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Abstract
We investigate the associations of three established plasma biomarkers in the context of

HIV and treatment-related variables including a comprehensive cardiovascular disease risk

assessment, within a large ambulatory HIV cohort. Patients were recruited in 2010 to form

the Royal Perth Hospital HIV/CVD risk cohort. Plasma sCD14, sCD163 and CXCL10 levels

were measured in 475 consecutive patients with documented CVD risk (age, ethnicity, gen-

der, smoking, blood pressure, BMI, fasting metabolic profile) and HIV treatment history

including immunological/virological outcomes. The biomarkers assessed showed distinct

associations with virological response: CXCL10 strongly correlated with HIV-1 RNA

(p<0.001), sCD163 was significantly reduced among ‘aviraemic’ patients only (p = 0.02),

while sCD14 was unaffected by virological status under 10,000 copies/mL (p>0.2). Associa-

tions between higher sCD163 and protease inhibitor therapy (p = 0.05) and lower sCD14

with integrase inhibitor therapy (p = 0.02) were observed. Levels of sCD163 were also asso-

ciated with CVD risk factors (age, ethnicity, HDL, BMI), with a favourable influence of Fra-

mingham score <10% (p = 0.04). Soluble CD14 levels were higher among smokers (p =

0.002), with no effect of other CVD risk factors, except age (p = 0.045). Our findings confirm

CXCL10, sCD163 and sCD14 have distinct associations with different aspects of HIV infec-

tion and treatment. Levels of CXCL10 correlated with routinely monitored variables,

sCD163 levels reflect a deeper level of virological suppression and influence of CVD risk

factors, while sCD14 levels were not associated with routinely monitored variables, with evi-

dence of specific effects of smoking and integrase inhibitor therapy warranting further

investigation.
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Introduction
In spite of the evident success of highly active antiretroviral therapy (HAART) in suppressing
plasma levels of HIV-1 RNA, preventing progressive immune deficiency and ultimately
improving patient survival [1], there is increasing evidence that immune activation persists in
the face of effective HIV treatment [2,3]. This immune phenotype, which is characterized by
prominent monocyte activation [2–4], heightens age related changes [5] and has been associ-
ated with increased prevalence and earlier onset of a range of non-infectious co-morbidities
among HIV-infected individuals including cardiovascular and liver disease, type II diabetes
mellitus and cognitive decline [2–4,6]. The prognostic significance of several innate immune
‘biomarkers’ such as interleukin-6, C-reactive protein and particularly soluble CD14 (sCD14)
[7] as strong predictors of mortality in the setting of treated HIV infection, has also now been
established [2–4].

We have previously described an ongoing systemic inflammatory response to HIV infection
among 81 HIV+ individuals with a range of treatment outcomes compared to 21 healthy con-
trol blood donors [8]. Here, untreated HIV infection was characterised by elevated levels of
pro-inflammatory CD16+ monocytes as well as elevated plasma levels of monocyte-derived,
interferon-inducible proteins (sCD14, soluble CD163 and CXCL10). Treatment-associated
suppression of plasma HIV-1 RNA levels (i.e.<40 copies/mL) was associated with levels of
sCD163 and CXCL10 that were similar to healthy controls, while sCD14 levels remained signif-
icantly elevated despite what would otherwise be considered successful HIV treatment [8].
This observation of stable elevated sCD14 levels has also been made by others [9,10], highlight-
ing that plasma ‘biomarkers’ of systemic immune activation have distinct relationships with
HIV infection and its treatment.

In this study we have sought to investigate these plasma ‘biomarkers’ further, utilising a
larger study population and incorporating analysis of cardiovascular disease risk factors, noting
that sCD14 has been positively correlated with smoking, diabetes, fasting glucose and hyper-
tension (all p<0.001), as well as all-cause mortality, in a large US cohort study of older adults
[11]. We were also interested to explore the influence of detectable plasma HIV-1 RNA below
the standard viral load assay threshold of 40 copies/mL on these biomarkers, having previously
demonstrated in a study of>11,000 viral load results that ‘residual viraemia’ could be identi-
fied in 20% of samples measured at<40 copies/mL and was strongly predicted by the level of
plasma viraemia prior to HIV treatment–even after 10–15 years of suppressive HIV therapy
[12].

Our principal aim was to investigate the potential utility of incorporating one or more of
these plasma biomarkers into routine HIV management, through an improved understanding
of their relationships to known laboratory and clinical variables. This is informed by a growing
awareness that monitoring CD4+ T cell counts has limited ongoing utility once normal levels
have been achieved [13], while other markers of immune function may have more prognostic
value [7] as well as providing insights into disease pathogenesis [14] and informing new thera-
peutic strategies beyond the current antiretroviral treatment paradigm [15].

Materials and Methods

Patient cohort
Patients residing in Western Australia and attending the Royal Perth Hospital (RPH) Immu-
nology clinic in 2010 were recruited for this study. Informed written consent was obtained
from the patients participating in this investigation. This consent form was reviewed and

Plasma Biomarkers, HIV Treatment and CVD Risk

PLOS ONE | DOI:10.1371/journal.pone.0158169 June 29, 2016 2 / 14



accepted by the ethics committees. Written ethics committee approvals for this investigation
were received from Royal Perth Hospital (EC2012/170) and Murdoch University (2012/216).

Plasma collection process
Plasma samples were collected on the day of CVD risk assessment. Plasma was collected from
EDTA whole blood samples within 6 hours of collection by centrifugal force of 1000g for 20
mins. Plasma was removed and stored at -80°C until required for the plasma HIV-1 RNA viral
load and enzyme-linked immunosorbent assays (ELISA).

Cardiovascular disease risk assessments and HIV laboratory testing
Data on cardiovascular disease risk factors were obtained by physical examination and blood
tests assessed at the time of visit. Serum levels of total cholesterol, high density lipoprotein
(HDL), low density lipoprotein (LDL) and triglycerides were measured and the total:HDL ratio
was subsequently calculated.

HIV-1 RNA levels were measured using the Roche Cobas ultrasensitive ampliprep assay V1
(Roche). CD4+ T cell counts, CD4+ T cell percentage and CD4:8 ratios were measured from
sample acquisitions performed on the FACSCanto II flow cytometer with FACSDiva 6.1.1 soft-
ware (BD Biosciences).

Physical examinations included records for age (at sample collection), gender, ethnicity,
height (cm), weight (kg) and blood pressure monitoring (FsysBP, FDiaBP). Smoking was self-
reported and recorded as either being a smoker, a non-smoker or an ex-smoker (within 1
year). Clinical notes were accessed to record whether patients were using ART (protease inhibi-
tor, NRTI, NNRTI and Integrase inhibitor), ACE inhibitors or statin therapy at the time of
assessment. Body mass index (BMI) was calculated using height and weight measurements
overseen by a dietitian, whilst the Framingham score (mean 5-year CVD risk score) was deter-
mined using the National Heart Foundation absolute CVD risk algorithm.

Measurement of plasma sCD14, sCD163 and CXCL10 levels
For the quantitative determination of plasma biomarker levels, ELISAs were utilised, without
modification, as previously described [7]. In-house control samples (sCD14 = 400,000 ρg/μl;
sCD163 = 250 ηg/μl; CXCL10 = 125 ρg/μl) were included in each assay. The mean concentra-
tion values (SD) for the assay controls over all runs were 444,080 ρg/μl (17310), 251 ηg/μl
(16.7) and 120.8 ρg/μl (5.76) for sCD14, sCD163 and CXCL10 respectively. The mean R value
from all ELISAs was 0.993, 0.997 and 0.998 for sCD14, sCD163 and CXCL10 respectively.

Statistical analysis
Statistical data analysis was performed using SPSS version 21. Data distribution was assessed
for normality, with transformation of variables as required. Plasma biomarker data required
logarithmic transformation while absolute CD4+ cell count, CD4:8 ratio and total cholesterol
levels were square rooted. One way ANOVA analysis was utilised to compare variants within
the HIV cohort with appropriate correction for multiple comparisons when>2 groups were
compared. Univariate correlation and multivariate linear regression analyses were utilised to
estimate associations between plasma biomarkers and HIV clinical parameters (viral load sta-
tus, HIV-1 RNA viral load level, absolute CD4+ T cell count, CD4:8 ratio), treatment choice,
CVD risk factors (blood pressure and cholesterol variables, smoking, BMI and Framingham
score), gender, age and ethnicity. Statistical significance required a p-value of<0.05.
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Results
The study population included 474 consecutive patients who attended the Royal Perth Hospital
(RPH) Immunology clinic in 2010 who consented to a cardiovascular risk assessment including
smoking history, standardised measurements of blood pressure and weight as well as collection
of a fasting metabolic profile. Patient characteristics, demographics and clinical details for this
study are shown in Table 1.

The overall study population comprised 78.5% males, 68.8% Caucasians, with a mean age of
45 years (range 21–81 years, SD 12.3 years). The overall mean CD4+ T cell count was 567 cells/
μL (range 3–2205 cells/μL, SD 319 cells/μL) and mean plasma HIV-1 RNA level was 2.4 log10-
copies/mL (lcpm) or 251 copies/mL (cpm). Three hundred and sixty-five patients were on

Table 1. Demographics and patient characteristics from 474 HIV positive patients who underwent
CVD risk assessments in 2010.

Characteristic Value

Age at time of assessment, mean years (range) 45 (21–81)

Male sex (n, %) 372 (78.5)

Ethnicity

- Caucasian (n, %) 326 (68.8)

- Indigenous Australian (n, %) 24 (5.1)

- African (n, %) 57 (12.1)

- Asian (n, %) 66 (14.0)

Current Smoker (n, %) 168 (35.4)

HIV Clinical Parameters at time of assessment

- Plasma HIV RNA viral load (lcpm) 2.4 (1.6–6.0)

- Aviraemia (n, %) 211 (44.5)

- Residual viraemia <1.6 lcpm (n, %) 60 (12.7)

- HIV RNA viral load 1.6-�3 lcpm (n, %) 75 (15.8)

- HIV RNA viral load 3–4 lcpm (n, %) 49 (10.3)

- HIV RNA viral load�4 lcpm (n, %) 79 (16.7)

- CD4%, mean % (range, SD) 26.1 (1–62, 11)

- Absolute CD4 T cell count, mean (range, SD) 567 (3–2205, 319)

- CD4:8 ratio, mean (range, SD) 0.65 (0.01–3.1, 0.4)

HIV therapy at the time of assessment (n) 365

- NNRTI (n, %) 215 (45.4)

- NRTI (n, %) 348 (73.4)

- HIV Protease Inhibitor (n, %) 161 (34)

- Integrase (n, %) 17 (3.6)

Framingham score (mean, range) 6.67 (0–42)

BMI, kg/m2 (mean, SD) 25 (4.8)

Statin therapy, n (%) 72 (15.2)

Diabetic, n (%) 25 (5.3)

ACE inhibitor, n (%) 54 (11.4)

sCD14 (log ρg/μl), mean (SD error, range) 6.24 (0.007, 5.65–6.62)

sCD163 (log ηg/μl), mean (SD error, range) 2.89 (0.009, 2.22–3.42)

CXCL10 (log ρg/μl), mean (SD error, range) 2.05 (0.018, 1.13–3.22)

lcpm = log copies per mL, SD error = standard error; n = number, BMI; body mass index; ACE = angiotensin

converting-enzyme inhibitor; NRTI = Nucleoside Reverse Transcriptase; NNRTI = Non Nucleoside/

Nucleotide Reverse Transcriptase.

doi:10.1371/journal.pone.0158169.t001
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antiretroviral therapy (77%), with undetectable HIV-1 RNA viral load (<40 cpm) noted for
271 patients; 57.2% of the overall cohort, and 74.2% of those on HIV therapy. Within this sub-
set, target HIV-1 amplification could be detected on the Cobas HIV-1 ampliprep system below
the assay threshold of 40 cpm, reflecting ‘residual viraemia’ in 60 cases (22.1% of results
reported as<40 cpm).

With regard to cardiovascular risk factors, the mean 5-year CVD risk score (Framingham
score) in the study population was 6.6% (SD 6.7; range 0–42), including 325 patients (71.0%)
in the low risk category (estimated 5-yr CVD risk<10%), 90 patients (19.7%) deemed at mod-
erate risk (5-yr CVD risk 10–15%), and 43 patients within the high risk group (n = 23 (5.0%)
with CVD risk 15–20%, and n = 20 (4.4%) with CVD risk>20%). The study group included
168 current smokers (35.4%) and 25 diabetics (5.3%). The average BMI of the study group was
25.0 kg/m2 (SD 4.8). Statin therapy was used in 15.2% while ACE inhibitors were used in
11.4% of participants.

Plasma biomarker levels were approximately normally distributed following logarithmic
transformation, with mean log values and corresponding plasma concentrations for sCD14,
sCD163 and CXCL10 of 6.24 [1,737,800 ρg/μl], 2.89 [776 ηg/μl] and 2.05 [112.2 ρg/μl] respec-
tively (Table 1).

Correlations between HIV-1 clinical parameters, CVD risk and
circulating plasma biomarkers
Spearman rank correlations were used to explore associations between circulating soluble
plasma biomarkers and HIV clinical and CVD risk parameters. Investigating the influence of
HIV clinical parameters (HIV-1 RNA, CD4+ T cell count and CD4:8 ratio), we observed strong
positive correlations between plasma HIV-1 RNA levels and both CXCL10 and sCD163
(p<0.001, r = 0.5: Fig 1A and 1B) and strong negative correlations for CD4+ T cell (p<0.001,
r = -0.36) and CD4:8 ratio (p<0.001, r = -0.37) while we could not find any significant correla-
tions between HIV clinical parameters and sCD14 (p>0.1, Fig 1C).

With respect to CVD risk, we demonstrated a strong and significant negative correlation for
sCD163 and CXCL10 and total cholesterol levels (data not shown; p<0.001, r = -0.23), LDL-c
(p<0.01, r = -0.18) and HDL-c (p�0.001, r = -0.18), however these parameters did not corre-
late with sCD14 levels (p>0.6). There were no significant correlations between the plasma bio-
markers and total:HDL cholesterol ratio (p>0.1), blood pressure parameters (p>0.2),

Fig 1. Differing correlation outcomes between the three plasma biomarkers and HIV-1 RNA levels. A significant correlation was recognised between
HIV-1 RNA levels with CXCL10 (A) and sCD163 (B) while there was no significance with sCD14 (C).

doi:10.1371/journal.pone.0158169.g001
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Framingham score (p>0.15) or BMI (p>0.07). Analysis with the Tukey post-hoc test revealed
lower sCD14 levels in non-smokers compared to smokers (Fig 2A: p = 0.004). Furthermore,
there was a significant positive correlation for sCD14 and sCD163 levels with smoking (data
not shown; p = 0.002, r = 0.14; p = 0.03, r = 0.1 respectively) but not CXCL10 (p = 0.07).

We also demonstrated correlations between the three plasma biomarkers assessed. Circulat-
ing sCD163 had a strong positive correlation with CXCL10 levels (p<0.001, r = 0.41, S1A Fig)
and sCD14 levels (p<0.001, r = 0.17, S1B Fig) however sCD14 did not significantly correlate
with CXCL10 (p = 0.07, r = 0.07 S1C Fig). We did not identify any correlations for age
(p>0.09) or gender (p>0.4) with circulating plasma biomarkers. Univariate analysis of the
plasma biomarkers with ethnicity suggests higher levels of CXCL10 and sCD163 in Indigenous
Australians (S2A and S2B Fig) and lower levels of sCD14in Africans (S2C Fig).

Multivariate regression analysis reveals distinct biomarker associations
Multivariate regression analysis was then undertaken with each plasma biomarker in isolation
(Model 1) as well as considering the influence of all three biomarkers in adjusted analyses
(Model 2).

CXCL10. In unadjusted analyses for Model 1 (S1 Table), CXCL10 levels were strongly
associated with higher HIV-1 RNA viral load (p<0.0001) and lower CD4+ T cell counts
(p = 0.0001) as well as lower CD4:8 ratio (p = 0.008). Participants on NRTI therapy had lower
CXCL10 (p = 0.0002) whilst being an Asian (p = 0.05) or African male had favourable effect on
CXCL10 levels (p = 0.0001, β>0.2). Framingham score and BMI were not associated with
CXCL10 levels, however patients on an ACE inhibitor had significantly higher levels of
CXCL10 than patients not on an ACE inhibitor (p = 0.045, β = 0.1). Lower total cholesterol lev-
els were also associated with elevated CXCL10 levels (p = 0.02, β = -0.37).

As shown in Table 2 (Model 2), the inclusion of all plasma biomarkers did not abrogate the
significant associations of CXCL10 with HIV clinical parameters (CD4+ T cell counts

Fig 2. There was a significantly strong correlation between sCD14 and smoking where HIV-1 smokers have higher sCD14 levels than HIV-1 non-
smokers while patients on an integrase inhibitor had significantly lower sCD14 levels than patients on an alternative treatment.

doi:10.1371/journal.pone.0158169.g002
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(p = 0.0005) and CD4:8 ratio (p = 0.012) and HIV-1 RNA viral load (p<0.0001), ethnicity
(p = 0.001), NRTI therapy (p<0.001) or with sCD163 (p<0.0001). It did however nullify the
significant association with ACE inhibitor treatment and cholesterol levels. Interestingly, the
adjusted multivariate regression analysis confirmed an interaction between gender and ethnic-
ity (Table 2) which attributed to significantly lower CXCL10 levels in Asian (p = 0.001, β =
-0.15) and African males (p<0.001, β = -0.22).

sCD163. In unadjusted analysis plasma levels of sCD163 were significantly reduced
among ‘aviraemic’ patients only (p = 0.02, β = 0.06) and otherwise remained stably elevated
across all levels of virological suppression (Model 1; S1 Table). Higher levels were associated
with lower CD4+ T cell counts (p = 0.01, β = -0.004), as previously noted for CXCL10. Several
CVD risk factors were associated with sCD163, namely age (p = 0.001, β = 0.003), ethnicity
(p = 0.01, β = 0.1), HDL (p = 0.048, β = -0.05) and BMI (p = 0.009, β = 0.005), with a favourable
influence of Framingham score<10% (p = 0.04, β = 0.06). Additionally, the level of circulating
sCD163 was increased when the choice of HIV treatment was a PI (p = 0.05, β = 0.04) but
decreased if participants were on NRTIs (p = 0.04, β = -0.06).

Including all the biomarkers in the regression analysis for sCD163 (Model 2; Table 2)
showed a positive association with both CXCL10 (p<0.0001) and sCD14 (p = 0.003). Interest-
ingly sCD163 remained significantly associated with ‘aviraemic’ status only (p = 0.02) and with
several CVD risk factors including age (p = 0.03), ethnicity (p = 0.01), BMI (p = 0.02), Fra-
mingham score<10% (p<0.05). Univariate associations with CD4+ T cell counts and choice of
therapy were abrogated in adjusted analyses. Of interest, the adjusted multivariate regression
analysis confirmed that sCD163 levels were significantly higher among indigenous cases
(p = 0.012, β = 0.11).

Table 2. Model 2—Multivariate regression results showing significant associations of plasma biomarker with HIV clinical parameters, CVD risk
age, gender, ethnicity and smoking after adjusting for CXCL10, sCD163 and sCD14.

Biomarker CXCL10 sCD163 sCD14

Variable β std error p β std error p β std error p

Age at 2010 - - - 0.002 0.001 0.03 0.001 0.0006 0.08

Gender - - - - - - 0.031 0.018 0.08

Ethnicity -0.15 0.046 0.001 0.107 0.042 0.012 -0.058 0.022 0.009
Gender:Ethnicity -0.224 0.063 0.0004 - - - - - -

Smoking - - - - - - 0.043 0.015 0.004
Residual viraemia - - - 0.058 0.026 0.025 - - -

VL5 0.28 0.058 <0.0001 - - - 0.07 0.023 0.002
SQR CD4:8 -0.202 0.080 0.012 - - - - - -

SQR CD4 -0.01 0.003 0.0005 - - - -0.002 0.001 0.07

NRTI -0.156 0.046 0.0007 - - - - - -

NNRTI - - - - - - 0.052 0.018 0.004
PI - - - - - - 0.041 0.018 0.026

Integrase - - - - - - -0.078 0.037 0.037
HDL - - - -0.04 0.023 0.09 - - -

BMI - - - 0.004 0.002 0.017 - - -

Framingham score - - - 0.05 0.025 0.049 - - -

CXCL10 - - - 0.18 0.026 <0.0001 -0.023 0.022 0.3

sCD163 0.51 0.079 <0.0001 - - - 0.13 0.039 0.0009
sCD14 -0.06 0.096 0.53 0.16 0.056 0.003 - - -

“-“p = >0.01; std = standard error.

doi:10.1371/journal.pone.0158169.t002
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sCD14. Analysing the determinants of sCD14 levels in Model 1 (S1 Table) revealed no sig-
nificant influence of virological status under 10,000 cpm (p = 0.8: data not shown) although
sCD14 levels were incrementally higher when HIV-1 RNA levels were>10,000 cpm
(p = 0.003, β = 0.06). Soluble CD14 levels were higher among smokers (p = 0.002, β = 0.05),
lower in Africans (p = 0.009, β = -0.06) with no effect of other CVD risk factors or overall Fra-
mingham score, apart from age (p = 0.04, β = 0.001). Interestingly, lower sCD14 levels were
associated with use of integrase inhibitor therapy (p = 0.02, β = -0.09; also Fig 2B).

After adjusting for soluble biomarkers in Model 2 (Table 2), sCD14 levels remained strongly
associated with sCD163 (p<0.001), HIV-1 RNA level>10,000 copies/mL(p = 0.002), smoking
(p = 0.004), ethnicity (p = 0.009) and choice of HIV treatment–with a beneficial effect of inte-
grase inhibitor therapy (p = 0.037). In this analysis, the univariate association with age was
abrogated (p = 0.08). Interestingly, the adjusted multivariate regression analysis confirmed that
sCD14 levels were significantly lower for African cases (p = 0.009, β = -0.06).

Discussion
This study confirms our previous finding that CXCL10, sCD163 and sCD14 have distinct
although overlapping associations with different aspects of HIV infection and treatment [8], as
well as cardiovascular disease risk factors and demographic variables (Fig 3). These relation-
ships are in keeping with an increasingly refined understanding of these plasma biomarkers
and their place within the immune environment. For example, CXCL10 was initially identified
as an interferon-gamma-induced protein (also named interferon inducible protein-10) and a
ligand for CXCR3 [16,17], although in the context of HIV infection there is evidence that the
strong relationship between plasma viraemia and CXCL10 [5, 8–10,18] is likely to be mediated
via IFN-α-induced toll-like receptors 7 and 8 [18]. Circulating plasma virions therefore provide
the major stimulus for CXCL10 secretion from monocytes and monocyte-derived dendritic
cells [18], which in turn inhibits IFN-γ signalling and adaptive immune responses [19]. In this
respect, CXCL10 appears to have its most important prognostic role in early HIV infection,
where elevated levels independently predict disease progression rate [20] even among HIV-
controllers with low levels of viraemia [21], and are also associated with risk of transmitting or
acquiring HIV infection [22]. In this setting, the potential utility of CXCL10 measurement in
clinical practice is likely to diminish in light of recent evidence that early treatment of HIV
infection is beneficial irrespective of baseline CD4+ T cell count or plasma viral load [1].

Soluble CD163 provides an interesting contrast in that elevated plasma levels are associated
with a range of cardiovascular risk factors (age, HDL cholesterol, body mass index), and per-
haps most importantly with the overall Framingham cardiovascular risk score. This is in keep-
ing with a number of studies that have identified associations between sCD163 and
cardiovascular inflammation and atherosclerotic plaque formation in the setting of HIV infec-
tion [14,23–25] as well as in the general population [23,26,27]. This association appears to be
underpinned by the role of activated monocyte-derived macrophages within atherosclerotic
vessels [28] as well as in adipose tissue [29,30] in producing sCD163. This pathway involves
tumor necrosis factor-alpha (TNF-α) and ADAM-17 [30,31], thus providing a link between
inflammation and atherosclerotic risk factors including oxidised lipids that may be particularly
relevant in HIV infection [32,33] but are rarely measured in routine care.

We previously found that sCD163 levels were elevated in the setting of untreated HIV infec-
tion, while levels among those on suppressive antiretroviral therapy were comparable to
healthy controls [8]. Here we extend this observation, noting that sCD163 levels were signifi-
cantly reduced only among those patients with no detectable plasma HIV-1 RNA, and
remained relatively elevated in the 60 cases with residual viraemia (22.1% of results reported as
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<40 cpm). This is consistent with previous studies that have identified the TNF-α pathway as a
sensor of low-level viraemia [34,35], although to our knowledge sCD163 has not been previ-
ously studied in this context. Given previous evidence that persistent low-level viraemia

Fig 3. CXCL10, soluble CD14 and soluble CD163 have distinct although overlapping associations with
cardiovascular disease risk factors, HIV treatment, ethnicity and age (A) along with different aspects of HIV infection
(B).

doi:10.1371/journal.pone.0158169.g003
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originates largely from a reservoir of long-lived, latently-infected CD4+ T cells [36,37], it is
interesting to note that ADAM-17 and TNF-α (the major stimuli for sCD163 shedding [31])
are implicated in the replication of quiescent CD4+ T lymphocytes initiated by exosomes from
HIV Nef-expressing cells [38].

These findings suggest that measuring soluble CD163 in routine HIV care has the potential
to capture important prognostic information regarding cardiovascular risk [14,23–25] and
other co-morbid conditions [39] as well as HIV treatment responses beyond the detection
threshold of routine viral load measurements.

The measurement of soluble CD14 in this study population confirmed previous observa-
tions by ourselves [8] and others [9,10,40,41] that levels remain elevated irrespective of the
level of plasma HIV suppression. In contrast to the broad influence of cardiovascular risk fac-
tors on sCD14 levels in the general population [11], we did not observe any influence of indi-
vidual risk factors or the overall Framingham score–suggesting that HIV infection itself
provided an overriding stimulus. We did however observe a significant influence of cigarette
smoking, which was not examined specifically in the population-based study but has been
identified previously in the setting of HIV infection [42]. Moreover, we identified a favourable
effect of integrase inhibitor-based HIV treatment on sCD14 levels in this study, despite the
small number of patients receiving this regimen in 2010 (n = 17). This effect has also been
observed by others [43,44] although not universally [40,45], and at this stage an underlying
mechanism has not been identified although an association between sCD14 and integrated
HIV DNA has been observed in one study [46]. This warrants further study, along with the
impact of smoking, particularly given the established mortality risk associated with elevated
sCD14 levels [7] as well as the ongoing strong influence of smoking on mortality among HIV+

individuals [47,48].
The major strength of this analysis is the statistical power associated with a large sample

pool with complete HIV treatment history and full CVD risk assessments. Limitations include
the lack of subclinical measurements of vascular disease, so that we were unable to confirm pre-
vious findings of associations between sCD14 or sCD163 and cardiovascular disease or mortal-
ity. This study lacked an HIV negative control group, however, we have previously provided
evidence of significantly lower sCD14 in an HIV negative population compared to treated and
untreated HIV groups, while sCD163 and CXCL10 were reduced to levels seen in HIV unin-
fected controls when treated with antiretroviral therapy [8].

In summary, this study supports growing evidence that monitoring plasma immune activa-
tion markers has prognostic significance throughout the course of HIV management. We pro-
vide further evidence that these biomarkers, although linked through common associations
with monocyte activation and interferon signalling, reveal distinct aspects of the inflammatory
response and indeed of the HIV replication cycle. We found that levels of CXCL10 correlated
with routinely monitored variables particularly with plasma viraemia levels, while cell-associ-
ated virus appears to be the major stimulus for sCD163 levels, reflecting a deeper level of viro-
logical suppression. Levels of sCD163 also appear to capture the influence of a broad range of
CVD risk factors, potentially revealing insights into the inflammatory component of cardiovas-
cular disease that may be particularly relevant in the setting of HIV infection. Lastly, while lev-
els of sCD14 are not associated with routinely monitored variables, this study suggests
integrated virus is associated with sCD14, and that cessation of smoking along with the use of
integrase inhibitor therapy could significantly reduce levels of this monocyte activation marker,
in turn potentially decreasing mortality risk during HIV infection. With the ongoing identifica-
tion of pathways leading towards monocyte activation, targeting these sources (i.e.ADAM17,
IFN-α, TNF-α) could lead to useful therapeutic strategies to reduce immune activation, which
has been shown to be associated with the development of age-related disease and mortality in a
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treated HIV setting. Further research into these mechanisms is warranted, underpinned by the
evolution of new HIV monitoring strategies that reflect the underlying chronic inflammatory
disease burden and provide insights into pathogenesis and response to treatment.

Supporting Information
S1 Fig. Correlations between plasma biomarkers show strong correlation between sCD163
and CXCL10 (A) and sCD163 and sCD14 (B) while there was no correlation between sCD14
and CXCL10 (C).
(TIF)

S2 Fig. The levels of the different plasma biomarkers correlate with ethnicity. CXCL10 was
significantly lower in Asian but higher in Indigenous Australians (A), sCD163 was significantly
higher in Indigenous Australians (B) while sCD14 was significantly lower in Africans (C).
(TIF)

S1 Table. Model 1- Multivariate regression results for CXCL10, sCD163 and sCD14 plasma
biomarkers showing significant associations with HIV clinical parameters, CVD risk age,
gender, ethnicity and smoking.
(DOCX)
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