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ABSTRACT
....................................................................................................................................................

Introduction Genomic profiling information is frequently available to oncologists, enabling targeted cancer therapy. Because clinically relevant in-
formation is rapidly emerging in the literature and elsewhere, there is a need for informatics technologies to support targeted therapies. To this
end, we have developed a system for Automated Identification of Molecular Effects of Drugs, to help biomedical scientists curate this literature to
facilitate decision support.
Objectives To create an automated system to identify assertions in the literature concerning drugs targeting genes with therapeutic implications
and characterize the challenges inherent in automating this process in rapidly evolving domains.
Methods We used subject-predicate-object triples (semantic predications) and co-occurrence relations generated by applying the SemRep Natural
Language Processing system to MEDLINE abstracts and ClinicalTrials.gov descriptions. We applied customized semantic queries to find drugs tar-
geting genes of interest. The results were manually reviewed by a team of experts.
Results Compared to a manually curated set of relationships, recall, precision, and F2 were 0.39, 0.21, and 0.33, respectively, which represents a
3- to 4-fold improvement over a publically available set of predications (SemMedDB) alone. Upon review of ostensibly false positive results, 26%
were considered relevant additions to the reference set, and an additional 61% were considered to be relevant for review. Adding co-occurrence
data improved results for drugs in early development, but not their better-established counterparts.
Conclusions Precision medicine poses unique challenges for biomedical informatics systems that help domain experts find answers to their re-
search questions. Further research is required to improve the performance of such systems, particularly for drugs in development.
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INTRODUCTION
Precision oncology, or personalized cancer therapy, involves using the
molecular characteristics of a tumor and patient attributes to “person-
alize” a patient’s therapy, with the goal of providing more effective
and less toxic cancer treatment.1,2 Therapy can be personalized using
different factors, including a patient’s exposure history, preferences,
and clinical features. However, genomic profiling is emerging as a
popular personalization option that is affordable, increasingly available
to cancer patients, and can help select “genomically informed” tar-
geted therapy options. For example, over 300 clinical trials based on
targeted therapies (drugs that interfere with specific molecules known
to drive cancer growth and survival) are currently ongoing at The
University of Texas MD Anderson Cancer Center. To support clinical
decisions, domain experts must continuously review the published lit-
erature to develop and maintain a knowledge base of cancer-related
genes as well as the agents that target these genes or their associated
biological pathways. The MD Anderson Cancer Center Personalized
Cancer Therapy website (personalizedcancertherapy.org) is one such
publically available knowledge base that can serve as a reference for
clinicians.3 With both the number of genes and the relevant literature
growing rapidly, manual review of the available research is not feasi-
ble. Thus, there is a pressing need for informatics technologies to help
curators more rapidly retrieve and review relevant biomedical literature
in order to identify drugs that target aberrations in cancer-related
genes.2 To this end, we have developed a system for the Automated
Identification of Molecular Effects of Drugs (AIMED), which leverages

semantic information extracted by the SemRep4 and MetaMap5

Natural Language Processing (NLP) systems to impose constraints on
searches for evidence of clinically actionable drug-gene relationships.

BACKGROUND AND SIGNIFICANCE
The biomedical literature often contains answers to clinicians’ clinical
and research questions.6,7 However, the vast amount of literature ac-
cessible by online search tools (eg, MEDLINE/PubMed) as well as the
overwhelming number of documents that are often retrieved by
searches conducted with those tools, limit clinicians’ ability to find cor-
rect answers efficiently, thereby further limiting the extent to which
those answers can inform clinical decisions.8,9 Identifying relevant ci-
tations in MEDLINE/PubMed can be difficult, and advanced features
such as Boolean combinations of Medical Subject Headings (MeSH)
terms are seldom used.10,11 Traditionally, document retrieval systems
(eg, PubMed) return a list of documents in response to a user’s query.
However, this requires manual review of each document. Question an-
swering (QA) systems that return structured knowledge (eg, drug A
targets gene B) with links to supporting documents are a desirable al-
ternative to document retrieval systems.12–14

Due to interest in this area, the Text REtrieval Conference (TREC)15

added a QA track in TREC-8 (1999). The TREC Genomics Track
(2003–2007)16 focused solely on biomedical content and was one of
the largest challenge evaluations in biomedical QA. One task (imple-
mented in 2006 and 2007) was entity-based QA to retrieve passages
that specifically answered a question, with links to the original

Correspondence to Trevor Cohen and Elmer V Bernstam, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin

St., Suite 600, Houston, TX 77030, USA; trevor.cohen@uth.tmc.edu; elmer.v.bernstam@uth.tmc.edu. For numbered affiliations see end of article.
VC The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please

email: journals.permissions@oup.com

RESEARCH
AND

APPLICATIONS

758

Fathiamini S, et al. J Am Med Inform Assoc 2016;23:758–765. doi:10.1093/jamia/ocw030, Research and Applications



document.17,18 Analysis of the 2006 track showed that concept-based
query term normalization and Entrez Gene-based query term expan-
sion were associated with better performance.19 Essie, for example,
was the best-performing search engine in TREC Genomics 2003 and
one of the best in 2006, demonstrating the utility of Unified Medical
Language System (UMLS)-based query term expansion for biomedical
information retrieval.20 Overall, to provide accurate answers, most QA
systems draw upon curated knowledge sources (such as the UMLS)
and leverage the ensuing reasoning capabilities.13 In closed-domain
QA systems (such as biomedicine), using domain-specific ontologies
and reasoning can improve a system’s performance.21–24 For exam-
ple, normalizing query terms, expanding synonyms, post-filtering an-
swers, and including an option to specify answer entity types
(eg, genes, proteins, diseases, etc.) were associated with higher
precision.19,25,26

SemBT is a QA system based on semantic relations extracted from
biomedical literature using the SemRep NLP system4 that can answer
a wide range of questions, including those regarding gene-drug rela-
tionships.27 SemRep depends on both MetaMap5 and knowledge
encoded in the UMLS.28 However, the task-domain of precision oncol-
ogy is different than those that have motivated the development of
prior QA systems, because of the importance of emerging knowledge
– relevant drug-gene relationships may be recently documented, and
existing terminologies may not represent recently developed targeted
therapies, rendering ontology-based techniques less effective.
Furthermore, knowledge from both the literature (including clinical
and cancer biology) and other sources (such as clinical trials or phar-
maceutical companies) may be relevant, which presents additional
challenges for the technologies employed. For example, pharmaceuti-
cal companies do not expose their pipelines as structured data, and ex-
tracting that information from web pages complicates the process. In
this paper, we describe the design and evaluation of AIMED, a system
that aims to identify knowledge that is pertinent to clinical decisions in
precision oncology, using information extracted from the literature and
other sources with NLP.

METHODS
We designed and implemented a semantic QA system (Figure 1) based
on a large collection of predications that is publicly available in
SemMedDB,29 which is generated by SemRep processing of
MEDLINE. Semantic predications in SemMedDB are organized as sub-
ject-predicate-object triples, with subjects and objects being UMLS
concepts and predicates coming from the UMLS Semantic Network.30

Our semantic queries were developed to find “drugs that target
genes,” with oncogenes or their synonyms as the input and a list of
drugs potentially targeting those genes as the output. We represented
the verb “target” with the predicates INHIBITS, INTERACTS_WITH,
COEXISTS_WITH, which were chosen based on our knowledge of the

domain and the predication database31 and verified by our preliminary
results. Our reference set was the gene-drug knowledge base (hence-
forth: Gene Sheets) provided and maintained by the Sheikh Khalifa Bin
Zayed Al Nahyan Institute for Personalized Cancer Therapy (IPCT)
Precision Oncology Decision Support team, which included 12 cancer
biologists and clinicians (a full team description is available at http://
personalizedcancertherapy.org). Each gene sheet contained a list of
drugs that are relevant for tumors with alterations in that gene.

We created a modified version of SemRep (henceforth:
SemRep_UTH) by updating its data files to the then-latest version of
the UMLS (2013AB) (as explained in the SemMedDB_UTH Database
Outline32) and altering these data files to ensure that all drugs in the
National Cancer Institute (NCI) thesaurus were considered. In all exper-
iments, this version of SemRep was used to normalize gene and drug
names from our reference set to UMLS concepts.

To evaluate the utility of existing knowledge resources, we ran a
preliminary experiment (Experiment 1), in which, using SemRep_UTH,
we created a small database of predications derived from a sample of
MEDLINE abstracts and clinical trial descriptions (henceforth:
SemMedDB_Local) to run the query (see Supplementary Appendix for
details) on information from one Gene Sheet (PIK3CA) and compared
the results with those from the official version of SemMedDB.33

PIK3CA was chosen as the starting point for the project because it
was a current focus of discussion at IPCT, and a substantial amount of
related literature was already available. The results of this preliminary
experiment informed the construction of query parameters and con-
straints in the context of a development set consisting of four Gene
Sheets (PIK3CA, NRAS, KRAS, MET), which were chosen because they
were among the first Gene Sheets developed by the IPCT and, conse-
quently, were available for development purposes while the remainder
of the reference set was constructed. The development set also in-
cluded the downstream genes in their respective cancer-related path-
ways and their known synonyms, as specified in each respective Gene
Sheet. At the time of the study, there were a total of 21 Gene Sheets,
and so the developed system was evaluated using the remaining 17
Gene Sheets. Table 1 summarizes the query parameters and con-
straints used with the development set as well as the options available
for each.

We used SemRep_UTH to process MEDLINE and ClinicalTrials.gov
to create a modified version of SemMedDB. We used the “summary”
and “full description” sections from 183 260 trials (entire set) down-
loaded from ClinicalTrials.gov in January 2015 (henceforth: CTDescs)
as well as 23 537 576 PubMed abstracts (entire set) downloaded in
August 2014 (henceforth: PMAbstracts) as our knowledge sources and
processed them using SemRep_UTH to create a version of
SemMedDB, which was required for our semantic query. We also ex-
tracted all UMLS concepts identified by SemRep_UTH (which uses
MetaMap for concept extraction and normalization) regardless of

Figure 1: High-level summary of the QA system built for finding drugs that target genes of interest.
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whether or not they resulted in a predication. We used those concepts
to capture sentence- and document-level co-occurrences and repre-
sented this information as triples (eg, X CO-OCCURS_WITH Y). Thus,
the co-occurrence data could be combined with predications. The re-
sulting predication database is known as SemMedDB_UTH. A version
of this database that only contains MEDLINE-derived predications
(without co-occurrences) is hosted by the National Library of
Medicine.32

Because we were interested in finding clinically available drugs
(that could be used to treat patients), we only included drugs that
were available via clinical trials (CT filter) or were Food and Drug
Administration (FDA)-approved (FDA filter). Furthermore, drugs avail-
able via clinical trials were associated with the trial phase (ie, phase 1,
1/2, 2, 3, with phase 1/2 involving both phases 1 and 2).34 Using

phase information allowed us to limit the data source for query evalua-
tion. To calculate precision and recall, each drug was considered
within its phase category only, because different development phases
required different parameter settings. For example, to evaluate query
performance for phase 3, drugs from other phases were eliminated
from the result set, and performance was calculated against the same
phase drugs from the reference set. We hypothesized that the optimal
strategy to identify drugs in each phase would depend on the number
of drugs in this phase as well as the amount of available information,
with less published literature and clinical trials for early-phase drugs
and more for late-phase or marketed drugs. We also used information
from the NCI thesaurus, extracted from UMLS 2013AB, to only retain
drugs that were mentioned under the Pharmacologic Substance
branch of the NCI thesaurus hierarchy as they appeared in the UMLS.

Parameter Selection
Published information about potentially useful drugs may be scarce,
and the annotators wanted a system that would identify any potentially
useful drug. Thus, we emphasized recall over precision. We used the
F2 measure (a variant of the F-measure that emphasizes recall) as the
single measure of choice to determine the best set of parameters
within each drug phase category. The F2 measure is calculated as:

F 2 ¼
1þ 22� �

� Precision � Recall

22 � Precision
� �

þ Recall

The parameters determined in the development phase were also
used for the evaluation (Experiment 2). Specifically, the optimal data
source for marketed and phase 3 drugs was the semantic predications
alone. We included results of the semantic types pharmaceutical sub-
stance (phsu) and organic chemical (orch), retaining results for which
at least five predication instances were found. For phases 2 and 1/2,
we also included sentence-level co-occurrence, and for phase 1, we
used both predications and document-level co-occurrence (with co-
occurrence based on the identification of concepts by MetaMap).

Evaluation Set
We used a set of 17 genes (ABL1, AKT1, ALK, BRAF, CDK4, CDK6,
EGFR, ERBB2, FGFR1, FGFR2, FLT3, KDR, KIT, PDGFRA, RET, ROS1,
SMO) as our evaluation set and processed them using the optimal pa-
rameters from the development set, including the query parameters
and results filtering (Experiment 3).

RESULTS
In the preliminary experiment, precision and recall were 0.06 and
0.29, respectively, with the standard version of SemMedDB, and 0.09
and 1.0, respectively, with the modified version SemMedDB_Local,
demonstrating significant improvement in recall and emphasizing the
need for customized knowledge resources in this domain. Table 2
shows the query results for the different experiments. The parameters
were optimized for the best F2 for each drug phase in development,
and the same settings were used for the evaluation. The results of the
evaluation were compared with those from the standard version of
SemMedDB. We found 3- to 4-fold improvements in recall, precision,
F1, and F2 (0.12, 0.05, 0.07, 0.09, respectively, with SemMedDB and
0.39, 0.21, 0.27, 0.33, respectively, with SemMedDB_UTH). Some ac-
tual examples of the drugs returned by the system are: Sirolimus (true
positive), Lovastatin (false positive), AZD9291 (false negative – reason:
no concept unique identifier [CUI] found in the UMLS), c-Met Inhibitor
LY2801653 (ostensibly false positive, later found to be a true positive

Table 1: Parameters of the System, as Apply to the Query
and the Answers

Parameter Name Description Options

Semantic
relationship

Type of relationship between
drug and gene required for
retrieval.

Predications,
sentence-level
co-occurrence,
document-level
co-occurrence

Food and Drug
Administration
(FDA) filter

Accept drugs that appear on
a list of FDA-approved drugs.
The list was obtained from
the FDA website (FDA.gov)
and normalized using
SemRep_UTH.

Yes or No

Clinical trials (CT)
filter

Accept drugs found in the
“intervention” field from
ClinicalTrials.gov, normalized
using SemRep_UTH.

Yes or No

Phase filter Accept drugs either passing
the FDA filter (marketed) or
the CT filter for trials with a
phase of, at most, x (phases
1–3).

Phase 1,1/2, 2, 3,
or Marketed

National Cancer
Institute (NCI) the-
saurus filter

Return drugs that appear in
the Pharmacological
Substance branch of the NCI
thesaurus hierarchy.

Yes or No

Frequency filter Minimum number of ex-
tracted relationships (predi-
cation or co-occurrence)
required before the drug is
returned.

One to Many (eg, 5)

Predication filter For predications, retrieve only
drugs that occur in relation-
ships with the target gene of
predicate type x.

INHIBITS,
INTERACTS_WITH,
COEXISTS_WITH

Semantic type filter Semantic types of drugs to
retain.

aapp, antb, clnd,
horm, imft, nnon,
opco, orch, phsu

aapp, amino acid, peptide, or protein; antb, antibiotic; clnd, clinical
drug; horm, hormone; imft, immunologic factor; nnon, nucleic acid,
nucleoside, or nucleotide; opco, organophosphorus compound; orch,
organic chemical; phsu, pharmaceutical substance.
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during the manual evaluation). A breakdown of the recall errors is dis-
cussed in the next section.

Error Analysis for the Evaluation Set
Of all the false negative results, 19% were not found in the original
knowledge sources (PMAbstracts, CTDescs). SemRep did not identify
a CUI for 24% of the false negative results, suggesting that they did
not appear in the UMLS data files used to extract concepts. Drug filters
(FDA/CT, NCI) were responsible for 30% of the false negatives. Those
drugs were either absent from the source vocabularies, or their

manually designated phases were different from those specified in the
filter (eg, a drug that was in phase 1 trials at the time that the refer-
ence set was created was in phase 2 trials at the time the evaluation
was performed). Because all the queries were phase-based, the phase
specified for the drug in the reference set had to match the one speci-
fied in the FDA/CT filter, or the drug would either be found but not
matched against the reference set (wrongly marked as false positive
instead of true positive) or eliminated altogether (false negative); 23%
of the missing drugs would have been found if we had used a less-
restrictive approach (ie, sentence-level co-occurrence instead of

Table 2: Query Results for the Different Experiments

Scope DB Drug Phase FDA/CT,
NCI

Source Freq. Predicates Drug ST Doc. Drug Recall Prec. F1 F2

Experiment 1:
Preliminary
1 Gene Sheet,
7 reference drugs

SemMedDB_
Local

Mixed Yes Pred. >2 INHIBITS,
INTERACTS_WITH

phsu, antb 559 74 1.0 0.09 0.17 0.33

SemMedDB Mixed Yes Pred. >2 INHIBITS,
INTERACTS_WITH

phsu, antb 540 35 0.29 0.06 0.1 0.16

Experiment 2:
Parameter
Selection
4 Gene Sheets,
115 reference
drugs

SemMedDB_
UTH

Marketed Yes Pred. >4 INHIBITS,
INTERACTS_WITH,
COEXISTS_WITH

phsu, orch 624 50 0.86 0.12 0.21 0.39

3 Yes Pred. – INHIBITS,
INTERACTS_WITH,
COEXISTS_WITH

– 242 42 0.79 0.26 0.39 0.56

2 Yes CoOccSen – – – 1466 125 0.69 0.18 0.29 0.44

1/2 Yes CoOccSen – – – 993 25 0.45 0.20 0.28 0.36

1 Yes CoOccDoc – – – 544 99 0.39 0.20 0.26 0.33

All Phases: 3869 341 0.56 0.19 0.28 0.4

Experiment 3:
Evaluation
17 Gene
Sheets,
276 reference
drugs

SemMedDB_
UTH

Marketed Yes Pred. >4 INHIBITS,
INTERACTS_WITH,
COEXISTS_WITH

phsu, orch 2251 80 0.69 0.3 0.42 0.55

3 Yes Pred. – INHIBITS,
INTERACTS_WITH,
COEXISTS_WITH

– 299 61 0.35 0.3 0.32 0.34

2 Yes CoOccSen – – – 4723 205 0.5 0.17 0.25 0.36

1/2 Yes CoOccSen – – – 3875 40 0.29 0.18 0.22 0.26

1 Yes CoOccDoc – – – 1609 129 0.25 0.19 0.22 0.24

All Phases: 12757 515 0.39 0.21 0.27 0.33

SemMedDB Marketed No Pred. – INHIBITS,
INTERACTS_WITH,
COEXISTS_WITH

phsu, orch 1730 661 0.46 0.02 0.04 0.09

3 No Pred. – INHIBITS,
INTERACTS_WITH,
COEXISTS_WITH

phsu, orch 1730 661 0.17 0.01 0.02 0.04

2 No Pred. – INHIBITS,
INTERACTS_WITH,
COEXISTS_WITH

phsu, orch 1730 661 0.1 0.01 0.02 0.04

1/2 No Pred. – INHIBITS,
INTERACTS_WITH,
COEXISTS_WITH

phsu, orch 1730 661 0.04 0.002 0.004 0.01

1 No Pred. – INHIBITS,
INTERACTS_WITH,
COEXISTS_WITH

phsu, orch 1730 661 0.01 0.002 0.003 0.01

All Phases: 1730 661 0.12 0.05 0.07 0.09

FDA, Food and Drug Administration; NCI, National Cancer Institute. DB, Database used to run the queries; FDA/CT, NCI, Filters used to refine the re-
sults; Freq., Frequency filter; Drug ST, Drug semantic type (antb, ; orch, organic chemical; phsu, pharmaceutical substance); Doc., Number of doc-
uments returned; Drug, Number of concepts returned by the query; Prec., Precision; F1, Harmonic mean; F2, A variant of F1, emphasizing recall.
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predications, document-level rather than sentence-level co-occur-
rence). Finally, 4% of the marketed drugs were excluded by either the
frequency or semantic type filter.

Manual Evaluation
To test the hypothesis that some ostensibly false positive results were
actually relevant, three domain experts from the IPCT scientific team
each reviewed 50 of the retrieved drugs. For each drug, experts were
provided with: the normalized concept name, the targeted gene, a ran-
dom selection of up to 10 source excerpts that were one or more sen-
tences long, and a link to the source document for each excerpt. To
facilitate the manual evaluation, drug and gene names were high-
lighted. For the document-level co-occurrence results, all the sen-
tences from the original document that contained the terms in
question were provided. Drugs were picked randomly and were
equally distributed across the five phase categories (ie, 1, 1/2, 2, 3,
and marketed). Each evaluator was provided with 40 unique drugs
and 10 drugs that were also reviewed by two other evaluators (five
each, see Table 4), to assess interobserver agreement. Thus, a total of
135 drugs were evaluated. Each evaluator assigned a score of 1, 2, or
3 to each source excerpt (Table 3).

Of the 135 drugs that were reviewed, 35 (26%) received a score
of 3, 82 (61%) received a score of 2, and 18 (13%) received a score
of 1. Interobserver agreement was 100% (reviewers 1 and 2), 100%
(reviewers 2 and 3), and 60% (reviewers 1 and 3). The drugs used to
assess interobserver agreement were different for each reviewer pair.
Table 4 shows a summary of the distribution of drugs among the
reviewers.

Most of the manually reviewed results were given a score of 2,
which meant that they were relevant for review, but the level of evi-
dence did not merit inclusion in the reference set (Gene Sheets). This
group of drugs was retrospectively divided into three subcategories
(high relevance – useful to communicate to clinicians but not recom-
mended as therapy; low relevance; and no relevance), based on cura-
tor feedback. Approximately 26% of the ostensibly false positive
results were in fact true positives. If this finding were consistent
across the entire evaluation set, the re-estimated precision and recall
would be 0.29 and 0.55, respectively (vs the current values of 0.21
and 0.39, respectively). However, we cannot exclude the possibility
that there are other relevant drugs that were neither retrieved by the
system, nor recognized as such by our team of curators. In this case,
the system’s recall may be overestimated.

DISCUSSION
We developed and evaluated the AIMED system, which is intended to
help curators create and maintain drug-gene association knowledge
bases for precision oncology. At first glance, the recall, precision, and
F2 achieved by AIMED are relatively modest. However, manual review
of the ostensibly false positive results showed that 26% were actually
true positives and an additional 61% were appropriate for review, but
there was insufficient evidence to include these in the gold standard.

Precision oncology is rapidly evolving, and scientists at cancer
centers spend a significant amount of time and effort maintaining
knowledge bases that directly affect clinical decision-making pro-
cesses.2 The need for precision oncology decision support knowledge
bases has been recognized by other researchers. My Cancer Genome
is an example of a knowledge base that provides precision-oncology-
related resources.35 Unlike our work, however, My Cancer Genome
relies on manual curation without the aid of informatics. Similarly, the
Drug-Gene Interaction database (DGIdb) is a database of potentially
druggable genes aggregated from multiple other resources, including

My Cancer Genome and other manually curated databases.36 In con-
trast, we created an automated system. Though its results were not
sufficiently accurate for use in direct clinical decision support, AIMED
can be used to support curation efforts in this domain.

We found that recall was higher for marketed drugs (0.69) than
those in early development phases (eg, phases 1, 1/2, and 2), and we
were able to show that, of the ostensibly false positive answers gener-
ated by AIMED, the majority (87%) were considered to be relevant for
review by IPCT curators, and, of that majority, 43% (26% of the total)
were subsequently determined to be candidates for addition to the
Gene Sheets, supporting the hypothesis that a QA system might bene-
fit expert annotators. Gene Sheets constitute a knowledge base main-
tained by the IPCT for clinical decision support. Consequently, Gene

Table 3: The Scoring System That Evaluator Used to Score
the Drug Lists

Score Description

3 Evidence exists to add to reference set (Gene Sheets).

Criteria:

Either:

Drug directly targets and inhibits the gene
OR
Drug indirectly targets the gene by inhibiting downstream pathway

members
AND
There is evidence that alterations in the gene sensitize cells to

drugs inhibiting the indirect target

2 Gene name or its alias is mentioned with the drug or its synonym,
but evidence is not sufficient to add to reference set.

Categories

High relevance:

Indirectly targets the gene but there is no level of evidence for its
use in tumors with alterations in the gene

Partial response
Associated with resistance
Effective only in combination

Low relevance:

Mutation negative (patients negative for mutations in a gene were
treated with a drug)

Opposite association (text suggests that the gene target affects
the drug, rather than vice versa)

Discusses an isoform or artificial version of the gene
Derivative of the drug is being discussed (not actual drug indicated

in evaluation)
Association unclear
Drug targets molecule upstream of original target (not likely to be

effective)
No effect

No relevance:

Not a drug/not used as a drug
No relationship/effect untested
Drug is used as a carcinogen/would never be used to treat cancer
Opposite effect (the drug results in increased activity of the target

gene)
Not classified:

1 No mention of the drug and/or gene or its alias.
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Sheets will be disseminated as part of the decision support that IPCT
provides.

Moreover, what would constitute optimal system performance is
not well defined. The system retrieved information that expert curators
considered to be clinically relevant. This includes drugs that were in-
cluded on the manually constructed Gene Sheets (as evident in the
precision, recall, and F-measures) as well as a substantial number of
additional drugs (over 25% of the ostensibly false positive results) and
drugs that could be relevant to guidelines for other reasons (eg, com-
ponents of combination therapies and drugs that are known to be inef-
fective in the context of specific aberrations). On the one hand, this
strongly supports the utility of our system as an aid for curators for the
purposes of guideline development and maintenance. Further, tradi-
tional recall/precision evaluations may not fully reflect a system’s util-
ity. To some extent, this is due to the nature of the field, because it is
constantly evolving (exemplified by the progression of drugs through
the development phases during the course of this work) and no gold
standard is likely to be complete, or remain complete for long. As the
system tries to extend its coverage by improving recall, lower preci-
sion, as an inevitable consequence, may limit its usefulness.

Typically, medical QA systems that follow an evidence-based med-
icine approach try to provide answers supported by extensive evi-
dence. Semantic predications from SemRep have been used, for
example, to identify therapies for certain diseases or drugs that inhibit
genes.27,37 Also, ontology-based semantic knowledge modeling allows
for reasoning across different domains and the incorporation of meta-
data, such as provenance or trust data, into core biomedical knowl-
edge.38–41 In our case, gene names and their synonyms as well as all
the drug names from the FDA/CT filters and Gene Sheets were nor-
malized to UMLS CUIs (and/or Entrez Gene IDs, for genes). This al-
lowed us to unambiguously filter answers using FDA/CT and NCI filters
and also apply the semantic type filter (in some cases). Such

techniques have been shown to be associated with higher preci-
sion,19,25,26 which is consistent with our results.

The performance of a knowledge-based system depends on the
accuracy and breadth of the source knowledge.27,42,43 This is also
consistent with our findings, as we showed that the default predica-
tions from SemMedDB were only modestly useful for finding emerging
medications. Their utility was greatly enhanced by updating SemRep’s
source vocabulary and adding predications from other knowledge
sources (ie, clinical trials) or co-occurrence data. Further, we enriched
the underlying ontology by modifying the data files that SemRep was
using to include suppressed drug names from the NCI thesaurus.
Although that technique helped with some drug categories, for drugs
from lower development phases, we had to further relax the con-
straints by including co-occurrence data. Nonetheless, this was done
in a controlled fashion, because all the elements of co-occurrence
were normalized concepts that were generated by the same ontology-
driven system. Biomedical QA can benefit from combining different
knowledge-based and statistical methods.44 For example, CQA-1.0
(Clinical Question Answering 1.0) combined UMLS-based concept rec-
ognition with supervised machine learning techniques in its knowledge
extractors,45 and MiPACQ (the Multi-source Integrated Platform for
Answering Clinical Questions) combined semantic annotations with
machine-learning-based re-ranking.46

In general, QA systems involve three distinct processes: question pro-
cessing, document processing, and answer processing.47 In this experi-
ment, we attempted question processing by expanding the query terms
through the inclusion of gene synonyms that were part of the information
contained in a Gene Sheet. However, we did not attempt to process natu-
ral language questions. We also did not attempt to implement constraints
related to the source of the answer provided by the system, such as limit-
ing the results to specific contexts or domains (eg, certain cancer types).
Moreover, answer processing was limited to filtering the results, whereas
it has been shown that more sophisticated statistical methods, such as
relevance ranking, can improve average precision.45 One third of the false
negative results were negative because they were eliminated by the drug
filters, either because they were not found or because their phase did not
match its phase in ClinicalTrials.gov. This further emphasizes that main-
taining knowledge bases is an ongoing process that can benefit from au-
tomated systems.

It must be noted that our intended users were annotators, rather
than clinicians. Although systems such as UpToDate48 provide direct
support for clinical decision making, they are not automatically gener-
ated. For example, UpToDate is a continuously updated textbook
whose entries are authored and maintained by humans. Due primarily
to the limitations of the current state of NLP, automated processing of
the biomedical literature into structured knowledge provided directly to
clinicians without human supervision is not yet advisable.

Future directions for this work include exploring methods that
could improve precision, such as more accurate post-filtering, rank-
ing49 and clustering50 of results as well as methods that could im-
prove recall, such as incorporating logic and reasoning;24

incorporating distributional statistics to estimate semantic related-
ness;51 using additional ontologies or using the most recent version of
existing ones; and including additional knowledge sources, such as
drug company websites, or genetic pathway information. It must be
noted that although SemRep was not perfectly accurate (Kilicoglu
et al. reported a precision of 0.75 and a recall of 0.64 in a recent eval-
uation52), we were able to show that the information it retrieved was,
nonetheless, very valuable. However, because increasing the breadth
of our queries would inevitably increase the size of the result set, and,
hence, the burden on curators, the development of an interface that

Table 4: The Distribution of Drugs Among Reviewers

Drug Count
(Drug Number)

Reviewer(s) Agreement Details

40 (1�40) 1

40 (41�80) 2

40 (81�120) 3

5 (121�125) 1 and 2 5/5 (100%) Both evaluators gave a
score of 2 to all five
drugs.

5 (126�130) 1 and 3 3/5 (60%) Both evaluators gave
three of the drugs a
score of 2.Evaluator 1
gave one drug a score
of 2, and evaluator 2
gave the same drug a
score of 3. Evaluator 1
gave another drug a
score of 3, and evalua-
tor 2 gave this drug a
score of 2.

5 (131�135) 2 and 3 5/5 (100%) Both evaluators gave a
score of 3 to three of
the drugs and a score
of 2 to the other two
drugs.
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permits users to adjust query constraints in accordance with their
preferences regarding workload and completeness is an immediate
priority. To put AIMED into routine use, the underlying vocabularies
and knowledge sources need to be updated regularly (eg, every 6
months for the UMLS, every week for RxNorm). Further, user-facing
applications must be created to let the annotators rank results by rele-
vance, customize reports, adjust parameters, and collaboratively pro-
cess results.

CONCLUSION
Precision oncology can benefit from QA systems that help manage
clinically relevant knowledge. More research is required to determine
the factors that affect the performance of knowledge-based QA sys-
tems in constantly evolving biomedical domains such as precision on-
cology as well as the extent to which the incorporation of open-
domain QA methods can improve their performance. Research in this
area will help create models and more efficient solutions.
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