms governing plaque progression and rupture. 
Translating this information into the clinic may 
ultimately provide a more stratified approach to 
risk prediction, ensuring that effective treatment 
is directed appropriately to those with active ath-
erosclerosis, who are most likely to gain benefit. 
However considerable work remains to test this 
important hypothesis.
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