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Text mining for precision medicine:
automating disease-mutation relationship
extraction from biomedical literature
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ABSTRACT
....................................................................................................................................................

Objective Identifying disease-mutation relationships is a significant challenge in the advancement of precision medicine. The aim of this work is to
design a tool that automates the extraction of disease-related mutations from biomedical text to advance database curation for the support of pre-
cision medicine.
Materials and Methods We developed a machine-learning (ML) based method to automatically identify the mutations mentioned in the biomedical
literature related to a particular disease. In order to predict a relationship between the mutation and the target disease, several features, such as
statistical features, distance features, and sentiment features, were constructed. Our ML model was trained with a pre-labeled dataset consisting
of manually curated information about mutation-disease associations. The model was subsequently used to extract disease-related mutations
from larger biomedical literature corpora.
Results The performance of the proposed approach was assessed using a benchmarking dataset. Results show that our proposed approach gains
significant improvement over the previous state of the art and obtains F-measures of 0.880 and 0.845 for prostate and breast cancer mutations,
respectively.
Discussion To demonstrate its utility, we applied our approach to all abstracts in PubMed for 3 diseases (including a non-cancer disease). The
mutations extracted were then manually validated against human-curated databases. The validation results show that the proposed approach is
useful in a real-world setting to extract uncurated disease mutations from the biomedical literature.
Conclusions The proposed approach improves the state of the art for mutation-disease extraction from text. It is scalable and generalizable to
identify mutations for any disease at a PubMed scale.

....................................................................................................................................................
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INTRODUCTION
Finding relationships between genomic mutations and disease risk is
one of the main challenges in developing supportive databases for per-
sonalized medicine,1 treatment or therapies that are guided by the dif-
ferences in an individual’s genome. Such findings will lead to a better
understanding of new pathways and disease mechanisms, which can
then be translated to clinical practice. While some of these findings are
discovered through clinical trials,2 most of them are buried in unstruc-
tured text3 within the biomedical literature. Manual curation of the
current exponentially growing body of biomedical literature is practically
an impossible task. Robust automated or semiautomated curation tools
are a solution to this problem.4,5

Some well-known databases, such as ClinVar,2 Online Mendelian
Inheritance in Man,6 Swiss-Prot,7 and SNPedia,8 contain human-
curated information about disease-mutation relationships. Most of
these databases contain categorized information about proteins and
DNA mutations for specific disease phenotypes. Some of these data-
bases, such as ClinVar, contain information from clinical trials and
therefore are not synchronized with other documented research find-
ings. SNPedia contains information about single-nucleotide polymor-
phism-associated diseases. Other resources focus on specific
diseases, such as cancer,9 or specific chromosomal locations.10 All
these databases are currently constructed and curated manually,
which is a slow process that limits the number of cancer mutations
available to the biomedical community and the potential use of these

databases in clinical practice, even though most patients were found
to be receptive to molecular testing for personalized cancer therapy.11

Recent efforts in the direction of automated or semiautomated
approaches include extraction of mutational information from biomedical
text. Overall, most methods have focused only on mutation extraction
without connecting mutations to their associated diseases. Examples in-
clude MutationFinder,12 tmVar,13 EMU,3 and others.14 Among these
tools, EMU is one of the most recent efforts. It provides a semiauto-
mated approach to extracting disease-related mutations from PubMed
abstracts and full text. While this approach automatically extracts muta-
tions along with genes from the text, establishing mutation-disease rela-
tionships involves human curation and validation. Approaches prior to
EMU include MuGeX,15 EnzyMiner,16 and OSIRIS.17 Each of these has
been reported to have limitations and overspecialization.3 One notable
method recently developed by Kuipers et al.18 introduces an automatic
method for extracting and validating mutations for a single disease,
Fabry disease. In all the above approaches, disease-to-mutation rela-
tionships in the text are not explicitly investigated or utilized for extrac-
tion. Therefore, developing an efficient, robust, and fully automated
approach to extracting disease-related mutations is still a challenge.

In this article, we propose a novel, fully automated machine-learning
approach for identifying disease-related point mutations from biomedi-
cal literature repositories. In this study, we primarily focus on 2 specific
diseases, breast cancer and prostate cancer, because it has been noted
that “oncology is the clear choice for . . . precision medicine,”19 and
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these are 2 diseases for which we have human-annotated ground truth
for system development and evaluation. In order to identify relationships
between mutations and diseases, we constructed several features, such
as statistical features, distance features, and sentiment features. We
trained our model with a pre-labeled dataset consisting of manually cu-
rated information about mutation-disease relationships. We subse-
quently used our model to extract mutation-disease relationships
referenced in larger biomedical literature corpora.

To assess the validity of our approach, we compared it with sev-
eral baseline systems on benchmarking datasets. We then applied our
method to all literature in PubMed related to 3 diseases and validated
the results against 2 human-curated databases.

MATERIALS AND METHODS
We developed our method for identifying mutation-disease relationships
for multiple diseases using 2 text sources: (1) manually annotated cor-
pora for breast and prostate cancer, and (2) comprehensive test sets
built from all literature in PubMed related to the 3 diseases. The manu-
ally annotated corpora used in our approach were created by Doughty
et al. and were the same sets used for developing the EMU tool. The
prostate cancer corpus (EMU_PCa) contains 141 PubMed IDs (PMIDs),
and the breast cancer corpus (EMU_BCa) contains 203 PMIDs. We refer
to these corpora collectively as the EMU_dataset. In the Experimental
Results section of this paper, we compare the performance of our ap-
proach to the EMU tool using this EMU_dataset.

In addition to the manually annotated EMU_dataset, we also gen-
erated a PubMed_dataset for the purpose of evaluating the utility of
our method. The PubMed_dataset consists of 3 test sets, each of
which contains all articles with abstracts in PubMed related to 1 of the
3 given diseases: prostate cancer, breast cancer, and age-related
macular degeneration (AMD). We used the following query to collect
the abstracts: “disease_name [tiab] AND English [lang] AND has_ab-
stract [filter].” For the prostate cancer corpus (PubMed_PCa), we ob-
tained 66 320 PMIDs with this query. For breast cancer (PubMed_BCa)
and macular degeneration (PubMed_AMD), we obtained 155 512
PMIDs and 11 383 PMIDs, respectively. We obtained the title and ab-
stract texts for these PMIDs using the PubTator tool4 and subsequently
identified the disease mentions and mutations in these sets using the
DNorm20 and tmVar13 tools. Based on the results of the DNorm tool,
we found 66 104 (99.67%) PMIDs for prostate cancer, 154 815
(99.55%) PMIDs for breast cancer, and 11 331 (99.54%) PMIDs for
AMD that contained mentions of these diseases in the text. tmVar pro-
cessing of these PMIDs identified 1998 (3.02%) prostate cancer, 6490
(4.19%) breast cancer, and 803 (7.05%) AMD PMIDs that contained a
mutation mention. Thus, a total of 1998 prostate cancer, 6490 breast
cancer, and 803 AMD PMIDS contained both a mutation and a disease
mention. Unlike the EMU_dataset, there is no ground truth available
for the PubMed_dataset. We use it to show the utility and broad appli-
cability of our method to extract mutations related to a given disease.

Our approach for identifying disease-mutation relationships is por-
trayed schematically in Figure 1 and can be summarized as follows.
(The various text mining outputs contained in this work are available
upon request. Our algorithm uses 2 publicly available tools, tmVar and
DNorm. We also used the Weka tool for building our ML classifiers,
which is open source as well. The source code required to generate
features is readily available upon request.) First, the proposed approach
uses the tmVar tool to identify mutation names in the text of the corpus.
In parallel, the DNorm tool is used to identify all the disease names
mentioned in the text of the articles in the corpus. In the second step,
for each of the mutations identified by tmVar, the nearest disease men-
tion is obtained. In the third step, we construct a set of features for

each mutation-disease pair. Given a target disease, a training dataset
is constructed to train a binary machine-learning (ML) classifier model
to predict whether a mutation is related to the target disease or not.
Finally, our approach consists of a trained model to automatically pre-
dict mutations related to a target disease in any given corpus.

Input text corpus
The input for our approach consists of the text from biomedical litera-
ture repositories. In this work, we use the text content in the title and
abstract of the biomedical research articles.

Mutation extraction using tmVar
We employ tmVar to identify all the mutations in the input text. Several
occurrences of a mutation are identified, along with their position within
the text. To determine whether a mutation-disease relationship exists,
it is useful to obtain information about all the occurrences of a mutation
in the text, as explained in the feature construction step. Details of the
tmVar method and performance are provided in the Appendix.

Disease name extraction using DNorm
In our approach, DNorm is used to extract all the disease mentions in
the input text. While we are interested in knowing the relationship of
the mutations with a given target disease, for the proposed approach
it is important to obtain information about the presence of each dis-
ease along with the position of its mentions in the text to construct

Figure 1: Schematic of the proposed approach for disease-
related mutation prediction
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features used to develop the ML model. Details of the DNorm method
and its performance are given in the Appendix.

Feature construction
This step is one of the main contributions of this work. Here we design
a novel feature set to determine relationships between a mutation
mention and a target disease for an input text. We designed 6 fea-
tures, and they are described as follows:

1. Nearness to Target Disease Score (NTDS): For a mutation identified
in the text, its NTDS is an integer denoting a cumulative score of all
the times this mutation has the target disease as the closest disease
mentioned in the text. A high positive NTDS signifies that the target
disease was often the nearest disease mentioned in the text for this
mutation. A negative NTDS denotes that diseases other than the tar-
get disease were often mentioned nearest to the mutation in the text.
The nearness of a disease to a mutation is derived from the character
count between the mutation position and the disease position in the
text. It is mathematically described in the following manner:

NTDSðmi Þ
XN

j¼1
NDðmij Þwhere

NDðmij Þ ¼ 1 if nearest disease ¼ Target disease

NDðmijÞ ¼ �1 is nearest disease 6¼ Target disease
;

(

where mi is the ith mutation, mij is the jth occurrence of ith mutation in the text.
2. Target Disease Frequency Score (TDFS): This score is computed as

the frequency count for the target disease mentioned in the input
text. This feature adds information about the dominance of target
disease mentions in the text.

3. Other Disease Frequency Score (ODFS): Unlike the TDFS, which
captures information about the target disease in the text, the ODFS
denotes the frequency of the next most frequent disease mention in
the text other than the target disease. In some cases, it is possible
that the other disease is more frequent than the target disease. In
that case, the ODFS is greater than the TDFS. Both scores, in combi-
nation, describe the predominance of the target disease or other dis-
eases in the text. Note that these scores are calculated independent
of the mutation name in the text.

4. Same Sentence Disease-Mutation Co-occurrence Score (DMCS): For a
mutation name and its nearest disease mentioned in the text, the
DMCS is a binary score denoting the co-occurrence of the mutation
and its nearest disease in the same sentence. The DMCS is 1 if both
the mutation and its nearest disease are mentioned in the same
English sentence. The DMCS is 0 if they are not in the same sentence.

5. Within Text Sentiment Score (WTSS): For a mutation name in the
text and its corresponding nearest disease mentioned in the text, we
extracted the “within text,” which refers to the text between the mu-
tation and the nearest disease mentioned. This text is then analyzed
for its sentiment using the TextBlob library.21 The sentiment score is
based on the polarity of different words that appear in the within
text. A negative polarity denotes that the within text contains nega-
tive terms based on the NLTK corpora used by the TextBlob library.
The polarity score is a float within the range [�1.0, 1.0]. For several
instances of the same mutation in the text, the WTSS is computed
as the minimum of all the polarity scores for that mutation.

6. Text Sentiment Subjectivity Score (TSSS): The TSSS corresponds to
the subjectivity of the sentiment score computed in the previous fea-
ture. It provides an estimate of the reliability of the sentiment score.
The subjectivity is a float within the range [0.0, 1.0] where 0.0 is ex-
tremely objective and 1.0 is subjective. A value of 0.0 for this score
says that the estimated text sentiment score is more reliable than if
its subjectivity score was 1.0.

Training labels
We built a training set using the labels provided in the EMU_dataset.
We assumed that the labels provided in this dataset denote whether a
particular disease-mutation relationship exists or not. These are binary
labels. If the mutation has some relationship with the target disease,
the label is 1, otherwise is it 0. Using these labels, we were able to
train the classification model discussed in the next step.

Training a machine learning classification model
Using the feature set constructed for the mutations identified in the
EMU_dataset and the training labels associated with the mutations,
we used the Weka3.6 tool22 to define several ML classifiers for our ap-
proach. We tested a few ML classifiers, such as the C4.5 decision
tree, multilayer perceptron, and Bayesian logistic regression. In this
work, we only report the results for the C4.5 decision tree23 because
of its superior performance. The following parameters were used:
confidenceFactor¼ 0.25, minNumObj¼ 2, andnumFold¼ 3; the other
parameters were default settings in the Weka J48 (C4.5). Results of
other models are briefly stated in the Appendix.

Prediction Model
As stated earlier, we used the EMU_dataset for the purposes of devel-
opment and testing of our tool via cross-validation experiments. Once
the entire system was validated against human-annotated data, we
used the entire EMU_dataset consisting of 236 and 344 training sam-
ples, for prostate cancer and breast cancer, respectively, to develop
ML models to extract disease-mutation associations from the larger
PubMed_dataset.

EXPERIMENTAL RESULTS
In this section, we present the results of 2 experiments we conducted
to evaluate the performance of the proposed approach. The first ex-
periment is a comparison against the state-of-the-art EMU tool, which
extracts mutations for a given target disease. In the second experi-
ment, we utilized the PubMed_PCa, PubMed_BCa, and PubMed_AMD
test sets to generate mutations related to prostate cancer, breast can-
cer, and AMD.

Experimental results for the EMU_dataset
In this section our experiments and results with the EMU_datasets are
described. For clarification, the EMU_dataset is used here as a bench-
mark dataset, so we only used the PMIDs mentioned in this set.
Training for the proposed approach was done using the labeled data
(10-fold cross-validation); to ensure separation of training and testing
sets, we obtained classification results on the entire dataset. The clas-
sification results from cross-validation were used for comparison with
the baselines.

Baselines

A. EMU only: We used the results stated in Doughty et al.3 for the EMU
tool’s performance on the breast cancer and prostate cancer data-
sets. These results correspond to the mutations extracted by the
EMU tool in PubMed abstracts that were identified to be related to
breast cancer or prostate cancer. The EMU mutations were related
to the disease if the abstract containing the mutation also contained
a disease term (identified using MetaMap24).

B. tmVar only: Similar to (A), tmVar was used to extract mutations in
the PubMed articles instead.

C. EMUþ Nearest Disease Mention (EMUþNDM): We enhanced the
EMU-only baseline by identifying the NDM (using the character

RESEARCH
AND

APPLICATIONS

Singhal A, et al. J Am Med Inform Assoc 2016;23:766–772. doi:10.1093/jamia/ocw041, Research and Applications

768



count between the mutation and the disease name) as the disease
related to that mutation. The mutations were identified using the
EMU tool, and the disease names were identified using DNorm (not
MetaMap). This differs from the EMU-only baseline in that it does
not assume all identified mutations to be related to the target dis-
ease; it uses the nearest disease name as the related disease for a
given mutation.

Tables 1 and 2 show the summary comparison of the proposed
approach (tmVarþML) with the baselines discussed above for dis-
ease-mutation associations. The tmVarþML results were obtained
using the 10-fold cross-validation technique described earlier for the
C4.5 decision tree classifier. We used 3 accuracy metrics (precision,
recall, and F-measure) to compare the performance of various
approaches.

As shown in Table 1, the proposed approach (tmVarþML) shows
significant improvement in all 3 metrics against the EMU-only baseline.
In precision, it gives a 24% improvement over the EMU-only baseline. It
also results in a 15% improvement in the F-measure when compared
to the EMU-only baseline. With the EMUþ NDM baseline, the perfor-
mance of tmVarþML is better in all 3 metrics. In comparison with the
tmVar baseline, tmVarþML significantly improves in precision and
F-measure (0.904 versus 0.720 and 0.880 versus 0.801, respectively)
at the cost of recall (0.856 versus 0.903).

For the breast cancer dataset (in Table 2), the tmVarþML im-
proves over the EMU-only baseline in terms of precision and F-measure
(9% and 2%, respectively) at the cost of recall (0.813 versus 0.852). In
comparison to the EMUþ NDM baseline, there is significant improve-
ment in terms of recall and F-measure (35% and 16%, respectively),
while the precision is lowered (0.878 versus 0.924). tmVarþML per-
forms better in both precision and F-measure compared to tmVar only.

In addition to these benchmarking experiments, we also compared
our results directly with the EMU results for gene-mutation-disease
associations. Here we added gene association to the text-mined muta-
tions by the nearest gene mention to the mutation. The gene mentions
were extracted from the abstract texts using PubTator4 gene annota-
tions. For comparison purposes, we evaluated the results only on the
prostate cancer dataset (EMU_PCa), because manual annotation was
required to normalize gene information from the EMU_dataset.

Table 3 summarizes a comparison of our results for the full muta-
tion (including gene information) and disease association with EMU re-
sults for full mutation and disease association. As shown in the table,
tmVarþML’s performance (precision) is significantly higher than all
the other baselines.

In the next section, we demonstrate the performance of the pro-
posed approach on the PubMed_dataset, which contains all the
PubMed literature corresponding to the 3 diseases.

Experimental results for the PubMed_dataset
The PubMed_dataset serves as a testing platform to demonstrate the
practical utility of the tool developed in this work. The ML model based
on the EMU_dataset was used to distinguish between the relevant and
irrelevant mutations for the target diseases.

The mutations identified by our approach are compared against 3
manually curated databases containing disease-mutation relationship
information: (1) the ClinVar curated database,2 (2) the manually cu-
rated ground truth dataset for EMU,3 and (3) the SNPedia database.8

We used the following ClinVar query to collect the results: “(prostate
[Disease/Phenotype]) AND cancer [Disease/Phenotype].” SNPedia con-
tains information about the SNPs related to diseases. We used the
ground truth labels of the EMU dataset (EMU_PCa and EMU_BCa) to
validate the results of mining the PubMed_dataset. (All the PMIDs in
the training set were excluded from the PubMed_dataset.) While we
used these for validation of our findings, they still may not be an ex-
haustive resource for this validation. Our extractions were ranked on
the basis of their frequency of appearance in the literature: mutations
with mentions in several articles were ranked higher than mutations
with mentions in only a few articles. A mutation was considered irrele-
vant to the target disease if the majority of times (of all its appear-
ances in the input corpus) it was classified as unrelated to the target
disease. In our results, we ranked the extracted mutations by their fre-
quency of occurrence in the literature. The results of this comparison
are displayed below.

Tables 4 and 5 contain a sample of the top 10 results from our
prediction compared with the 3 validation sources. The “is mutation”
column denotes whether the returned entity is a mutation or not. The
next 3 columns provide information about each entity’s match with the
3 databases. The top 5th, 7th, 9th, and 10th mutations shown in Table
4 were found in at least 1 database and are therefore important. The
6th and 8th mutations were not found in any database, but they re-
ceived high ranks from our approach. P504S (6th rank) is not a muta-
tion but a cytoplasmic protein commonly related to prostate cancer.
This is an error of mutation extraction using tmVar. For the p.G84E
mutation (8th rank), we find the evidence of its relationship with pros-
tate cancer in PMID: 23393222, “The G84E mutation of HOXB13 is as-
sociated with increased risk for prostate cancer: results from the
REDUCE trial.” Interestingly, none of the 3 databases has curated this
mutation, which was discovered with our automated approach.

In Table 5, we find 3 predictions in the top 10 that were not found
in either database. The first prediction corresponds to a cell line that
was falsely identified as a mutation in tmVar. The 5th prediction is a
p.R399Q mutation that corresponds to the rs25487 SNP, but the only
evidence supporting a relationship between this mutation and breast
cancer is PMID: 18669164, which states that the mutation has a posi-
tive association in North Indian women. This mutation may require a
deeper analysis for its relationship with breast cancer. However, the
9th prediction, c.C3435T mutation (rs1045642), is clearly related to
breast cancer in PMID: 24070710, as indicated by the phrase “may
contribute to individual susceptibility to breast cancer.”

Table 1: Performance comparison of the proposed approach
(tmVarþML) with baselines (EMU, tmVar, and EMUþ NDM)
on the prostate cancer dataset

EMU_PCa EMU tmVar EMUþNDM tmVarþML

Precision 0.729 0.720 0.845 0.904

Recall 0.803 0.903 0.681 0.856

F-measure 0.764 0.801 0.754 0.880

Table 2: Performance comparison of the proposed approach
(tmVarþML) with baselines (EMU, tmVar, and EMUþ NDM)
on the breast cancer dataset

EMU_BCa EMU tmVar EMUþNDM tmVarþML

Precision 0.806 0.757 0.924 0.878

Recall 0.852 0.923 0.600 0.813

F-measure 0.828 0.832 0.730 0.845
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DISCUSSION
This section is organized into 2 parts. In the first part we discuss the
comparative performance. In the second part, we analyze the overall
results of our prediction on the PubMed_dataset and highlight some
interesting findings.

Discussion of results for the EMU_dataset
The comparison of the results of our approach with baselines is summa-
rized in Tables 1–3. For the prostate cancer dataset, the performance of
tmVarþML was better than all the baselines in both precision and
F-measure. The tmVar-only baseline had the highest recall (highest
coverage) among all the approaches. But its significantly low precision
(high redundancy) results in a lower F-measure. tmVarþML balances
coverage and redundancy using a classification scheme to distinguish
between the disease-related and unrelated mutations. For the breast
cancer dataset, the EMUþ NDM baseline achieves the highest precision,
while the tmVar-only baseline achieves the highest recall. However, in
either case the trade-off between the precision and recall increases.

In summary, the proposed approach is better than the state-of-the-
art approach (EMU) and its enhancement (EMUþ NDM) in terms of
mutation-disease-only extraction and gene-mutation-disease associa-
tion extraction from the biomedical literature. The tmVarþML learns to
distinguish redundant predictions using the feature set constructed for
each mutation, and hence improves the precision. In comparison, the
baseline approaches have large trade-offs between precision and recall.

Discussion of results for the PubMed_dataset
The results presented in the previous section (with reference to Tables
4 and 5) show the effectiveness of the proposed approach in

automatically extracting correct disease-related mutations. We found
2 mutations in our top 10 results that are not currently mentioned in
any of the 3 databases. Also, an interesting observation from the re-
sults in Tables 4 and 5 is that the 3 disease-mutation relationship re-
sources have few overlapping mutation curations among them. Since
the results of the proposed approach largely overlap with the aggrega-
tion of the 3 databases (see the last column in Tables 4 and 5), our re-
sults can serve as a single database from which to curate important
disease-related mutations.

We also analyze our mutation predictions for known errors and
false negatives. Known errors are mutations that our approach classi-
fied as unrelated to the disease but were found to be related in any of
the 3 resources. The aggregate of the 3 resources contained 172 and
450 mutations related to prostate and breast cancer, respectively.
Interestingly, we found that our approach missed only 6 and 29 muta-
tions related to prostate cancer and breast cancer, respectively. These
errors can be attributed to the following:

Indirect or infrequent disease references: In such cases, the text
referred to the target disease by general terms such as “tumor”
and “affected tissue.” DNorm fails to filter disease references such
as these. Such cases could be avoided by increasing the weight of
target disease frequency in comparison to other disease mentions.

Unrelated documents: In a few cases, the documents were not di-
rectly related to the target disease. This can be improved by
more comprehensive extraction of documents related to the target
disease.

Disease name ambiguity: In some cases, the DNorm tool identifies
a non-disease mention (sometimes a reference to a mutation in paren-
theses) as a disease, and the feature set is disturbed due to close
proximity of the mutation with the false disease identification. These

Table 3: Results of comparison of EMU, tmVar, and tmVarþML for complete mutation and disease association results

Precision (TP, FP) EMU EMUþ seq_filtera tmVar tmVarþML

Disease-Gene-Mutation 0.39 (151, 237) 0.59 (127, 89) 0.57 (134, 102) 0.72 (128, 50)

a The number of PMIDs in the EMUþ seq_filter dataset is less than the number used in the EMU dataset, which is the benchmark dataset for evalu-
ating tmVar and tmVarþML performance.

Table 4: Top 10 validation results of tmVarþML for prostate
cancer The prediction results are validated against 3 sources
containing manually curated information about mutation to
disease relationship.

Rank Mutation Cumulative
frequency

Is
mutation?

In
ClinVar?

In
EMU
GS?

In
SNPedia?

1 rs1447295 41 Yes 0 0 1

2 p.T877A 40 Yes 0 1 0

3 p.V89L 36 Yes 0 1 1

4 rs10993994 33 Yes 0 0 1

5 rs6983267 33 Yes 0 0 1

6 P504S 29 No 0 0 0

7 rs4430796 29 Yes 0 0 1

8 p.G84E 26 Yes 0 0 0

9 p.R462Q 25 Yes 1 1 1

10 p.A49T 21 Yes 0 1 1

Table 5: Top 10 validation results of tmVarþML for breast
cancer The prediction results are validated against 3 sources
containing manually curated information about mutation to
disease relationship.

Rank Mutation Cumulative
frequency

Is
mutation?

In
ClinVar?

In
EMU
GS?

In
SNPedia?

1 T47D 1675 No 0 0 0

2 c.C677T 79 Yes 0 1 0

3 p.R72P 55 Yes 0 1 0

4 rs3803662 53 Yes 0 0 1

5 p.R399Q 52 Yes 0 0 0

6 rs2981582 51 Yes 0 0 1

7 p.H1047R 45 Yes 1 1 0

8 c.A1298C 45 Yes 0 1 0

9 c.C3435T 37 Yes 0 0 0

10 rs1219648 36 Yes 0 0 1
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errors occur due to ambiguous abbreviations that resemble disease
names. For example, in PMID: 17487399, we find a mutant cell line
“DDS (R384W)” mentioned many times in the abstract, although the
disease studied is prostate cancer. Here DDS is mistaken for Denys-
Drash syndrome, a disease.

Mutation errors: Some prediction errors may occur due to mutation
identification errors with the tmVar tool. An example is shown in Table
4, row 1: T47D, a cell, is wrongly identified as a mutation. Its unusu-
ally high frequency also distinguishes it from other mutations.
Similarly, in Table 5, row 8, the entity P504S is a protein, not a
mutation. Such errors could be avoided by incorporating a post-
processing filter.

Case study of age-related macular degeneration (AMD)
We tested the generalizability of the proposed approach. Since obtain-
ing manually annotated datasets for mutation-disease association is
challenging, we tested to see whether the ML model trained using
the annotated EMU cancer dataset could be used for extracting muta-
tions for a different disease from the literature. We chose AMD to test
the generalizability of the trained model because it is a non-cancer
disease. We used the prostate cancer EMU_PCa for training. The
model was tested on 861 unique mutations extracted from 11 383
PubMed abstracts. However, in the absence of any known gold stan-
dard for this disease, we present the top 10 most frequently refer-
enced mutations classified as disease-related in the text-mined
results in Table 6. Since the EMU gold standard is not available
for AMD, we recruited a domain expert to manually annotate these top
10 results as well as a randomly drawn sample of 68 from the 739
disease-mutation associations. These random samples were drawn by
portioning the 739 output pairs by frequency count into low
(fewer than 4), medium (4–10), and high (greater than 10) frequency
categories (ie, the number of associated publications in PubMed).
From each category, a maximum of 25 disease-mutation associations
were mined. Since the high frequency category had fewer than 25
and a few pairs lacked adequate information in PubMed abstracts
for the human annotator to label their accuracy, we ended up with 68
disease-mutation associations. We obtained an average precision
of 0.882 for these 68 disease-mutation associations and
observed that precision was higher for frequent mutations than infre-
quent ones.

LIMITATIONS OF THE CURRENT APPROACH AND
FUTURE WORK
We identified a few areas of improvement for the proposed method of
extracting disease-related mutations. First, our approach extracts only
point mutations (protein mutations, DNA mutations, and SNPs) from
the text. However, some of these may be redundant (may map to a
common concept), and we have not addressed this problem in the
current work. In future work we plan to address this challenge by pro-
viding concept-level information about mutations.

Second, the current approach uses a simple proximity metric to
address the problem of gene association. A more robust approach will
be needed to reliably extract full gene-variant-disease triplets. Our
previous work25 demonstrated that gene-mutation relationships can
be mined with high accuracy using crowdsourcing. Crowdsourcing
may prove to be a useful avenue for improvements.

Third, in this study, we focused on mining the biomedical literature
for supporting precision medicine, whereas other studies have shown
value in using additional text sources such as electronic health re-
cords26 and clinical trial data.27 Systematically integrating data and re-
sults from multiple textual sources might be worth exploring in future
research. Also, we will extend the present approach to full-text arti-
cles, since many literature references contain mutation mentions
within the main text and not the abstract.

CONCLUSIONS
Identifying correct disease-related mutations remains a crucial chal-
lenge in developing comprehensive disease-mutation databases,
which are useful in precision medicine. In this work, we developed an
automated approach to find relevant disease-related mutations from
the biomedical literature. The proposed approach utilizes information
from biomedical literature repositories to identify disease-related mu-
tations. The comparative evaluation shows the effectiveness of the
proposed approach in comparison to the state-of-the-art EMU tool’s
performance. We also analyzed the performance of our approach on
the entire body of literature in PubMed for 3 diseases and validated
disease mutations identified in this manner against 3 manually curated
resources. The results indicate that this approach will greatly benefit
curation of mutation-disease databases, even on a mass scale.
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