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Abstract

Extracting nuclei is one of the most actively studied topic in the digital pathology researches. Most 

of the studies directly search the nuclei (or seeds for the nuclei) from the finest resolution 

available. While the richest information has been utilized by such approaches, it is sometimes 

difficult to address the heterogeneity of nuclei in different tissues. In this work, we propose a 

hierarchical approach which starts from the lower resolution level and adaptively adjusts the 

parameters while progressing into finer and finer resolution. The algorithm is tested on brain and 

lung cancers images from The Cancer Genome Atlas data set.
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 1. DESCRIPTION OF PURPOSE

Extracting nuclei is one of the most actively studied topic in the digital pathology 

researches., Most of the studies directly search the nuclei (or seeds for the nuclei) from the 

finest resolution available. While the richest information has been utilized by such 

approaches, it is sometimes difficult to address the heterogeneity of nuclei in different 

tissues. In this work, we propose a hierarchical approach which starts from the lower 

resolution level and adaptively adjusts the parameters while progressing into finer and finer 

resolution. The algorithm is tested on brain and lung cancer images from The Cancer 

Genome Atlas (TCGA) data set.

In general, the nuclei detection algorithms from H&E image proceed with the following 

consecutive steps.– First, the image is pre-processed to normalize the staining and/or 

illumination conditions. Then, certain scalar is derived from the RGB values of the H&E 

stained images for the purpose of highlighting the chromatin material. This could be a 

decomposition process which extracts the hematoxylin component or other possibly non-

linear color space transformations. In some learning based algorithms, the scalar may be 
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derived from the learned information and represent nuclear probability measurement. Once 

such scalar field is computed, prominent locations in the images are picked as seeds or the 

initial locations of the segmentation contours, which are further refined using contour 

evolution algorithms, such as graph cut or level set methods. In cases such as multiple nuclei 

clump in a single region without clear separation in between, clustering based algorithms are 

adopted to separated them into individual nucleus.

Regardless of the approaches being adopted, there always exist some parameters that 

affected certain steps in the algorithm. For example, when determining whether certain 

region is a single nucleus or a clumped area which should be separated, implicitly or 

explicitly, a parameter indicating the expected nuclear size is necessary. Such parameters are 

often dictated by the tissue types where the nuclei reside in. As a result, if the digital 

pathology images contain more than one types of tissues where the nuclear properties differ 

significantly, a single set of parameter is not sufficient for an optimal nuclear identification 

task.

In this study, we address such a problem by adopting a top-to-bottom approach. The 

algorithm starts from the low resolution interpretation of the image, in which an 

approximated tissue classification is performed. Then, the algorithm proceeds into finer and 

finer scale, where the identified “tissue type” provides specific estimation for the nuclear 

features underneath. The algorithm is tested on brain and lung cancer images from (TCGA) 

data set.

 2. METHOD

 2.1 Tissue and nuclear context learning

The tissue type and the nuclear features are learned from a set of training images, with the 

nuclei manually traced out and validated by pathologists. Specifically, denote the training 

images as

(1)

Their corresponding ground truth segmentations are Li : ℝ → {0, 1} where 1 indicates the 

nuclear regions. In order to learn the nuclear features, for the i-th nucleus, a groups of image 

and morphological features are learned. The feature vector fi ∈ ℝ4 includes: the average of 

the intensity in the Hematoxylin channel, the area (unit in μm2) of the nucleus, the ratio τ 

between the square of the nuclear parameter and the area. Denote the total number of nuclei 

in all the M training images as N, we will then have the feature sets:

(2)

The tissue classification is carried out at lower resolution versions of the training images. 

Image pyramid is constructed to approximate the image appearance at lower resolution of 
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8μm/pixel. Denote the low resolution version of Ii as Ji, and we collect all the image RGB 

values in all the M images, that is,

(3)

Then, a Gaussian mixture model (GMM) is fit to the data with k clusters. It is noted that the 

resulting k clusters are related, but not directly mapped, to the different histology tissue 

types. Indeed, the purpose of clustering is to guide the subsequent nuclear segmentation in a 

spatially heterogeneous way, not to provide a precise tissue classification. Different clusters 

may also represent the same tissue type under slightly different staining and imaging 

condition. Nevertheless, we will call such map as “tissue map” in the subsequent discussion 

without causing confusion.

After the clustering, each of the feature vector can be assigned a cluster label. More 

explicitly, depending on the highest image resolution, a pixel in Ji often corresponds to a 

patch of about 32 × 32 pixels in Ii. A nucleus is labeled according to that of the patch that 

contains the largest portion (or sometimes entirely) of it. As a result, the N features vectors 

are grouped into k sub-sets F1 through Fk. For each sub-set, the feature distributions pFi : ℝ3 

→ ℝ+, i = 1, …, k are learned through a kernel density estimation process. Assuming the 

independence among the features, the likelihood function for each feature is learned 

separately so

(4)

with the maximum response of each likelihood function being normalized to 1. Such 

information is used in the subsequent adaptive segmentation.

 2.2 Hierarchical adaptive nuclear segmentation

Given a new image I : Ω → ℝ3 from which we want to segment the nuclei, we first identify 

the “tissue map”. To this end, the image pyramid is constructed to approximate I at lower 

resolution of 8μm/pixel, denoted as J. Then, the learned GMM is applied to the new image J 
for a pixel-wise classification, which gives a label image L̃ with the range of {1, …, k}. Note 

that L̃ does not necessarily have all the k models. After that, L̃ is reconstructed to the 

original resolution defined on the same discrete grid as I, denoted as

(5)

Based on L, the domain Ω is decomposed into k sub-regions with
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(6)

Apparently we have

(7)

With the image domain decomposed, each region is processed with its own set of parameters 

in the pipeline described below.

First, the hematoxylin channel of the entire image is extracted, denoted as H(x), regardless 

of the “tissue map”. Then, for each cluster, a set of seeds are extracted based on local and 

global intensity criteria. Specifically, for the i-th cluster Ωi, the seed set Si := Ai ∪ Bi where 

Ai contains the local minima of H:

(8)

in which (x) is the neighborhood of x (within Ωi). Bi is determined by the learned features 

in pFi as:

(9)

In addition, a “rejection region” S̃
i is defined as

(10)

With the two regions defined, an adaptive geodesic segmentation is performed to extract the 

region Gi ⊆ Ωi of the nuclei in region Ωi. It is possible that multiple nuclei are clumped 

together in Gi and we need to first identify clumping regions and then decompose them into 

individual nucleus.

In order to identify the clumping regions, each connected component in Gi, denoted as , is 

computed. Then, the area (aj) and squared-perimeter-area ratio (τj) for each j are computed. 

Regions with too large area or too jagged boundary (large τ) will be decomposed. 

Mathematically, those regions  with

(11)
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are subject to de-clumping. To that end, a set of 5-dimensional feature points are collected:

(12)

Then, the meanshift algorithm is used to find clustering in ., One key parameter in the 

meanshift algorithm is the kernel size σi, which determines the resulting cluster size. To 

optimize such parameter, the “most-likely” radius of the learned nuclei in such a “tissue 

type” is used to determine the kernel size:

(13)

where γ is often set to a small positive value, such as 0.2.

 3. EXPERIMENTS AND RESULTS

Nuclei in 15 brain images 18 lung images of sizes around 700 × 700 are manually 

contoured. The images have resolution of 0.25μm/pixel. The number of cluster k is set to 5 

empirically. A leave-one-out test is performed for each image.

Figure 1 shows 4 examples for brain tissue. The average Dice coefficients for all brain 

images is 0.71 with standard deviation of 0.048.

Figure 2 shows 4 examples for lung tissue. The average Dice coefficients for all lung images 

is 0.70 with standard deviation of 0.045.

 4. CONCLUSION AND FUTURE RESEARCH DIRECTIONS

For the purpose of nucleus extraction from digital pathology images, we propose a 

hierarchical approach which starts from the lower resolution level and adaptively adjusts the 

parameters while progressing into finer and finer resolution. The algorithm is tested on two 

types of brain cancers and two types of lung cancers from the The Cancer Genome Atlas 

data set.

The algorithm is currently implemented for small scale computing using Matlab. The 

ongoing research include scaling the algorithm to larger data set. Furthermore, larger scale 

evaluation and validation is needed and we are working on a systematic approach to evaluate 

the segmentation result at WSI level. Moreover, the current Dice coefficient in the 0.7 level 

should be improved for more accurate morphology studies. Better de-clumping algorithm is 

also an ongoing research direction.

The work has not been submitted for publication or presentation elsewhere.
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Figure 1. 
Four example results for brain images. Contour colors: yellow (manual), cyan (algorithm).
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Figure 2. 
Four example results for lung images. Contour colors: yellow (manual), cyan (algorithm).
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