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Abstract

Background: Plasma membrane organization is a mechanistic target of n–3 (v-3) polyunsaturated fatty acids. Previous

studies show that eicosapentaenoic acid (EPA; 20:5n–3) and docosahexaenoic acid (DHA; 22:6n–3) differentially disrupt

plasma membrane molecular order to enhance the frequency and function of B lymphocytes. However, it is not known

whether EPA and DHA affect the plasma membrane organization of B lymphomas differently to influence their function.

Objective: We tested whether EPA and DHA had different effects on membrane order in B lymphomas and liposomes

and studied their effects on B-lymphoma growth.

Methods: B lymphomaswere treated with 25 mmol EPA, DHA, or serum albumin control/L for 24 h. Membrane order was

measuredwith fluorescence polarization, and cellular fatty acids (FAs) were analyzedwith GC. Growthwas quantifiedwith

a viability assay. 2H nuclear magnetic resonance (NMR) studies were conducted on deuterated phospholipid bilayers.

Results: Treating Raji, Ramos, and RPMI lymphomas for 24 hwith 25mmol EPA or DHA/L lowered plasmamembrane order by

10–40% relative to the control. There were no differences between EPA and DHA on membrane order for the 3 cell lines. FA

analyses revealed complex changes in response to EPA or DHA treatment and a large fraction of EPA was converted to

docosapentaenoic acid (DPA; 22:5n–3). NMR studies, which were used to understand why EPA and DHA had similiar

membrane effects, showed that phospholipids containing DPA, similar to DHA, were more ordered than those containing EPA.

Finally, treatingB lymphomaswith 25mmol EPAorDHA/L did not increase the frequency of B lymphomas comparedwith controls.

Conclusions: The results establish that 25 mmol EPA and DHA/L equally disrupt membrane order and do not promote B

lymphoma growth. The data open a new area of investigation, which is how EPA�s conversion to DPA substantially

moderates its influence on membrane properties. J Nutr 2016;146:1283–9.
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Introduction

The long-chain n–3 PUFAs EPA (20:5n–3) and DHA (22:6n–3)
are routinely consumed as dietary supplements (1). Further-
more, they have potential clinical applications for specific
populations such as those suffering from rheumatoid arthritis,
metabolic disorders, or cognitive defects (2–6). Establishing the

mechanistic and cellular actions of EPA and DHA is critical
for making the appropriate recommendations on n–3 PUFAs,

particularly for treating select diseases. Moreover, discriminating
differences between EPA and DHA is necessary because the 2 FAs

are neither structurally nor functionally equivalent (7–9).
The plasma membrane is a central molecular target of n–3

PUFAs that controls many downstream events essential for cellular

function (10–12). Molecular differences between EPA and DHA
are not well delineated with regard to plasma membrane organi-
zation. On the one hand, biophysical experiments on model

membranes have shown that EPA creates a slightlymore disordered
environment than DHA in heteroacid phospholipids (7, 13).

Membrane order is a key parameter of membrane organization
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that regulates the formation of lipid microdomains and protein
activity (14). On the other hand, DHA is more effective than EPA
in diminishing the formation of signaling lipid microdomains (15–
17). Thus, there is no clear consensus on how EPA and DHA differ
in their ability to influence lateral organization and membrane
order, which warrants further study in this area.

Recent studies have shown that EPA and DHA differentially
target the molecular composition and physical organization of
B-lymphocyte plasma membranes (16, 18). In turn, EPA and DHA
to different extents enhance naı̈ve B-lymphocyte activation and
antibody production. These results raise the possibility that n–3
PUFAs or their derived mediators could be used to boost immune
responses in conditions such as obesity and infection (19–21).
However, a major gap in knowledge has emerged from the
aforementioned studies. That is, if EPA and DHA target the
molecular organization of B-lymphocyte plasmamembranes, could
they also target the molecular organization of B-lymphoma plasma
membranes? Therefore, in this study, we focused on the effects of
EPA andDHAonB-lymphoma plasmamembranemolecular order.

Methods

Cell lines. Raji, Ramos, and RPMI 8866 human B lymphomas were
grown and treated with FAs in RPMI 1640 13 (Mediatech) supplemented

with 5% heat-inactivated FBS (Hyclone), 2 mmol L-glutamine/L (Corning

Cellgrow), and 1% penicillin/streptomycin (Corning Cellgrow). The lipid
composition of the FBS was as previously described (22). Cells were

incubated in a 5%CO2 incubator at 37�C andmaintained at lowpassages.

FA treatment. Lymphomas were treated with BSA as a control. EPA or
DHA treatments relied on FA stocks that were complexed to FA-free BSA

(Roche Biochemicals) at a ratio of 1.5:1 (22). The complexing of FAs was

conducted under stringent conditions (i.e., low-light conditions and

under a gentle stream of nitrogen gas) to prevent oxidation, as previously
described (22). The experiments used a 25-mmol dose/L for 24 h, which

allowed us to compare the results from this study to our previous studies

on membrane organization (22, 23). Growth studies relied on EPA and

DHA treatment for 24 and 48 h.

Fluorescence polarization measurements. Steady-state fluorescence

polarization experiments were conducted as previously described (24).
Briefly, after 24 h of FA treatment, 13 106 B lymphomas were washed twice

with HBSS (Mediatech) and loaded with 1 mmol/L 1,6-diphenylhexatriene

(DPH)7 for 5 min. Cells were then washed again with HBSS, and steady-

state fluorescence anisotropy, rs, was measured with the use of a Thermo
Bowman II spectrometer equipped with an Aminco Bowman Auto

Polarizer Series 2 instrument and with DPH excitation set to 355 nm

and emission to 425 nm. Fluorescence anisotropy was determined ac-

cording to rs ¼ ðIVV2GIVHÞ=ðIVV þ 2GIVHÞ and related to polarization
values viaP ¼ 3rs=ð2þ rsÞ, where IVVand IVH are the intensitiesmeasured for

the fluorescent signal emitted, respectively, parallel (vertical-vertical) and

perpendicular (vertical-horizontal) to the direction of polarization for
the incident beam, andG is an instrumentation correction factor defined as

G ¼ IHV=IHH . Order parameters for DPH (SDPH) were determined from

anisotropy values on the basis of a previously derived relation (25):

rs ¼ 2ð1þ 2SDPHÞð12SDPHÞ
�
12S2DPH

�

20ð1þ SDPHÞ þ 5ð1þ 2SDPHÞð12SDPHÞ þ
2

5
S2DPH ð1Þ

FA analyses. Lipids were extracted from cells and analyzed with a

Shimadzu GC-2010 as previously reported (26). The major analyzed

peaks were identified by their retention times relative to commercial

standards (Nu-Check Prep and Restek). Areas of peaks were summed,

and each peak area was expressed in arbitrary units as % total peak area

for BSA-, EPA-, and DHA-treated cells (15). Changes in FA profiles were

confirmed in a few select studies with the use of an internal C19:0 FA
(Avanti Polar Lipids).

Growth assays. B cells treated with 25 mmol EPA or DHA/L were

plated at 250,000 cells/mL. The growth of B cells as a function of time
was determined by counting live cells in duplicate or triplicate with a

hemacytometer as previously described (23). Dead cells were accounted

for with Trypan blue (HyClone; Fisher Scientific) staining. BSA

treatment served as a control.

Phospholipids and preparation of multilamellar vesicles. The

perdeuterated lipids 1-[2H35]stearoyl-2-oleoylphosphatidylcholine,
1-[2H35]stearoyl-2-eicosapentaenoylphosphatidylcholine, 1-[2H35]

stearoyl-2-docosapentaenoylphosphatidylcholine, and 1-[2H35]stearoyl-2-

docosahexaenoylphosphatidylcholine were purchased as a stock item or

custom synthesis from Avanti Polar Lipids. Lipids (25 mg) were dried down
in chloroform under a gentle stream of argon gas (nitrogen gas for 1-[2H35]

stearoyl-2-oleoylphosphatidylcholine) followed by vacuum pumping over-

night to remove any residual organic solvent. Samples were then hydrated in

degassed 50 wt% 50 mmol Tris buffer/L, mixed, and adjusted to a pH of
7.5. Samples were then lyophilized 3 times with deuterium-depleted water

(Cambridge Isotope Laboratories) to remove trace amounts of heavy water.

Samples were then rehydrated to 50wt%deuterium-depletedwater before 3
cycles of freezing and thawing (27). Sampleswere transferred to 5mmNMR

tubes and stored at 280�C. Precautions were taken throughout the

procedure tominimize oxidation of the samples containing PUFAs, including

limiting exposure to light (with aluminum foil and reduced lighting) and
using a glove box purged with argon gas during manipulations (28).

Solid-state 2H NMR spectroscopy. 2H NMR spectra were acquired,

and data were analyzed on a home-built spectrometer operating at 46.0
MHz with a 7.05-T superconducting magnet (Oxford Instruments) as

previously described (7). Briefly, pulse programming was accomplished with

an in-house assembled programmable pulse generator, while signals were

obtained in quadrature with the use of a dual-channel digital oscilloscope
(R1200 M; Rapid Systems). The experimental temperature was monitored

to60.1�C. To eliminate spectral distortion caused by receiver recovery time,

a phase-alternated quadrupolar echo sequence (90�x-t-90�y-acquire-delay)n
was implemented. The parameters were as follows: 90� pulse width, 3.6 ms;

separation between pulses, t = 50 ms; delay between pulse sequences, 1.5 s;

sweep width,6100 kHz; data set, 2 K; and number of transients,;15,000.

First moments M1, average order parameters SCD, and acyl chain
length were calculated from spectra with the use of standard equations

(7, 29).

Statistical analyses. Data were analyzed with GraphPad Prism 5.0c.
Order parameters from DPH studies were plotted as a function of total

concentrations of select FAs and were fit with the use of linear regression

analysis. For membrane microviscosity studies, statistical analyses were
conducted with a 1-factor ANOVA followed by a Bonferroni multiple

comparisons t test. For FA analyses, statistical analyses were conducted

with a 1-factor ANOVA followed by a Bonferroni posttest compared

with the BSA control. For growth data, statistical analyses were
conducted with a repeated measures 2-factor ANOVA (time and

treatment as variables) followed by a Bonferroni posttest. The afore-

mentioned parametric statistics were used based on our previous

studies that showed that polarization and cell growth measurements
have normal distributions (23, 30). P < 0.05 was considered statistically

significant. A reproducibility of 61–2% applies to the first moment and

average order parameter that were obtained from spectra collected with
multiple acquisitions in single 2H NMR experiments (7).

Results

EPA and DHA exert similar effects on DPH polarization in
B lymphomas. Treating Raji B cells with EPA and DHA
lowered polarization values by 10–20% compared with the BSA

7 Abbreviations used: DPA, docosapentaenoic acid; DPH, 1,6-diphenylhexa-

triene; OA, oleic acid.
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control (Figure 1A). EPA and DHA treatment lowered DPH
polarization values for Ramos cells by 15–20% relative to BSA
treatment (Figure 1B). With the RPMI cells, EPA and DHA
treatment lowered DPH polarization by 10–13% compared
with BSA. For all 3 cell lines, there were no significant dif-
ferences between EPA and DHA treatment (P $ 0.05).

We also calculatedDPH order parameters (SDPH) from the raw
anisotropy data. The SDPH values (Table 1) represent a structural
parameter that is determined by the order of the acyl chains
surrounding the DPH molecule. EPA treatment of Raji B cells
with EPA tended to lower SDPH values by ;21% (P = 0.08), and
DHA treatment robustly lowered SDPH values by ;38% (P <
0.05). The opposite effect was observed with Ramos cells. EPA
treatment lowered SDPH values by ;30% (P < 0.05), and DHA
treatment tended to lower SDPH values by;12% (P = 0.08). With
RPMI B cells, EPA and DHA exerted very similar effects. Both
FAs lowered SDPH values modestly by;9–11% (P < 0.05). The
changes in SDPH qualitatively mirror those in polarization.

FA analyses of B lymphomas show an important conver-
sion of EPA to docosapentaenoic acid. FA analysis of Raji B
cells (Table 2) showed that EPA treatment decreased the con-
centrations of 16:0, 18:0, cis 18:1, 18:2n–6, and 20:4n–6 and
increased the concentrations of 20:5n–3 and its elongation
product 22:5n–3. DHA treatment lowered the concentrations of
18:0, cis 18:1, 18:2n–6, 20:4n–6, and 22:5n–3 and increased
22:6n–3. With Ramos cells (Table 3), EPA treatment lowered
18:0, cis 18:1, 18:2n–6, and 20:4 concentrations and increased

the relative proportion of 20:5n–3 and 22:5n–3. DHA treatment
with the same cell line lowered the concentrations of 18:0, cis
18:1, 18:2n–6, and 20:4 and increased 22:6n–3. With RPMI
cells (Table 4), EPA treatment lowered 18:0 and 20:4 concen-
trations and increased 20:5n–3 and 22:5n–3. The elongation of
20:5n–3 to 22:5n–3 was particularly marked in this case. DHA
treatment reduced the concentrations of 18:0 and 20:4 and
increased 22:6n–3.

We then analyzed correlations between polarization or SDPH

values and select FAs. SDPH values for BSA-treated cells plotted
as a function of the total concentrations of SFAs showed a linear
relation (Supplemental Figure 1). We also analyzed the absolute
change in SDPH relative to the BSA for several of the FAs listed in
Tables 2–4. The only strong correlation to emerge was for EPA-
treated cells, in which we observed a linear relation in which
higher concentrations of EPA, corresponding to proportionately
less elongation of EPA to DPA (docosapentaenoic acid; 22:5n–3)
correlated with a larger reduction in SDPH (data not shown).
Overall, it was difficult to tease apart differences between EPA
and DHA given that there were numerous changes in other FAs
upon EPA and DHA treatment, including changes in SFAs,
MUFAs, and PUFAs, all of which can influence membrane
order.

Phospholipids containing DPA are more ordered than
DHA and EPA. The complex changes in FAs in all 3 cell types
led us to initiate studies in a more controlled model system. We
used liposomes of defined composition to tease apart differences
in molecular order between EPA, its elongation product DPA,
and DHA with the use of solid-state NMR spectroscopy.
Phosphatidylcholine phospholipids were selected based on
previous data that showed a substantial uptake of EPA and
DHA into the phosphatidylcholines of EL4 lymphomas (15).
Figure 2A shows 2H NMR spectra for analogues of phospha-
tidylcholines containing perdeuterated stearic acid in the sn-1
position and either oleic acid (OA), EPA, DPA, or DHA in the
sn-2 position. Monounsaturated OA was selected as an addi-
tional control for these studies. An analysis of the first moment
(Table 5) calculated from the spectra in terms of average order
parameters, defined as the mean for all the C-D bonds in
the perdeuterated sn-1 chain (Figure 2B), showed that the OA-
containing phospholipid bilayer has the highest order, followed
by the DPA- and DHA-containing phospholipid bilayers. The
EPA-containing phospholipid bilayer has the lowest first mo-
ment (Table 5) and average order parameter (Figure 2B), which
demonstrates that it is the most disordered.

We then calculated the mean length of the sn-1 chain in the
control OA- and n–3 PUFA-containing bilayers from the average
order parameters obtained by analyzing the 2H NMR spectros-
copy data. These values, which approximate the thickness of a
monolayer, appraise the correspondence between disorder and

FIGURE 1 EPA and DHA exert similar effects on the plasma

membrane order of B lymphomas. DPH polarization values for (A) Raji,

(B) Ramos, and (C) RPMI B cells. Cells were treated for 24 h with

25 mmol FAs/L complexed to BSA. Data are means 6 SEMs from 3 to

5 independent experiments for Raji and Ramos cells and 7 indepen-

dent experiments for RPMI cells. Means without a common letter

differ, P , 0.05. DPH, 1,6-diphenylhexatriene.

TABLE 1 Order parameters for DPH (SDPH) in Raji, Ramos, and
RPMI B cells upon treatment with BSA, EPA, and DHA1

Cell line BSA EPA DHA

Raji 0.43 6 0.02a 0.34 6 0.02a 0.26 6 0.04b

Ramos 0.49 6 0.02a 0.35 6 0.01b 0.43 6 0.03a

RPMI 0.59 6 0.02a 0.54 6 0.02b 0.53 6 0.02b

1 B cells were treated with BSA (control) or 25 mmol EPA or DHA/L for 24 h. Values are

means 6 SEMs from 3 to 5 independent experiments for Raji and Ramos cells and

7 independent experiments for RPMI cells. Means in a row without a common

superscript letter differ, P , 0.05. DPH, 1,6-diphenylhexatriene.
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thinning of the bilayer. At 25�C, the mean acyl chain length for
the OA-containing phospholipid was the longest at 1.41 nm, and
the EPA-containing phospholipid was shortest at 1.36 nm. Both
the DPA- and DHA-containing phospholipids had a chain length
of 1.38 nm. The error in these calculations was 61–2%.

EPA and DHA do not promote the growth of B lymphomas.
We finally sought to determine whether EPA and DHA treatment
had any influence on the growth of the 3 B cell lines that could
confound the polarization measurements (Supplemental Figure
2). Two-factor ANOVA analysis revealed a significant effect of
time (24 compared with 48 h for each treatment; P < 0.001), but
there was no interaction effect (time and treatment as variables).
An analysis of the number of cells after either 24 or 48 h of
treatment with 25 mmol EPA and DHA/L, relative to the BSA
control, showed no effect (P $ 0.05) on Raji (Supplemental
Figure 2A), Ramos (Supplemental Figure 2B), or RPMI cells
(Supplemental Figure 2C).

Discussion

A central mechanism of action by which EPA and DHA exert
their effects on cellular activity is by remodeling the composition
of the plasma membrane (11). This in turn influences events that
are downstream of the membrane such as signaling cascades,
bioavailability of FA substrates for enzymatic activity, and
activation of transcription factors (31). Therefore, understand-
ing the molecular organization of the plasma membrane in
response to EPA and DHA has broad implications. Further-
more, discriminating differences between EPA and DHA is
critical given that supplements range widely in the ratios of
these 2 long-chain n–3 PUFAs, which influence physiological
responses.

Phospholipids containing DPA are more ordered than
EPA. EPA and DHA have different molecular structures that
control the physical properties of the plasma membrane (13). In
a series of studies, we and others have established that EPA and
DHA differentially disrupt the molecular organization of plasma
membrane lipid rafts (15, 18). We have shown that treating EL4
cells with DHA but not EPA diminished lipid raft clustering
induced by cholera toxin subunit b crosslinking (22). Subsequent
work in a murine obesity model showed that EPA but not DHA
ethyl esters promoted B cell microdomain packing after short-
term dietary administration (18). Similarly, Gurzell et al. (16)
demonstrated that a DHA-enriched fish oil diet was more robust
than an EPA-enriched diet in diminishing B-cell cholera toxin-
induced rafts. Differences between EPA and DHA have also been
suggested to influence the formation of the immunological
synapse and thereby CD4+ T activation (32).

The aforementioned studies led us to tackle a simple but
essential question that to our knowledge has been poorly
studied in the field. How do EPA and DHA differ in terms of
their influence on plasma membrane ordering? We focused on
membrane ordering given that order regulates numerous bio-
physical properties of the membrane, and changes in this
parameter are likely linked to functional outcomes (33, 34).
Our results showed no difference between EPA and DHA on
membrane order in 3 B lymphomas at 25 mmol/L. Although we
did not test for the effects of other FAs, our previous work has

TABLE 3 FA analysis of Ramos B cells1

FAs BSA EPA DHA

14:0 0.6 6 0.6 0.3 6 0.3 0.2 6 0.3

16:0 17.6 6 5.4 11.0 6 3.6 13.2 6 3.1

16:1 2.1 6 1.0 1.3 6 0.6 1.4 6 0.5

18:0 18.1 6 1.0 9.6 6 0.6*** 10.8 6 0.6***

cis 18:1 26.2 6 1.2 13.8 6 0.3*** 16.3 6 0.3***

18:2(n–6) 3.5 6 0.1 2.3 6 0.1*** 2.6 6 0.1***

20:4(n–6) 16.4 6 2.0 7.3 6 0.7** 8.6 6 0.4**

20:5(n–3) 0.9 6 0.1 38.6 6 3.5*** 0.9 6 0.1

22:5(n–3) 6.8 6 1.1 13.0 6 1.1* 3.2 6 0.3

22:6(n–3) 7.8 6 2.1 2.7 6 0.4 42.7 6 2.5***

+ SFAs 40.3 6 5.7 21.0 6 3.9* 26.8 6 3.0

+ MUFAs 28.0 6 0.2 15.1 6 0.5* 17.9 6 0.3*

+ (n–3) PUFAs 13.9 6 3.7 54.3 6 3.9*** 44.4 6 2.9**

+ (n–6) PUFAs 17.8 6 1.8 9.6 6 0.7*** 10.1 6 0.4*

1 B cells were treated with BSA or 25 mmol EPA or DHA/L for 24 h. Data are means 6

SEMs from 5 independent experiments. Values (arbitrary units) are percentage of total

FAs. Asterisks indicate statistical significance relative to the BSA control: *P , 0.05,

**P , 0.01, ***P , 0.001.

TABLE 2 FA analysis of Raji B cells1

FAs BSA EPA DHA

14:0 0.6 6 0.4 0.8 6 0.1 1.1 6 0.1

16:0 19.4 6 1.5 14.4 6 0.7* 17.7 6 0.4

16:1 3.3 6 0.5 2.6 6 0.1 2.5 6 0.0

18:0 16.7 6 1.0 13.0 6 0.2** 1.1 6 0.1**

cis 18:1 38.1 6 1.5 23.1 6 1.5*** 22.2 6 1.0***

18:2(n–6) 3.6 6 0.2 2.3 6 0.0*** 2.2 6 0.1***

20:4(n–6) 9.3 6 0.9 5.4 6 0.1** 5.3 6 0.3**

20:5(n–3) 0.6 6 0.0 25.1 6 0.7*** 1.1 6 0.2

22:5(n–3) 4.0 6 0.4 12.3 6 0.6*** 2.0 6 0.1*

22:6(n–3) 4.4 6 0.4 2.2 6 0.1 33.0 6 1.1***

+ SFAs 36.7 6 1.3 26.9 6 1.0*** 31.7 6 0.3*

+ MUFAs 41.4 6 1.8 25.8 6 1.5*** 24.7 6 1.0***

+ (n–3) PUFAs 8.9 6 0.9 39.5 6 0.8*** 36.1 6 1.0***

+ (n–6) PUFAs 12.9 6 1.1 7.8 6 0.1** 7.5 6 0.3**

1 B cells were treated with BSA or 25 mmol EPA or DHA/L for 24 h. Data are means 6

SEMs from 5 independent experiments. Values (arbitrary units) are percentage of total

FAs. Asterisks indicate statistical significance relative to the BSA control: *P , 0.05,

**P , 0.01, and ***P , 0.001.

TABLE 4 FA analysis of RPMI B cells1

FAs BSA EPA DHA

14:0 0.9 6 0.6 0.5 6 0.5 0.6 6 0.3

16:0 23.2 6 1.4 16.0 6 2.8 20.3 6 1.3

16:1 4.0 6 0.5 2.4 6 0.8 3.1 6 0.2

18:0 19.4 6 0.4 15.9 6 0.4** 17.1 6 0.4*

cis 18:1 24.6 6 3.4 17.5 6 0.2 19.4 6 0.2

18:2(n–6) 1.8 6 0.1 1.8 6 0.1 1.8 6 0.1

20:4(n–6) 16.9 6 3.9 7.2 6 0.8* 9.0 6 0.3*

20:5(n–3) 0.4 6 0.1 9.4 6 0.3*** 0.6 6 0.1

22:5(n–3) 4.7 6 0.6 26.3 6 2.3*** 2.9 6 0.1

22:6(n–3) 4.0 6 1.0 2.8 6 0.4 25.0 6 1.2***

+ SFAs 43.5 6 1.7 32.4 6 2.9* 23.0 6 1.2

+ MUFAs 28.8 6 3.9 20.0 6 0.6 22.6 6 0.1

+ (n–3) PUFAs 9.0 6 1.6 38.5 6 2.7*** 28.5 6 1.1***

+ (n–6) PUFAs 18.7 6 3.8 9.1 6 0.8* 10.8 6 0.3

1 B cells were treated with BSA or 25 mmol EPA or DHA/L for 24 h. Data are means 6

SEMs from 5 independent experiments. Values (arbitrary units) are percentage of total

FAs. Asterisks indicate statistical significance relative to the BSA control: *P , 0.05,

**P , 0.01, and ***P , 0.001.
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consistently shown no effect of other FAs, including in EL4
lymphomas (15, 22).

The FA analyses revealed complex differences that led to
studies with NMR spectroscopy. Model membranes were used to
study the physical effects of EPA/DPA/DHA that could not have
been achieved in a cell culture model. These studies revealed that
although EPA causes greater disordering than DHA, DPA does
not. The reduction in average order parameter relative to the
OA-containing phospholipid bilayerwas 14%and 10%with EPA
and DHA, respectively. A slightly smaller reduction in average
order parameter was measured for the DPA- than the DHA-
containing bilayer (9% compared with 10%), but the difference is
less than experimental uncertainty. Mechanistically, EPA�s greater
disorder was because of its shorter chain length compared with
DPA and DHA.

The motion of DPH within a membrane is anisotropic so that
the steady-state polarization reflects both viscosity (rate of
motion) and order (degree of anisotropy of motion) that are
combined in the term fluidity. Because the latter contribution
dominates, a smaller polarization value implies a more disordered
membrane (25). The relation between absolute order and DPH
anisotropy values is not linear; therefore, our reported changes in
DPH polarization do not reflect the exact amount of change in the
molecular order of the B-lymphoma plasma membrane upon EPA
or DHA treatment. To put our reported changes in the context of
the literature, a 50% loss of cholesterol in erythrocytes (from 60

to 30 mmol/L) decreased anisotropy values by ;12% (from 0.25
to 0.22) (35). Thus, the measured values suggest fairly large
changes in order with EPA and DHA treatment.

The DPH probe does not detect whether EPA and DHA had
an influence on the packing of rafts and nonrafts. We did
conduct a select imaging study with the fluorescent probe di-4-
ANEPPDHQ, which is more selective in probing for packing
within ordered and disordered domains (15). We found that
there was no major spectral blue shift in the emission of di-4-
ANEPPDHQ upon EPA and DHA treatment, suggesting no
specific change in the order of raft-like domains (data not
shown). These results were highly similar to our previous data
with EL4 lymphomas that showed that EPA and DHA do not
have an effect on rafts in the absence of raft cross-linking (15).

The result that a DHA-containing phospholipid is more
ordered than one containing EPA is consistent with previous
work (7, 13). Presumably, an EPA-containing phospholipid is
less ordered than DHA or DPA because of the shorter chain
length of the PUFA. The implication is that the elongation of
EPA to DPA will diminish the reduction in order seen in cells
after treatment with EPA. Of course, we cannot attribute the
elongation of EPA to DPA as the only reason why EPA and DHA
had a similar effect on order. The FA analyses showed complex
changes such as the loss of stearic and arachidonic acids, whichwill
also influence membrane order (36). The unusually high concen-
trations of DPA in the cell lines were not caused by contami-
nation of our EPA stocks. We also observed high concentrations
of DPA upon EPA administration in EL4 lymphomas (15). This
suggests potential high enzymatic activity in elongating EPA
to DPA.

GC analysis was for the entire cell, so there may be changes
that occur in the plasma membrane that are slightly differ-
ent than the entire cell. We relied on whole-cell analyses for
comparisons to our previous work and to account for any
potential uptake of DPH into endomembranes (15, 24). Future
studies will need to address EPA and DHA concentrations of
isolated plasma membranes. Nevertheless, to the best of our
knowledge, our data open a new area of investigation, which is
the role of DPA in plasma membrane organization.

We focused on B-lymphoma growth as a functional endpoint
based on our previous studies (23). With B lymphocytes in

FIGURE 2 Heteroacid phosphatidylcholines con-

taining esterified DPA are more ordered than those

containing EPA. (A) Sample 2H NMR spectra for

phosphatidylcholines containing perdeuterated

stearic acid in the sn-1 position and either OA,

EPA, DPA, or DHA in the sn-2 position. (B) Average

order parameters calculated from NMR spectra.

Spectra were acquired at 25�C and 35�C and are

representative of multiple acquisitions. A reproduc-

ibility of 61–2% applies to the average order

parameters that were obtained from spectra col-

lected with multiple acquisitions in single 2H NMR

experiments. DPA, docosapentaenoic acid; OA,

oleic acid.

TABLE 5 First-moment analysis of 2H NMR spectra of phos-
phatidylcholines containing varying degrees of unsaturation1

FAs
M1 at 25�C,
103s21

M1 at 35�C,
103s21

OA 46.6 6 0.5 44.6 6 0.5

EPA 40.0 6 0.4 39.6 6 0.4

DPA 42.4 6 0.4 41.0 6 0.4

DHA 41.8 6 0.4 41.1 6 0.4

1 Values are means 6 SEMs. First moments calculated from NMR spectra of

phosphatidylcholines with perdeuterated stearic acid in the sn-1 position and

containing OA, EPA, DPA, or DHA in the sn-2 position. DPA, docosapentaenoic acid;

M1, first moment; OA, oleic acid.
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mouse models, EPA and DHA enhanced the steady-state
frequency of B lymphocytes, raising concerns that EPA and
DHA could enhance the growth of B lymphomas (19). Gener-
ally, n–3 PUFAs do not promote the growth of cancer cells,
although there is some evidence questioning the utility of n–3
PUFAs in either preventing or suppressing tumor growth in vivo
(37). Several studies have shown that EPA and DHA have
potential clinical utility for suppressing cancer growth and
progression (38–40). For instance, n–3 PUFAs promote the
death of breast cancer cells in cell cultures and animals (41, 42).
A recent study (43) demonstrated that dietary supplementation
with EPA and DHA decreased breast tumor growth in obese
mice, suggesting that these FAs may play a role in preventing
some of the procancer effects of obesity. On the other hand,
there is evidence that n–3 PUFAs, potentially in a complex
interplay with other dietary factors, could have detrimental
effects on select cancers (44, 45). For example, Mannini et al.
(46) showed that n–3 PUFAs promoted metastases of S11
T-lymphomas transplanted into a murine model. Therefore, it
was essential for the field to establish whether n–3 PUFAs would
enhance B-lymphoma growth.

At the level of cell culture, our data show that EPA and DHA
do not promote B-lymphoma growth and thereby are unlikely to
be cancer-promoting agents in the context of B lymphomas.
Future studies need to address a dose response with EPA and
DHA on B-lymphoma growth because we simply used 25 mmol/L
with the intent of comparing the mechanistic effects on B
lymphomas to our previous work (15, 22).

There is very little information to our knowledge about how
EPA and DHA affect B lymphomas. Verlengia et al. (47) showed
that EPA and DHA at low concentrations enhanced Raji B cell
proliferation. Our results are difficult to compare to this study
because Verlengia et al. compared EPA with DHA and did not
have a FA-free condition for their growth studies. In another
study (48), DHA promoted toxicity with Raji B cells compared
to more short-chain FAs. In preliminary studies, we have also
observed that Raji B cell growth was suppressed with 50 mmol
DHA treatment/L after 48 h of treatment (data not shown).
Future studies need to address how DHA in vivo can mecha-
nistically target B-lymphoma growth, which may be linked to
changes in lipid rafts (41).

The lack of effect of EPA and DHA on Ramos and RMPI cells
shows that even within B lymphomas there are differences in
cellular metabolism. Moreover, the mechanisms by which n–3
PUFAs enhance the frequency of B lymphocytes, including transi-
tional 1/2, follicular, and marginal zone cells, are clearly distinct
from the mechanisms by which n–3 PUFAs target B lymphomas.
This is consistent with the notion that cancer cell metabolism is
widely different than the metabolism of primary lymphocytes (49).

In conclusion, our data demonstrate that the treatment with
EPA and DHA has similar effects on membrane order in B
lymphomas at 25 mmol/L. Order parameters measured from
NMR spectra recorded with model membranes show that this is
in part driven by the elongation of the highly disordered EPA to
the relatively more ordered DPA. These data open the door to an
area of new study, which is the role of DPA in regulating plasma
membrane organization and function. Furthermore, the results
show that neither FA promotes B lymphoma growth, providing
evidence that n–3 PUFAs do not promote cancer cell growth, at
least at 25 mmol/L.
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