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Abstract
Since the discovery of the first catalytic RNA in 1981, the field of ribozyme
research has developed from the discovery of catalytic RNA motifs in nature
and the elucidation of their structures and catalytic mechanisms, into a field of
engineering and design towards application in diagnostics, molecular biology
and medicine. Owing to the development of powerful protocols for selection of
nucleic acid catalysts with a desired functionality from random libraries, the
spectrum of nucleic acid supported reactions has greatly enlarged, and
importantly, ribozymes have been accompanied by DNAzymes. Current areas
of research are the engineering of allosteric ribozymes for artificial regulation of
gene expression, the design of ribozymes and DNAzymes for medicinal and
environmental diagnostics, and the demonstration of RNA world relevant
ribozyme activities. In addition, new catalytic motifs or novel genomic locations
of known motifs continue to be discovered in all branches of life by the help of
high-throughput bioinformatic approaches. Understanding the biological role of
the catalytic RNA motifs widely distributed in diverse genetic contexts belongs
to the big challenges of future RNA research.
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Introduction
Nowadays, the term ‘ribozyme’ to designate an RNA catalyst is 
used with the same implicitness as the term ‘enzyme’ has always 
been used for proteinaceous biocatalysts. The fact that RNA can 
cleave and ligate itself, that cleavage of the 5′-trailer of tRNA in 
tRNA processing is mediated by the RNA subunit of RNase P, 
that introns may undergo self-splicing, and that the spliceosome 
and, even more impressively, the ribosome are actually ribozymes 
meanwhile has found entry into the textbooks. The exciting field 
of research into RNA catalysis started more than 30 years ago and 
over the first two decades was dominated by the discovery and 
identification of several classes of ribozymes occurring in nature 
and the elucidation of their catalytic structures and mechanisms. 
Apart from the ribosome that catalyses the formation of the peptide 
bond, all ribozymes discovered so far in nature support cleavage or 
ligation of a phosphodiester bond or both. However, the powerful 
method of SELEX (systematic evolution of ligands by exponential 
enrichment), originally developed for the selection of high-affinity 
RNA binders (aptamers) from a random library1,2, was adapted to 
the selection of ribozymes (and, moreover, DNAzymes) to catalyse 
a broad range of reactions, thus greatly enhancing the spectrum of 
nucleic acid catalysis3,4. Over the years, an enormous amount of 
data were obtained on high-resolution structures and the mecha-
nisms of ribozymes5,6. All of this contributed to an understanding 
of ribozyme catalysis to an extent that has allowed engineering 
of ribozymes and DNAzymes with pre-determined functionality. 
Thus, the past decade has seen impressive developments based on 
the usage of known catalytic motifs in ribozyme-based switches for 
therapeutic and environmental diagnostics7 and more recently for 
control of gene expression8. In parallel, the ability of RNA to cata-
lyse a wide variety of chemical reactions has revitalised the RNA 
world hypothesis, a postulated period in the origin of life in which 
RNA was the main player, for one as carrier of genetic informa-
tion and for the other as catalyst9. Early life may have started with 
self-replicating RNA, and a great deal of effort has been invested 
in developing ribozymes capable of self-replication10 or, even more 
challenging, of catalysing RNA polymerisation11,12. The interest in 
RNA-world-relevant ribozyme activities continues, and one may 
well expect that there will be more to come.

In addition to ribozyme-based applications and RNA world scenar-
ios as central topics of current research in the field, the frequency 
of ribozymes in nature and their function are of ongoing interest. 
With the help of high-throughput bioinformatic approaches, new 
ribozymes or novel genomic locations of known catalytic RNA 
motifs in highly diverse genetic contexts have been discovered in 
all branches of life13–16, and current research addresses the question 
of their biological role.

The field of ribozyme research has changed the focus from dis-
covery and mechanistic/structural characterisation of ribozymes 
towards functional engineering into application. Nevertheless, 
the excitement of the first days of ribozyme discovery has car-
ried over throughout the years; the search for new ribozymes or 
just ribozyme locations continues in all kingdoms of life—in 
particular, in the human genome. Moreover, as mentioned above, 
the search for RNA-world-relevant ribozyme activities continues 
with unchanged curiosity. A number of excellent review articles 
have summarised the achievements in nucleic acid catalysis (for 

recent examples, see 5,17–19). Here, we will concentrate on recent 
discoveries and developments in the field to draw a concise picture 
of ribozyme research and RNA and DNA catalysis 35 years after 
its beginning.

Ribozyme-based switches
Over the past decade, it has become increasingly clear that the 
conformational flexibility of RNA is an important determinant 
of cellular function. In this regard, riboswitches located in the  
5′-untranslated region (5′-UTR) of specific mRNAs have gained 
much attention20. Composed of an aptamer and an expression 
platform, riboswitches regulate, in a ligand-dependent manner, 
gene expression at the level of transcription or, alternatively, 
translation. Binding of a specific ligand to the aptamer induces a 
conformational change in the expression platform, turning gene 
expression ON or OFF. Interestingly, this principle of allosteric 
regulation was used in the test tube before it was discovered in 
nature21. By combination of ribozymes with aptamers, ribozyme 
activity was rendered ligand dependent and, consequently, adjust-
able. RNA or DNA aptamers for binding to a desired molecule 
can be produced by SELEX and linked to the ribozyme via a 
communication module, a sequence that translates the binding 
event occurring in the aptamer unit into an activity-associated 
conformational change within the ribozyme part. Thus, ribozyme 
activity can be used as a readout for a binding event, which in 
the case of a multiple turnover reaction would even lead to signal 
amplification. Owing to their modular composition of DNAzyme or 
ribozyme and aptamer, such constructs were termed aptazymes22. 
Beyond the significance of aptazymes for medicinal diagnostics 
and therapy, RNA- and especially DNAzyme-based biosensors 
have gained importance as tools in environmental monitoring, in 
particular to detect environmental pollutants, such as toxic heavy 
metals, air- and water-borne microbes, and other toxins23.

Allosteric regulation of ribozyme activity has been used in a  
variety of contexts in the life sciences. Here, significant effort has 
been made in artificially modulating gene expression by a chemical 
signal. A ribozyme-based device positioned in the 5′- or 3′-UTR of 
a transcript and acting as a regulatory unit is partitioned between 
two functional conformations: one representing a ribozyme active 
state, the other an inactive state24,25. Ligand binding would sup-
port one of the two states, dependent on the specific design. As 
a consequence of ligand binding, translation is switched ON or 
OFF (Figure 1). The advantage is that the effector molecule (lig-
and) binds directly to the regulatory module, without the involve-
ment of proteins, such as transcription factors, which usually 
mediate genetic control. After some pioneering work in the early 
2000s, important progress has been made in engineering ligand- 
dependent ribozyme modules that switch expression of suitable 
reporter genes, often using the hammerhead ribozyme to control 
stability of the target transcript26. Furthermore, the genomic hepa-
titis delta virus ribozyme was engineered to control gene expres-
sion in mammalian cells and, when placed in tandem configuration, 
to construct a NOR logic gate device, demonstrating the modu-
lar composition of ribozyme-based RNA devices27. Moreover, 
the recently discovered twister ribozyme, a highly flexible and 
active endonucleolytic ribozyme, has been used for the develop-
ment of genetic switches28. In all of these approaches, stability of 
a target transcript is modulated through conditional control of the 
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cleavage activity of a ribozyme conjugated with a naturally occur-
ring or in vitro selected aptamer domain and placed at a suitable 
position of the transcript. Ribozyme-based genetic control has been 
performed in different organisms27,29,30 and in response to diverse 
ligands26,30–32. In addition to chemical signals (ligand-responsive 
switches), physical signals (light or temperature) can be used to 
control ribozyme activity in such devices33. Beyond regulation of  
bacterial or mammalian genes, the potential of ribozyme-based 
genetic switches for regulation of DNA and RNA viruses has 
been demonstrated34. In particular, genome replication, infectious  
particle production and cytotoxicity of adenoviruses, and (in the 
case of a measles virus) progeny infectivity and virus spread 
were reduced by aptazyme-mediated control of gene expression,  
paving the way for future applications in medicine and virology.

Important challenges in the engineering of ribozyme-based 
switches by modular composition are the link between ribozyme 
(actuator) and ligand-responsive aptamer (sensor) and the rela-
tively slow kinetics of secondary structure changes induced by 
ligand binding, thus limiting the regulatory potential of ribozyme-
based switches24,35. Therefore, it is all the more important that 
powerful protocols for in vivo selection and screening and for 
high-throughput cellular RNA device engineering have been  
developed24–26,28,36. In general ribozyme-based switches allow for 
the regulation of gene expression by up to 30-fold26,27. However, it 
can be anticipated that, based on novel protocols for RNA device 
engineering and on the ever-growing understanding of the underly-
ing structure-function relationships, novel designs will outperform 
those currently available.

DNAzymes
As mentioned above, protocols for in vitro selection of nucleic acid 
catalysts from random libraries have paved the way for the devel-
opment of artificial RNAzymes and DNAzymes. One of the most 
proficient DNAzymes, the so-called 10–23 motif, was selected 
back in 199737 and was fully characterised in 199838 and since then 
has been used as a scaffold in a large number of re-selections and 
rational designs. In addition, novel DNAzymes were selected from 
fully randomised libraries. The chemical repertoire of DNAzymes 
is surprisingly broad, ranging from cleavage of phosphodiester, 
ester, and amide bonds over supporting C-C bond-forming reac-
tions up to the repair of thymine dimers, peptide modifications, and 
others (excellently reviewed in 19). The recently achieved DNA-
catalysed amide hydrolysis39 is a good example of the challenges 
in DNAzyme development. Previous selection experiments had 
led to DNA-catalysed DNA phosphodiester cleavage instead of 
the desired amide hydrolysis40, and, under conditions that deliber-
ately avoided phosphodiester hydrolysis, no DNAzyme with activ-
ity for hydrolysis of an aliphatic amide bond was found. Instead, 
selection resulted in DNA catalysts that supported hydrolysis of 
carbonic acid esters or of aromatic amide bonds41. Only the inclu-
sion, in the selection experiment, of nucleotide derivatives with 
attached protein-like functional groups allowed the identification 
of DNAzymes capable of aliphatic amide hydrolysis (Figure 2)39.

There has also been some effort in elucidating the structure of 
DNA catalysts. A recent breakthrough is the crystal structure of an 
RNA-ligating deoxyribozyme at 2.8 Å resolution42. The structure 
gives new insight into the principles underlying DNA catalysis 

Figure 1. Ribozyme-based ON (a) and OFF (b) switches. The ribozyme-based device is positioned in the 5′-untranslated region (5′-UTR) of 
the transcript of interest. (a) In the absence of a specific ligand, the ribozyme is inactive and the ribosome-binding site (RBS) is sequestered 
in a double-stranded region; translation is switched OFF. Upon ligand binding, the ribozyme is activated and cleavage can take place. As a 
result, the RBS is set free and translation can proceed. (b) In the absence of a specific ligand, the ribozyme undergoes self-cleavage, thereby 
freeing the RBS and allowing translation to proceed. Binding of the ligand inhibits ribozyme activity, and translation is switched OFF.
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and allows conclusions to be drawn on the similarities and differ-
ences between RNAzymes and DNAzymes. Notably, the structure 
revealed that DNA can explore a wide range of conformations 
owing to a less restrictive sugar puckering as compared with 
RNA, and this feature compensates for the lack of the 2′-OH 
group that is present and structurally important in RNA (Figure 3).

In general, DNAzymes continue to be developed as functional 
modules in biosensors and computing circuits23,43–47 as well as 
for therapeutic use48. For example, recent progress was made 
in the development of variants of the 10–23 DNAzyme against 
hepatitis C virus49 and for the treatment of basal cell carcinoma50 
as well as in DNAzyme-mediated modification of allergen-induced 
asthmatic responses51.

XNAzymes
Very recently, an exciting new class of nucleic acid catalysts has 
emerged. Artificial endonuclease and ligase enzymes composed 
of synthetic genetic polymers, xeno nucleic acids (XNAzymes), 
were selected from random libraries in a method termed ‘cross-
chemistry selective enrichment by exponential amplification’  
(X-SELEX)52,53. As an essential prerequisite of the experiments, 
a modified DNA polymerase was engineered to tolerate the XNA 
building blocks (triphosphates) for polymerisation54. Four different 
XNAs (Figure 3) were used in the selection: arabino nucleic acids 
(ANAs), 2′-fluoroarabino nucleic acids (FANAs), hexitol nucleic 
acids (HNAs), and cyclohexene nucleic acids (CeNAs), and for all 
of them catalytically active species were found after 10 to 20 rounds 
of selection52. Moreover, a FANA metalloenzyme with activity for 
ligation of FANA was identified, thus establishing catalysis in an 
entirely synthetic system53. These results have strong implications 

for the emergence of life on earth, underscoring the possibility 
that genetic polymers with backbones other than ribose may have  
pre-dated the emergence of RNA and the RNA world.

Ribozymes in RNA world scenarios
The discovery of ribozymes has led to a renaissance of the RNA 
world theory, and ever since much effort has been put into the  
identification of ribozymes with useful activities in a time period 
when life was based on RNA functioning as both genome and 
genome-encoded catalyst9. Thus, a number of in vitro selections 
aimed at the identification of RNA catalysts supporting reac-
tions that might have been used by RNA world organisms were 
carried out. The synthesis of RNA certainly would have been a 
core activity, and ribozymes for reaction steps involved in RNA 
synthesis have been generated55. Recent success has been made 
in ribozyme-mediated triphosphorylation of RNA-5′-hydroxyl 
groups using cyclic trimethaphosphate as the energy source56,57, 
in ribozyme-mediated self-replication10,58, and in polymerisation 
of activated nucleotides11,12,59. In addition, other recently demon-
strated activities, such as ribozyme-mediated RNA processing60,61, 
recombination62,63, nucleotide addition64, and self-alkylation65 
(some of them illustrated in Figure 4), speak to the capacity of 
RNA to support a wide variety of reactions with relevance in RNA 
world scenarios.

New catalytic motifs
Until recently, 10 classes of ribozymes existing among contem-
porary organisms were known, the hammerhead and hairpin 
ribozyme probably being the most prominent examples. The years 
after the discovery of these ribozymes were filled with inves-
tigations into their structures and catalytic mechanisms, and it 

Figure 2. Selection of a DNAzyme from a random library under varying conditions. For more detail, see the ‘DNAzymes’ section of the 
main text.
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Figure 3. Structure of xeno nucleic acids in comparison with DNA and RNA. ANA, arabino nucleic acid; CeNA, cyclohexene nucleic acid; 
FANA, 2′-fluoroarabino nucleic acid; HNA, hexitol nucleic acid.

took a rather long time until the question for additional naturally  
occurring ribozymes was addressed. The first of the recently dis-
covered self-cleaving RNAs constituting the eleventh class of 
ribozymes is a small catalytic RNA motif, present in many species 
of bacteria and eukaryotes15. In keeping with the tradition of giv-
ing ribozymes names related to their secondary structure, the new 
motif was called twister because of its small yet complex consensus 
structure composed of three stems conjoined by internal and termi-
nal loops and a two-pseudoknot tertiary fold (Figure 5)66–68. With an  
in vivo cleavage rate of 1000 per minute, the twister ribozyme is one 
of the fastest self-cleaving ribozymes, and based on biochemical 
experiments in conjunction with molecular dynamics simulation, 
a mechanism involving general acid-base catalysis by a conserved 
active site adenine residue has been proposed69. This is in general 
agreement with the mechanisms of other self-cleaving ribozymes 
like the hairpin or the hepatitis delta virus ribozyme, which also 

require an adenine residue in the active site5. However, apparently 
there is a striking difference: whereas in the hairpin and hepatitis 
delta virus ribozyme, N1 of adenine is involved in catalysis, N3 of 
adenine was suggested as a strong candidate to act as general base 
in twister ribozyme-mediated self-cleavage69. This is particularly 
interesting because, if indeed N3 takes this role, it would expand the 
mechanistic repertoire of the small endonucleolytic ribozymes.

High-throughput bioinformatics assisted the identification of  
additional self-cleaving candidates named twister sister, pistol, 
and hatchet ribozyme70, which upon in vitro characterisation were 
shown to indeed be ribozymes70–72. All of these new ribozymes  
support a transesterification reaction yielding a 5′-hydroxyl group 
and a 2′,3′-cyclic phosphate at the cleavage site. A recent review 
of the chemistry and biology of self-cleaving ribozymes referring  
also to the four new ribozyme classes can be found in 5.
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Figure 4. Schematic presentation of ribozyme activities that might have played a role in the RNA world. a) self-modification,  
e.g. alkylation; b) 5’-terminal modification by ribozyme-supported addition of an activated building block; c) internal modification by 
ribozyme-supported fragment exchange; d) ribozyme-supported 5’ –triphosphorylation with trimetaphosphate; e) ribozyme-supported RNA 
polymerization with nucleoside-2’,3’-cyclic phosphates (in 3’→5’-direction) or nucleoside-5’-triphosphates (in 5’→3’-direction) as activated 
building blocks.
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Future prospects
Over the years, ribozyme research and nucleic acid catalysis have 
remained a very exciting field with unchanged potential for new 
discoveries. A strong focus of current research is the uncovering 
and understanding of the role that ribozymes play in biological 
systems. The first results on the influence of self-cleaving RNA 
structures on genetic control are just emerging. For example, 
the hammerhead, the hepatitis delta virus-like, and the twister 
ribozyme are widespread in nature and appear in rather diverse 
genetic contexts14,15,73. Ribozymes have been identified in intronic 
regions and mobile genetic elements, suggesting a role in pre-RNA 
and transcript processing13,74,75. Understanding this additional 
level of genetic control and regulation is one of the major chal-
lenges of current and future research in this area. The ongoing 
development of high-throughput bioinformatic approaches will 
further facilitate the identification of conserved structures and the 
evaluation of their genetic distribution. In addition to novel genetic 
locations of known ribozymes, new catalytic RNA motifs may 
be expected to be discovered, as shown recently for the twister, 
twister sister, pistol, and hatchet ribozymes15,70. In the area of 
ribozyme engineering by rational design and in vitro/in vivo evo-
lution, exciting results regarding new approaches for the artifi-
cial control of gene expression by allosteric ribozymes placed in 

non-translated regions of transcripts may be anticipated. Also, 
the search for ribozymes with RNA world relevant activities can 
be expected to continue with unbroken excitement. In this regard, 
the catalytic repertoire of XNAzymes52,53 will certainly be further 
explored.

Thirty-five years after the discovery of the first catalytic RNA, 
ribozyme research has not lost the intriguing and highly motivating 
flair of the first days. There are still many questions to be addressed 
and much is waiting to be discovered.

Abbreviations
FANA, 2′-fluoroarabino nucleic acid; SELEX, Systematic evolution 
of ligands by exponential enrichment; UTR, untranslated region; 
XNA, xeno nucleic acid. 
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Figure 5. Secondary structures of recently discovered ribozymes. The arrows denote the cleavage sites.
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