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Abstract

The nucleotide-binding oligomerization domain-like receptor (Nlrp) 6 maintains gut microbiota 

homeostasis and regulates antibacterial immunity. We now report a role for Nlrp6 in the control of 

enteric virus infection. Nlrp6−/− and control mice systemically challenged with 

encephalomyocarditis virus had similar mortality, however, the gastrointestinal tract of Nlrp6−/− 

mice exhibited increased viral loads. Nlrp6−/− mice orally infected with encephalomyocarditis 

virus had increased mortality and viremia compared to controls. Similar results were observed 

with murine norovirus 1. Nlrp6 bound viral RNA via the RNA helicase Dhx15 and interacted with 

Mavs to induce type I/III interferons (IFNs) and IFN-stimulated genes (ISGs). These data 

demonstrate that Nlrp6 functions with Dhx15 as a viral RNA sensor to induce ISGs, and this effect 

is especially important in the intestinal tract.

Nucleotide oligomerization domain (NOD) like receptors (NLRs) play a central role in the 

immune response to diverse microorganisms, and react to environmental insults and cellular 
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danger signals (1, 2). Some NLRs contribute to antiviral immunity. NOD2 recognizes 

ssRNA viruses to induce type I interferons (IFNs) via mitochondrial antiviral-signaling 

protein (MAVS) (3), and the NLRP3 inflammasome is crucial for the control of diverse viral 

infections in vivo (4–7). Several NLRs, on the other hand, dampen antiviral immune 

responses. NLRX1 and NLRC5 negatively regulate type I IFNs and NF-κB signaling via 

distinct molecular mechanisms (8–12); NLRC3 attenuates Toll-like receptor signaling and 

the stimulator of interferon genes (STING)-mediated anti-DNA virus immune signaling (13, 

14). A role for Nlrp6 in the regulation of antibacterial immune responses has recently been 

documented (15–18); however, whether Nlrp6 regulates viral infection has not yet been 

elucidated.

Nlrp6 exhibits a tissue and cell-type specific pattern of expression, with the highest level in 

intestinal epithelial cells (IECs) (15) (fig. S1 and fig. S2). We therefore determined whether 

Nlrp6 plays a prominent role in inhibiting enteric virus infection at the intestinal interface. 

We used a (+) ssRNA virus, encephalomyocarditis virus (EMCV), which is transmitted via 

the fecal-oral route in nature. We infected both wild-type (WT) and Nlrp6−/− mice with 

EMCV systemically via intraperitoneal injection, and noted that the survival curve of 

Nlrp6−/− mice was similar to that of WT animals (Fig. 1A). Viral dissemination was also the 

same in the blood, brains and hearts of Nlrp6−/− and WT mice. The intestinal viral burden of 

Nlrp6−/− mice was, however, higher than that of WT animals (Fig. 1B) -- suggesting that 

Nlrp6 plays an important role in limiting EMCV replication at this location. In support of 

this, Nlrp6 mRNA expression was much higher in the intestines than other tissues after 

EMCV infection (Fig. 1C). We therefore reasoned that Nlrp6 prevents systemic infection 

and mortality when EMCV is delivered orally to its principal site of infection -- the intestine. 

Indeed, Nlrp6−/− mice were more susceptible to oral infection with EMCV than WT animals 

(Fig. 1D, see also Fig. 3E).

Alterations in microbiota and inflammasome activation are two potential processes that may 

influence the ability of Nlrp6−/− mice to control intestinal EMCV infection. The intestinal 

microbial ecology of Nlrp6−/− mice is different from that of WT mice (15), which could 

impact antiviral immunity. We therefore cohoused mice for 4 weeks before EMCV infection, 

which we previously showed was sufficient to equilibrate the microbiota between WT and 

Nlrp6−/− mice. WT and Nlrp6−/− mice had similar levels of TM7 and Prevotellacae bacteria 

(15) after co-housing (fig. S3A), indicating stabilization of the microbiota. Nlrp6−/− mice, 

however, died of EMCV infection more rapidly than WT and co-housed WT animals (Fig. 

1D); and viremia was ~10-fold higher in Nlrp6−/− than WT animals (Fig. 1E). When 

inoculated systemically via intraperitoneal injection, EMCV loads in the intestines of co-

housed Nlrp6−/− mice were also over 10-fold higher than those of co-housed WT animals 

(Fig. 1F). Similar survival results were noted for Nlrp6−/− and Nlrp6+/+ littermates (fig. 

S3B). These data demonstrate that the increased viral susceptibility of Nlrp6−/− mice is not a 

result of altered intestinal microbial ecology. To extend our finding further, we examined 

another enteric virus, murine norovirus 1(MNV-1), a (+) ssRNA virus. MNV-1 was rapidly 

cleared by the innate immune system in WT mice (19); but persisted much longer in 

Nlrp6−/−(fig. S3, C to E). Nlrp6 initiates inflammasome signaling via caspase-1. We 

therefore determined whether Nlrp6 requires caspase-1 to control EMCV at the intestinal 

epithelia. In agreement with a previous report (20), following EMCV challenge, the survival 
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of Casp1−/− and WT mice was similar (Fig. 1D). These data suggest that intestinal Nlrp6 

controls EMCV infection by an alternative mechanism.

To understand how Nlrp6 contributes to antiviral innate immune responses, we used an 

Nlrp6 antibody to immunoprecipitate Nlrp6 binding partners from mouse primary IECs, and 

a FLAG-Nlrp6 overexpression system in HEK293T cells. We identified DEAH (Asp-Glu-

Ala-His) box helicase 15 (Dhx15) by mass spectrometry (fig. S4), and confirmed it using a 

specific antibody to Dhx15 (Fig. 2A and fig. S5A). GST-Dhx15 expressed in E. coli pulled 

down FLAG-Nlrp6 expressed using a mammalian in vitro translation system (fig. S5B), 

suggesting a direct interaction. Nlrp6 is comprised of 3 functional domains, an N-terminal 

pyrin domain (PYD), a NACHT domain and C-terminal leucine rich repeat domain (LRR). 

Each individual domain failed to bind Dhx15 when compared to full-length Nlrp6 (fig. 

S5C). A fragment encompassing the NATCH and NACHT-associated domain (NAD) 

interacted with Dhx15 (Fig. 2B). NLRP3, a close relative of Nlrp6, did not interact with 

Dhx15, demonstrating specificity (fig. S5C).

Dhx15 is a putative pre-mRNA-splicing factor and ATP-dependent RNA helicase, and 

modulates antiviral immune responses via MAVS, an adaptor protein for RIG-I like 

receptors (RLRs) (21, 22). We reasoned that the Nlrp6-Dhx15 complex might use MAVS to 

trigger type I interferon (IFN) responses. Indeed FLAG-Nlrp6 bound endogenous MAVS, as 

did Nlrp3 (23) and RIG-I (24–27) (Fig. 2C). The negative controls FLAG-NLRC5 (11) or 

Nlrp10 did not co-precipitate with MAVS (fig. S5D), confirming the specificity of the 

Nlrp6-MAVS interaction. Since Dhx15 is a putative RNA helicase and viral RNA sensor 

(22), we then determined whether Nlrp6-Dhx15 forms a viral RNA sensing complex. Both 

Nlrp6 and Dhx15 showed high affinity for viral RNA (Fig. 2D and fig. S6A). The Nlrp6 

NACHT domain was sufficient for RNA binding, but weaker than full-length Nlrp6 (fig. 

S6B). To exclude non-specific binding due to overexpression, we examined endogenous 

Nlrp6 binding to viral RNA in WT and FLAG-Nlrp6 knock-in mice (fig. S2). Both Nlrp6 

and FLAG-Nlrp6 was co-immunoprecipitated with EMCV RNA from infected IECs (Fig. 

2E, fig. S6C). Since the RNA binding capacity of Dhx15 was much greater than that of 

Nlrp6, we reasoned that Nlrp6-RNA binding was dependent on Dhx15. Indeed, the amount 

of Nlrp6-bound viral RNA was reduced significantly in Dhx15 siRNA-treated cells (Fig. 

2F). In contrast, Dhx15-RNA binding was not altered in Nlrp6−/− cells (fig. S6D). Like 

Dhx15 (22), Nlrp6 bound only RNA but not DNA viruses (fig. S6E). To assess the nature of 

viral RNA bound by Nlrp6, we tested several synthetic RNA analogues. Nlrp6 preferably 

bound the long dsRNA analogue- polyinosinic:polycytidylic acid (poly I:C) (Fig. 2G). To 

provide in vivo evidence for a functional interaction between MAVS, Dhx15 and Nlrp6, we 

examined MAVS-Dhx15 interactions in WT and Nlrp6−/− IECs. Consistent with a previous 

report (22), MAVS binding to Dhx15 was enhanced by EMCV infection in WT IECs, but the 

interaction was weaker in Nlrp6−/− (Fig. 2H). Mavs−/− mice were also much more 

susceptible to EMCV administered orally when compared with WT mice (Fig. 2I). These 

data suggest that the Dhx15-Nlrp6-MAVS axis plays an important role in restricting EMCV 

infection of the intestine.

To validate a role for Nlrp6 in Dhx15-Mavs-mediated antiviral immunity, we examined the 

expression of type I/III IFN-induced genes (ISGs). The mRNA and protein expression of a 
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number of ISGs was reduced in Nlrp6−/− IECs compared to WT (fig. S7A, Fig. 3A and B). 

Although both type I and III IFNs can elicit antiviral responses, type III IFNs are particularly 

critical for controling viral infection in IECs (28–30). IFN-λ (also known as IL-28a) protein 

and mRNA, and Ifnb mRNA were reduced in Nlrp6-/- intestines after EMCV infection (fig. 

S7B). ISG mRNA amounts were, however, similar in other WT and Nlrp6−/− tissues (fig. 

S8).

To assess whether the Nlrp6-caspase-1 inflammasome regulates antiviral immunity in the 

intestine, we compared ISG expression in Nlrp6−/− with Casp1−/− and WT mice. The viral 

loads and ISG expression were similar in the intestines of Casp1−/− and WT mice (fig. S9), 

demonstrating an inflammasome-independent antiviral mechanism for Nlrp6. In support of 

the in vivo findings, EMCV loads in Nlrp6−/− embryonic fibroblasts (MEFs) were 6-fold 

higher than those in Nlrp6+/− cells at 16 h after infection; while antiviral gene expression 

was significantly lower (Fig. 3C and D, fig. S10A and B). We also observed a decrease in 

poly (I:C)-induced Ifnb1 expression in Nlrp6−/− compared to Nlrp6-/+ MEFs (fig. S10C). In 

agreement with the results from Nlrp6−/− cells, overexpression of Nlrp6 enhanced Ifnb1 and 

Il6 expression modestly (fig. S11). All these data demonstrate a pivotal role for Nlrp6 in 

inducing type I/III IFNs and ISGs. Type III IFNs are particularly critical for control of viral 

infection of IECs (28–30). Indeed, exogenous IFN-λ fully protected WT and Nlrp6−/− mice 

against lethal EMCV infection and reduced viremia significantly (Fig. 3E). We next 

determined whether the antiviral function of Nlrp6 is specific for RNA viruses. Neither 

herpes simplex virus-1 (HSV-1) titers nor Ifnb1 expression in Nlrp6−/− was different from 

those in Nlrp6-/+ cells (fig. S12A). IFN-α, polyd(A:T) or lipopolysaccharide-induced ISGs 

or cytokine expression in Nlrp6−/− was also similar to that in Nlrp6-/+ MEFs (fig. S12, B to 

D).

As viral infections, and the ligands that can induce robust type I IFN expression, also up-

regulated Nlrp6 expression (Fig. 3C, fig. S10C, fig. S12C and fig. S13), we reasoned that 

Nlrp6 per se might be an ISG. Indeed, induction of Nlrp6 mRNA expression by EMCV or 

poly(I:C) treatment was almost abolished in Irf3/7−/− or Ifnar1−/− MEFs. Consistent with 

this, recombinant IFN-α, but not TNF-α was able to induce Nlrp6 expression vigorously, 

suggesting that IRF/IFN signaling but not NF-κB signaling controls Nlrp6 expression (Fig. 

4, fig. S14A). Nlrp6 mRNA expression was also induced by recombinant IFN-λ2 (fig. 

S14B). These results indicate that Nlrp6 expression is regulated by type I/III IFNs via 

IRF3/7.

The above-mentioned data demonstrate that Dhx15-Nlrp6 senses long dsRNA in the 

cytoplasm (Fig. 2G), a well-established feature for MDA5. We then determined whether 

Nlrp6-mediated signaling is also dependent on MDA5. siRNA knockdown of Nlrp6 reduced 

Ifnb1 and Isg15 mRNA expression following poly I:C stimulation in Mda5−/− MEFs (fig. 

S15A), suggesting an MDA5-independent antiviral role for Nlrp6. Similar results were noted 

with Rig-I−/− MEFs (fig. S15B). Nlrp6-RNA binding was unchanged in Mda5−/− or Rig-I−/− 

MEFs compared to WT (fig. S15C); and there was no interaction between Nlrp6 and MDA5 

or RIG-I (fig. S15D). We next examined the relative anti-viral role for MDA5 in the intestine 

in comparison to Nlrp6. The viral loads in both Nrp6−/− and Mda5−/− IECs were similar, but 

much higher than those in WT mice (Fig. S15E). These results, in conjunction with the 
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Nlrp6, Dhx15 and MDA5 expression data (fig. S1), suggest that Dhx15-Nlrp6 constitutes the 

first line of anti-EMCV defense in the intestinal epithelia, while MDA5 is dominant in 

myeloid cells.

In summary, our results demonstrate that Nlrp6 controls enteric virus infection in the 

intestine by interacting with a RNA sensor, Dhx15, to trigger MAVS-dependent antiviral 

responses. This inflammasome-independent response provides a mechanism for Nlrp6 to 

elicit pleotropic effects in the host, and demonstrates its importance against diverse classes 

of microbes.
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Fig. 1. Nlrp6 controls EMCV infection of the intestine
(A) The survival curves of WT and Nlrp6−/− mice infected with EMCV via the intra-

peritoneal route (i.p.). N=12/group. Quantitative PCR analyses of (B) EMCV viral loads and 

(C) Nlrp6 in various tissues 72 hours after infection with EMCV i.p. IEC: isolated intestinal 

epithelial cells from infected intestines. (D) The survival curves of WT mice, WT mice 

cohoused with Nlrp6−/− [WT (Nlrp6−/−)], Nlrp6−/− mice cohoused with WT [Nlrp6−/−(WT)] 

and Casp1−/− mice after oral infection with EMCV. N=10–16/group, *P<0.05 (Log-rank 

test). Results were pooled from two independent experiments. Quantitative PCR analysis of 

EMCV loads (E) in the whole blood cells 72 hours after oral infection or (F) intestines 72 

hours after i.p. infection. Each symbol in (B), (C), (E) and (F) represents one mouse; small 

horizontal lines indicate the median of the result. *P < 0.05, **P < 0.01 (nonparametric 

Mann-Whitney analysis). The data are representative of at least 2–3 independent 

experiments.
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Figure 2a
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Figure 2b

Fig. 2. Nlrp6 binds viral RNA via Dhx15
(A) Co- immunoprecipitation (IP) of Nlrp6 with Dhx15 from WT and Nlrp6−/− mouse 

intestinal epithelial cells using an anti-Nlrp6 antibody. IB: immunoblotting. (B) Co-IP of 

FLAG-Nlrp6 NACHT+NAD (amino residues 170–715) and the full-length (1–end) with 

endogenous DHX15 from HEK293T cells overexpressing FLAG-tagged proteins using an 

anti-FLAG antibody. (C) Co-IP of FLAG-tagged proteins with endogenous MAVS from 

HEK293T cells as in (B). WCE, whole cell extract. RIG-I, retinoic acid inducible gene 1; 

GAPDH, glyceraldehyde 3-phosphate dehydrogenase. (D) Quantitative PCR analyses of 

viral RNA bound by FLAG-tagged proteins from EMCV-infected and FLAG fusion protein-

expressing HEK293T cells. The data are presented as fold increase over vector (FLAG). (E) 
Binding of endogenous Nlrp6 to viral RNA. Left chart, quantitative PCR analyses of viral 

RNA bound by endogenous FLAG-Nlrp6 in IECs. Right panel: immunoblots of FLAG-

Nlrp6 in WCE and IP. 3xFLAG-Nlrp6 denotes 3 FLAG motifs tagged to Nlrp6. (F) 
Quantitative PCR analyses of EMCV RNA bound by FLAG-Nlrp6 from GFP or DHX15 
siRNA-treated HEK293T cells. The lower panel: immunoblots of WCE and IP. (G) 
Immunoblots showing FLAG-tagged proteins (purified from HEK293T) bound by biotin-

labeled RNA analogues. PolyIC(H): high molecular weight (1.5–8kb), polyIC(L): low 

molecular weight (0.2–1kb). (H) Co-IP of Mavs with Dhx15 from IECs of WT and Nlrp6−/− 

mice infected with EMCV using a rabbit anti-Mavs antibody. (I) The survival curves of WT 
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and Mavs−/− mice after oral infection with EMCV. N=5/group; *, p<0.05 (Log-rank test). 

The data are representative of at least two independent experiments.
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Figure 3a
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Figure 3b

Fig. 3. Nlrp6 regulates type I/III IFN and ISG expression in the intestine
In (A) to (C), mouse tissues were analyzed on day 3 after intraperitoneal (i.p.) infection with 

EMCV. (A) Quantitative PCR analyses of selected ISG mRNA expression in IECs and 

whole intestine. (B) Immunoblotting analyses of ISG protein abundance in whole intestine 

of co-housed mice. Right panel indicates relative ISG abundance normalized to a house 

keeping protein, Gapdh. (C) Quantitative PCR analyses of cellular EMCV loads and 

immune gene expression in MEFs after EMCV infection (MOI=0.1). (D) ELISA of IFN-β 

concentrations in the culture medium of MEFs after EMCV infection and quantification of 

infectious viral particles in the culture medium 16 hours after EMCV infection. (E) Left 

panel: the survival curves of WT and Nlrp6−/− mice treated with 0.9% saline (mock) or 25 

µg of recombinant mouse IFN-λ2 4h before oral infection with EMCV. Right panel: 

quantitative PCR analysis of EMCV loads in the whole blood cells 72 hours after infection. 

N=7–10/group, *P<0.05 (Log-rank test). In (A), and (E) the data are normalized with mouse 

beta actin and are presented as fold change over the mean of the results of WT (Mock-WT in 
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E) mice. Each band/dot represents an animal. The horizontal lines in the figures indicate the 

median of the results. *P < 0.05, **P < 0.01 and ***P<0.001 (nonparametric Mann-Whitney 

analysis). In (C) and (D), bars: mean + S.E.M, n=3. *, P<0.05; **, P<0.01 (unpaired 

students’ t-test). ). The data are representative of /pooled from at least two independent 

experiments.
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Fig. 4. Nlrp6 is an ISG
Quantitative PCR analyses of the transcripts of (A) Nlrp6, (B) Mda5 in WT, Irf3/7−/− and 

Ifnar−/− MEFs treated with EMCV, polyI:C, recombinant IFN-α or TNF-α. The data are 

expressed as percentage of a house keeping gene Hprt. Bars: mean + S.D. The data are 

representative of at least two independent experiments.
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