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Abstract

In experiments conducted over 60 years ago, the lateral hypothalamic area (LHA) was identified 

as a critical neuroanatomical substrate for motivated behavior. Electrical stimulation of the LHA 

induces voracious feeding even in non-restricted animals. In the absence of food, animals will 

work tirelessly, often lever-pressing 1000’s of times per hour, for electrical stimulation at the same 

site that provokes feeding, drinking, and other species-typical motivated behaviors. Here we 

review the classic findings from electrical stimulation studies and integrate them with more recent 

work that has utilized contemporary circuit-based approaches to study the LHA. We identify 

specific anatomically and molecularly defined LHA elements that integrate diverse information 

arising from cortical, extended amygdala, and basal forebrain networks to ultimately generate a 

highly specified and invigorated behavioral state conveyed via LHA projections to downstream 

reward and feeding specific circuits.

The hypothalamus, while accounting for only ~3% of brain tissue, has direct control over 

essential homeostatic functions and primitive behavioral states. The hypothalamus can 

readily be divided based on gene expression–, function, or classical anatomical boundaries–, 

but a large portion of the hypothalamus consists of an extended field of neurons and fibers 

with substantially less anatomical definition– referred to as the lateral hypothalamic area 

(LHA). As studies continue to uncover the precise circuitry and cellular phenotypes within 

the LHA that encode and orchestrate behavior, it is important to revisit many of the well-

described findings using classical anatomical and electrical stimulation methods previously 

used to elucidate LHA function. In this article, we review some of these seminal findings 

from the 1950’s–80’s, and integrate them with more recent discoveries utilizing optogenetic 

neurocircuit approaches. A holistic synthesis of these findings paints an emerging picture of 

multiple, well-defined neurocircuit elements, embedded within the LHA, that interface with 

downstream systems to ultimately generate specific motivational and actionable states.
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 Classic experiments on LHA function

The LHA is a richly heterogeneous structure residing posterior to the preoptic area and 

anterior to the ventral tegmental area. The LHA contains a number of genetically distinct 

cell populations (for review see) and forms a bed nucleus through which the fibers of the 

medial forebrain bundle pass. Lesion studies conducted in the 1940’s – 1980’s described the 

effects of electrolytic or chemical ablation of the LHA and subsequent effects on feeding 

and drinking. This work collectively demonstrated the importance of the LHA for 

homeostatic physiology and behavior. Electrolytic lesions of the LHA suppresses feeding, 

and drinking while lesioning of the nearby VMH promotes feeding and body weight gain. 

Later studies that utilized chemical lesions to destroy catecholaminergic fibers containing 

either norepinephrine or dopamine demonstrated that these fibers of passage contained 

within the median forebrain bundle are important components controlling feeding and 

drinking. Anand and Brobeck suggested that fibers of passage, but also fibers of origin from 

somata distributed throughout the LHA are also important for controlling feeding. Chemical 

lesions that ablate LHA somata but spare passing fibers also suppressed feeding and 

drinking–. The pioneering early studies that utilized electrical stimulation of the LHA in 

rodents showed that gross electrical activation of this region produces voracious feeding 

behavior, as well as reinforced lever-pressing behavior to gain additional stimulation, (Fig. 

1). This suggests that the LHA and associated brain regions are not only critical for feeding 

and other drive-like effects, but also reinforcement processes,. Intra-LHA injection of 

neurotransmitter agonists or antagonists further demonstrated that glutamate receptor 

activation can also induce feeding, while GABA agonist can suppress it. These studies show 

that modulation of neurotransmission within the LHA can generate feeding responses 

similar to those observed following electrical stimulation or lesions. However, it is worth 

noting that electrical stimulation of the LHA can become aversive if its intensity is too 

strong or its duration too long,. Additionally, electrical stimulation at sites in this and 

adjacent levels of the medial forebrain bundle motivate a variety of species-typical 

behaviors–e.g., feeding, drinking, copulation, gnawing and nest building–, in addition to 

reinforcement.

 Lateral hypothalamic electrical stimulation

Electrical stimulation of the LHA and other portions of the medial forebrain bundle can 

motivate a variety of species-typical, biologically primitive behavior patterns including 

eating, drinking, and gnawing in sated animals,,. With respect to feeding and copulation, 

there seems to be clear anatomical separation between systems,. For feeding, gnawing, and 

predatory attack, the systems appear to overlap,. Because the LHA had been implicated in 

feeding and drinking by lesion studies as described above, a good deal of attention was paid 

to the motivational effects of lateral hypothalamic stimulation. Such stimulation does not 

elicit specific motor responses, but rather establishes a state of heightened responsiveness to 

a variety of environmental stimuli. Stimulation in this region might produce different 

reactions in animals such as feeding in one animal, drinking in another, gnawing of wood in 

another, or predatory attack in yet another,,. These differences are not due to differences in 

stimulation region within the LHA, but rather are the result of response patterns that develop 

during the stimulation trials,. That is, responsiveness to a given goal object increases with 
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repeated stimulation trials and the dominant response of a given animal can change as a 

function of what goal objects are offered,. In the case of feeding and drinking, the animal 

behaves in much the same way it would under food and water deprivation. First, electrical 

LHA stimulation motivates the learning of food-reinforced instrumental responses,, as well 

as the performance of such responses as were previously learned under conditions of 

deprivation. The LHA evoked feeding is also influenced by unconditioned and conditioned 

taste aversions. In cats, LHA stimulation appears to motivate goal-directed behavior 

involving response sequences such as, in the case of predatory attack, visual stalking, 

approach, pouncing and bringing the prey to the mouth, mouth opening, and, finally, 

snapping shut of the mouth. Each act in the sequence has its own environmental triggering 

stimulus, and the effect of stimulation is to make the animal more responsive to the 

triggering stimulus,. The behavior observed in a given experiment depends to a great extent 

on what stimuli are available for interaction in the testing chamber. This suggests that the 

activated substrate is more a general arousal system than a set of specific motivational 

pathways. Against this view are the findings that stimulation at different points along the 

medial forebrain bundle are differentially sensitive to modulation by food restriction and 

leptin (LHA at the A-P level of the ventromedial nucleus), on the one hand and testosterone 

(posterior hypothalamic MFB), on the other, that stimulation-induced eating and drinking 

are preferentially responsive to low and high (respectively) stimulation frequencies. 

Morgane suggested that even the feeding response results from activation of two LHA 

“hunger-motivational” subsystems, one slightly lateral to the other. Because electrical 

stimulation activates neurons near the electrode tip rather indiscriminately, and because 50 

or more fiber systems share this region, the question of one or multiple systems has not been 

resolved by electrical stimulations studies.

Whereas the effects of lesions and stimulation led to the labeling of the LHA as a “hunger 

system” a “feeding center” and a “drinking center”, the discovery that stimulation of this 

region was rewarding led also to the label of a “pleasure center”. The fact that rats would 

work for stimulation of a brain region where stimulation appeared to make them hungry,,

was termed the “drive-reward” paradox and raised the issue of whether a single arousal 

system or two independent systems mediated the drive-like effects and the rewarding effects 

of the stimulation.

Pharmacological studies of stimulation-induced feeding and LHA brain stimulation reward–

suggested an important role for the forebrain-projecting midbrain dopamine systems. 

However, parametric studies of brain stimulation reward soon falsified the hypothesis that 

the rewarding effects of stimulation were primarily due to the depolarization, at the electrode 

tip, of dopaminergic fibers of passage. First, the dopamine system was insensitive to changes 

of stimulation frequency over the range that altered the rewarding impact of stimulation. 

Paired pulse studies showed that the refractory periods for the directly stimulated “first 

stage” fibers (the fibers depolarized at the electrode tip) were too fast to reflect direct 

activation of the ascending dopamine fiber system,. At least two sub-populations were 

implicated, one of which was undefined and one was an ultra-fast sub-population that was 

sensitive to cholinergic receptor blockade; each, however, appeared to contribute to both the 

feeding effect and the rewarding effect of LHA electrical stimulation.
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Dual electrode paired-pulse studies followed and showed that despite the fact that the LHA 

and VTA were connected by reward-relevant fibers, their conduction velocities were, like the 

refractory periods, too fast to reflect a significant contribution of the small unmyelinated 

dopaminergic fiber system. Finally, by challenging the effects of cathodal stimulation at one 

level with anodal stimulation at another, Bielajew and Shizgal showed that the bulk of the 

reward-relevant fibers of the LHA project caudally, toward, not away from, the ventral 

tegmental area (VTA). Subsequent studies showed axonal connectivity between the lateral 

preoptic area and the VTA, suggesting that the reinforcing effects of lateral hypothalamic 

stimulation were likely due to activation of descending fibers of passage originating in or 

rostral to the anterior hypothalamus. Taken together, these studies suggested that brain 

stimulation reward resulted from activation of descending medial forebrain fibers of passage 

that activated, directly or indirectly, the VTA dopaminergic system that had been implicated 

not only in brain stimulation reward but also in the rewarding effects of food and 

psychomotor stimulants,.

The paired-pulse parametric techniques that were developed to characterize the substrate of 

brain stimulation reward were also used in studies to characterize the substrate of 

stimulation-induced feeding and to explore whether a common substrate might mediate 

stimulation-induced feeding and reward. As in the case of LHA brain stimulation reward, in 

the case of stimulation-induced feeding there again appeared to be two non-overlapping sub-

populations of contributing first-stage fibers: an ultrafast subpopulation with refractory 

periods between 0.4 and 0.6 msec, and a non-overlapping slower subpopulation with 

refractory periods between 0.7 and approximately 2.0 msec. Stimulation-induced feeding 

was induced by stimulation not only of the LHA but also by stimulation of the VTA and 

intervening levels of the medial forebrain bundle; and evidence for the same non-

overlapping sub-populations of first-stage fibers was seen at each of these levels. Single 

electrode refractory period findings suggested that both effects were mediated by activation 

of two sub-populations of ultrafast and fast fibers of the medial forebrain bundle that 

extended at least from the lateral hypothalamus to the region of origin of the mesolimbic 

dopamine system.

Dual electrode studies suggested further evidence for a common substrate or substrates. 

Here, one electrode was aimed at the LHA and another was aimed more posterior at the 

VTA. The findings concluded that stimulation induced feeding and reward were each found 

with both placements The two electrodes were thus inferred to be aligned along the path of 

the same axons whenever the effects of stimulation at one electrode cancelled the effects of 

stimulation of the other at short inter-pulse intervals. In those cases where alignment was 

found for stimulation-induced feeding, it was also found for reward. As with the refractory 

periods for the fibers mediating the two behaviors, the conduction velocities were very 

similar. These findings do not rule out the possibility that different subsets of fibers are 

involved in the two responses to stimulation, but the common sites, trajectories, refractory 

period distributions and conduction velocities continue to point to the possibility of a 

common neural substrate.
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 Molecular phenotypes and functions of LHA neurons

The LHA encompasses a plethora of genetically and functionally distinct cell types that 

utilize various signaling modalities, including various neurotransmitters and neuropeptides–. 

Vesicular glutamate transporter type 2 (Vglut2; a marker for glutamate neurons) mRNA 

expression is abundant in the LHA,, (Fig. 2), suggesting that numerous LHA neuronal 

subpopulations synthesize the excitatory neurotransmitter, glutamate. In addition to 

glutamate, the LHA is enriched with GABAergic neuronal markers,,, (Fig. 2), which are 

largely segregated from Vglut2-expressing LHA cells. Some LHA neurons also produce 

several important neuropeptides, including orexin/hypocretin (Orx), melanin-concentrating 

hormone (MCH), neurotensin (Nts), and galanin (GAL). While these neuropeptide 

expressing cell populations likely play an important role in regulating feeding and reward 

(see below), it is worth noting that some of these cells groups not only regulate feeding, but 

also metabolism, likely through different circuits.

Neurons that synthesize and release the neuropeptide orexin/hypocretin (~3,500 – 5,000 

total in rodents) are restricted to the LHA and also have been reported to express Vglut2. 

Orx neurons are thought to primarily regulate arousal, but also feeding and reward-related 

behaviors. Consistent with this, injections of the peptide into the lateral ventricle increases 

food intake, while Orx receptor antagonists and genetic removal of Orx decrease 

consumption. Furthermore, chemical activation of Orx cells as well as infusions of the 

peptide into the VTA, an anatomical target of LHA Orx neurons, reinstates drug-and food-

seeking behaviors. However, these neurons are also heavily involved with arousal, as 

optogenetic stimulations of Orx neuron increases wakefulness, while genetic ablation of the 

cells causes narcolepsy. Therefore, they are likely a contributor, but not primary determinant 

of motivated behavioral output mediated by the LHA. For further review of Orx neuronal 

function see.

Melanin-concentrating hormone (MCH) producing neurons are also predominantly found in 

the LHA, project widely throughout the brain, and are distinct from Orx neurons,,. Some 

MCH neurons express markers for GABA (glutamatic acid decarboxylase; GAD67) while 

others express markers for glutamate (Vglut2)–, suggesting that MCH neurons are composed 

of subsets of inhibitory and excitatory cells. MCH neurons have also been implicated in the 

regulation of feeding and sleep-wakefulness balance. Intracerebroventricular injections of 

the peptide increases feeding and body weight in rodents. Further, recent genetic studies 

revealed that overexpression of MCH results in hyperphagia and obesity, while mice lacking 

MCH neurons or MCH are hypophagic and lean,. In contrast to Orx neurons, activation of 

MCH neurons promotes REM sleep, consistent with an opposing role of these cells to Orx 

neurons in controlling arousal states. For additional reviews of the neurocircuitry of Orx and 

MCH LHA neurons see,. Collectively, these studies demonstrate a role for LHA ORX and 

MCH neurons in regulating arousal and sleep in addition to feeding and body weight. Thus, 

and interesting possibility is that the feeding phenotypes associated with these cell types are 

more related to an animals natural behavioral patterns that would normally occur in 

particular states of arousal.
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A separate neuropeptide-containing cell population concentrated in the preoptic and anterior 

hypothalamic region but overlapping with the LHA, Neurotensin (Nts) producing neurons, 

have been hypothesized to be involved with negative energy balance. Peripheral and central 

administration of Nts suppresses feeding, and both the genetic ablation of a subset of Nts 

neurons, as well as the removal of the Nts receptor (NTR1), result in hyperphagia and 

obesity,. Nts neurons highly co-localize with galanin expressing neurons (~95% overlap), 

but not with MCH and Orx cells. Interestingly, LHA neurons that express vesicular GABA 

transporters (Vgat-ires-Cre) show little to no co-localization with neurons that are 

immunopositive for either MCH or Orx (Fig. 3). This suggests at least some of the LHA 

neurons that have been previously targeted for manipulation in the Vgat-ires-Cre line may 

also be Nts expressing neurons, although this will need to be fully investigated in future 

studies.

 Optogenetic studies to delineate LHA function

The introduction of optogenetic stimulation methods has provided a powerful new tool for 

identifying the substrates of motivation and reward. Electrical stimulation preferentially 

activates fibers of passage and does not differentiate between fibers from arising at the 

stimulation site and fibers of passage with distal origins. Electrical stimulation allows only 

crude differentiation of different fiber types and provides little information as to the type of 

fibers activated. Optogenetic techniques make it possible to activate only fibers of origin 

from a confirmed cell group of interest and to trace and selectively activate only the fibers 

that arise from that cell group and project to or through a given target area. Whereas 

electrical stimulation activates a set of fibers by causing the opening of cation channels that 

are voltage-sensitive and expressed in the membranes of all neuronal elements, optogenetic 

stimulation activates fibers by causing the opening of cation channels that are light sensitive 

and that are expressed only by neurons originating in a particular brain regions and 

expressing particular gene used to at least partially delineate a cellular phenotype. Thus, 

optogenetic studies have already begun to unravel which of the numerous molecularly 

defined neuronal fibers that originate in or pass through the LHA contribute to motivational 

and reward function. Cell-type specific optogenetic targeting approaches have begun to 

ascribe functional roles for distinct LHA populations for orchestrating feeding and reward.

Direct optogenetic activation of VGat expressing LHA neurons produces voracious feeding 

and optical self-stimulation behavior, a phenotype that is strikingly reminiscent of that seen 

with electrical stimulation of the LHA,. Interestingly, optogenetic stimulation of VGlut2 

expressing LHA neurons has the opposite effect; it reduces feeding in hungry mice, as well 

as producing an aversion to locations where stimulation of these cells occurs. Consistent 

with the idea that VGat and VGlut2 expressing LHA neurons exert opposing behavioral 

effects, selective genetic ablation of VGat expressing LHA neurons reduces feeding, body 

weight gain, and motivation to obtain palatable caloric rewards, while ablation of VGlut2 

expressing LHA neurons enhances both feeding and body weight gain. Thus, perhaps Vgat 

and Vglut2 expressing LHA neurons produce a bidirectional output signal, which is then 

directly and indirectly conveyed to VTA dopamine neurons to homeostatically invigorate 

behavioral output (Fig. 4). Second, complex, but reoccurring environmental representations 

are likely encoded in upstream cellular networks in the cortex and hippocampus, which in 
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turn convey representational information to LHA neuronal circuits. However, in order to 

mechanistically understand how LHA signals are processed; first consider the neural circuit 

input architecture.

 Input circuitry to the LHA

The LHA receives multiple excitatory and inhibitory inputs from both cortical and 

subcortical structures. Direct, electrical stimulation of the medial prefrontal cortex produces 

many distinct mono and polysynaptic activity patterns in LHA neurons. Monosynaptic 

excitatory fibers arriving via the fornix, also likely provide important hippocampal 

information related to the ongoing processing of space and context. Inhibitory GABAergic 

subcortical fibers innervate the LHA from the lateral septum and much of the basal forebrain 

and extended amygdala including the nucleus accumbens shell,, the BNST/preoptic area, the 

ventral pallidum and nucleus basalis/substantia innominata. Midbrain and brainstem inputs 

to the LHA are more sparse but arise from classical processing centers of autonomic 

function including the parabrachial nucleus and periaqueductal grey. Neuromodulators 

including dopamine, norepinephrine, and serotonin, are also released within the LHA where 

they can act to further sculpt circuit dynamics. Furthermore, intra-hypothalamic connectivity 

providing input to the LHA from regions such as the arcuate nucleus,, periventricular 

hypothalamus, and ventral medial hypothalamus have also been described. Importantly, 

optogenetic stimulation of ArcuateAGRP-LHA or PVHGABA-LHA pathways are capable of 

evoking feeding behavior,. Collectively, these findings suggest that arcuate nucleus circuitry 

directly controls homeostatic feeding in response to energetic demands while LHA circuits 

drive compulsive and/or hedonic feeding, due to the tight linkage to the VTA reward 

circuitry.

The functional input architecture from regions of the extended amygdala that interface with 

definable LHA neurons is beginning to emerge. GABAergic neurons from the ventral BNST 

and related structures send monosynaptic inputs that preferentially inhibit postsynaptic LHA 

glutamate neurons (Fig. 4). Direct optogenetic stimulation of the vBNSTGABA-LHAGlutamate 

circuit produces robust feeding behavior that is initiated rapidly, correlated with stimulation 

frequency, and directed towards the most palatable, calorically dense foods available. 

Furthermore, mice readily engage in optical self-stimulation of this circuit, and self-

stimulation output is strongly modulated by food deprivation or satiety states, consistent 

with a dual role of the LHA to orchestrate both motivation and feeding behaviors. Inhibitory 

input to the LHA from the nucleus accumbens shell arises from both D1 and D2 expressing 

medium spiny projection neurons (O’Connor et al., in press,,) (Fig. 4). Functionally, the 

importance of this pathway was first described by Ann Kelley and colleagues who reported 

that AMPA receptor antagonism or GABA-mediated inhibition in the NAc shell elicits 

feeding that is dependent on the LHA–. Circuit input from the NAc shell to the LHA was 

recently investigated in more detail (O’Connor et al., in press). The majority of NAc shell 

MSNs that project to the LHA are D1 expressing MSNs, with only a minority arising from 

the D2R expressing MSN population. Fibers from D1R expressing MSNs innervate the more 

ventral lateral aspects of the LHA where they functionally target LHA GABAergic neurons, 

and not Orexin or MCH producing neurons. Optogenetic stimulation of the NAcshellD1R-

LHAGABA pathway suppresses licking for a palatable reward, while optogenetic inhibition 
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of postsynaptic LHAGABA neurons suppresses consumption of food. Collectivity, it appears 

likely that distinct subcircuits arising from various extended amygdala and neighboring 

structures provide inhibitory input that preferentially targets molecularly distinct LHA 

postsynaptic neurons to regulate feeding and reward (Fig. 4).

 Output circuitry of the LHA

Given that multiple populations of functionally and genetically classifiable neurons exist in 

the LHA, it is also of importance to consider the projection target structures of these cells. 

Some of the most well described outputs from classical anatomy studies demonstrated the 

existence of multiple projection specific outputs to brain regions such as the VTA, 

periventricular thalamus, lateral habenula, and many others,. A recent study by Nieh et al., 

demonstrated that both glutamatergic and GABAergic LHA fibers functionally innervate 

both VTA GABA neurons and VTA dopamine neurons. It seems likely that these inhibitory 

fibers may preferentially innervate VTA GABA neurons, as does the pathway from the 

BNST to the VTA, as optogenetic stimulation of LHGABA-VTA pathway also produces 

feeding behavior, and as mice will readily engage in optical self-stimulation of this pathway. 

This could occur by transiently increasing VTA dopaminergic neuronal activity via a dis-

inhibitory mechanism to thus control motivation (Fig. 4). Consistent with this, brief 

optogenetic stimulation of VTA GABAergic neurons suppresses cue-evoked licking for a 

caloric reward and is aversive.

In addition to the glutamatergic projection to the VTA, Vglut2-expressing neurons in the 

LHA also project to the lateral habenula to excite LHb neurons that likely project to VTA/

RMTg GABAergic neurons, which in turn can inhibit VTA dopamine neurons,, (Fig. 4). 

Consistent with this, optogenetic inhibition of the LHAVglut2-LHb pathway enhances licking 

for a caloric reward and produces aversion when optogenetically activated. Intriguingly, 

optogenetic stimulation of glutamatergic projections from the neighboring endopeducular 

nucleus (EP) is also aversive, suggesting that glutamatergic neuronal populations in the 

LHA, the zona inserta, and EP may share a common behavioral/circuit function. In our 

studies, we have also observed substantially weaker LHb innervation from LHA GABAergic 

neurons. However, LHAVGat neurons appear to innervate midline thalamic structures just 

ventral to the LHb such as the periventricular thalamus (PVT), a brain region shown to 

produce GABA-mediated feeding. Both LHA GABAergic and glutamatergic neurons project 

heavily to the parabrachial nucleus (PBN). While it is still functionally untested, it seems 

feasible that LHA excitatory and inhibitory signals can also tune PBN circuits shown to play 

an important role in regulating feeding and taste aversion,. In addition, LHA projections to 

the arcuate nucleus have also been documented, which could likely play an important role in 

generating feeding. Clearly, additional studies are required to more fully elucidate the 

functional wiring output of the LHA (Fig. 4). It is also worth noting that a dearth of Cre-

driver mouse lines exist to selectively parcel out LHA cellular function. Furthermore, as this 

circuit architecture is deduced, we can begin to consider the dynamic nature of these systems 

during ongoing innate and learned behavior.
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 Neuronal encoding dynamics of LHA neurons

Much of the previously described work has focused on contemporary circuit mapping and 

optogenetic approaches to identify the functions of LHA components. However, it is 

important to note that approaches that have recently revolutionized systems neuroscience 

cannot yet detail circuit dynamics, and thus are largely a way to imply circuit function based 

on imprecise and artificial activity patterns. For example, while LHA neurons are capable of 

firing up to or even beyond 20 Hz, the collection of LHA cellular subtypes likely do not fire 

in highly synchronous patterns generated by bulk optogenetic methods. Even with inhibitory 

optogenetic and chemogenetic approaches, neuronal activity is suppressed over extended 

time epochs, which is also likely inconsistent with neurotypical signaling dynamics, and 

may also increase activity if sufficient light is delivered to heat the tissue. Thus, an ongoing 

area of intense research is to examine the endogenous neural encoding properties of distinct 

LHA neuronal networks and populations. These rich datasets, collected from 100s of LHA 

neurons, can in turn be used to accurately test which aspects of LHA spatiotemporal 

signaling are critical for motivated behavioral states.

Early in vivo electrophysiological studies in rodents, rabbits, and primates demonstrated that 

individual LHA neurons are responsive to rewarding, aversive, and associated conditioned 

stimuli–. Ono et al identified populations of LHA neurons that were responsive to rewarding 

or aversive stimuli presentation. LHA neurons that are responsive to primary rewards, tended 

to not respond to aversive stimuli, but if they did, they tended to respond in the opposite 

direction (i.e. excited by rewarding, inhibited by aversive stimuli). Additionally, LHA 

neurons that displayed activity changes in response to a caloric reward displayed similar 

response patterns to electrical stimulation that could evoked ICSS, suggesting that distinct 

types of rewards can engage the same LHA neurons. Moreover, a subset of LHA neurons 

also respond to conditioned stimuli presentation, but these cells are largely distinct from the 

LHA neurons that responded to primary rewards,,. While these early studies demonstrated 

the existence of distinct LHA neuronal populations that respond to aspects of feeding and 

reward, it is difficult to designate the functional properties of these neuronal subtypes due to 

the inability at the time to record from identified LHA neurons.

Two recent studies have begun to further unravel the signaling properties of defined subsets 

of reward-relevant LHA neurons based on their projection targets or genetic specificity,. 

Nieh, Mathews, et al. studied LHA neurons based on their connectivity with the VTA. 

Specially, they introduced channelrhodopsin-2 into LHA neurons that projected to the VTA 

using retrograde Cre-encoding virus strategy (this strategy did not differentiate whether 

these targeted cells were glutamatergic and GABAergic). Neurons could then be identified 

as directly projecting or as polysynaptically connected with the VTA based on the 

electrophysiological response to intra-LHA blue light pulses. Some LHA neurons that were 

classified as directly-projecting to the VTA tended to respond with excitations while others 

responded with inhibitions when mice entered a reward retrieval port. In contrast, LHA 

neurons that were classified as polysynaptically connected to the VTA responded to 

nosepokes and cues that predicted rewards as well as to reward port entry. Using 

microendoscopic calcium imaging Jennings, Ung et al. selectively imaged neuronal activity 

from 100’s of LHA Vgat-expressing (putative GABAergic) neurons in behaving mice. 
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Individual LHA GABAergic neurons displayed changes in their activity timelocked to either 

nosepokes required to produce the delivery of a caloric reward or to the first lick following 

reward delivery, but very few LHA GABAergic neurons responded to both nosepokes and 

lick events. These data suggest that LHA neurons that respond to primary rewards, aversive 

stimuli, or conditioned stimuli may be dissociable based on their circuit connectivity or 

molecular phenotype.

 Future outlook

While a detailed description of LHA circuitry and cellular encoding properties is far from 

complete, emerging evidence generated with contemporary techniques coupled with historic 

findings are beginning to reveal reoccurring themes and principles of these circuits. For 

example, both classical electrical stimulation and recordings studies as well cell type 

specific optogenetic studies have suggested that discrete LHA circuits not only play an 

important role in reward and feeding, but can also produce aversive states,,–,. While there is 

limited (but some) information detailing how a few defined LHA neural populations encode 

rewards and predictive cues, there is currently no published data on whether subsets (or all) 

of these same cell types also respond to aversive stimuli, or whether these are encoded by 

different cell populations. Recent studies have begun to define LHA neuronal subtypes 

based on the small molecular neurotransmitters they are capable of utilizing or by the 

production of a few select neuropeptides,,–, that are involved in motivation and reward. 

While this is an ideal first pass approach to study LHA circuits, a good deal more must be 

done to accurately define circuit architecture and function. An even more fundamental 

problem is that it remains to be determined precisely how many neuronal phenotypes are 

present within the LHA. High throughput single-cell transcriptional profiling strategies 

appear to be rapidly emerging, and have already begun to elucidate the number of cell 

subclasses in other parts of the central nervous system. If these methodologies are applied to 

100,000 or more LHA neurons, it may be possible to accurately identify the number of 

neuronal phenotypes based on quantitative genetic data. Thus, coupled with state-of-the-art 

circuit targeting strategies, delineation of LHA circuits will continue to evolve.

While a clearer picture of LHA neuronal classes and connectivity will continue to emerge, it 

is not certain whether ‘rewarding’ and ‘feeding’ phenotypes that are readily engaged by 

neuromodulation of the LHA are actually dissociable from each other, and thus drive reward 

paradox, with respect to the LHA, still remains unresolved. Current evidence suggests that 

bulk optogenetic modulation can activate or inhibit up to 1 mm of brain tissue, or up to 

10,000 LHA neurons and their associated circuit components, while the spatiotemporal 

activity dynamics of LHA neurons are highly complex even at the cellular level. Thus, 

accurately recording and modulating LHA network dynamics to living neurocircuits will 

require single-cell optogenetic modulation capabilities. Another perhaps more immediately 

testable scenario is that LHA circuit dynamics are largely based upon their input and output 

circuitry. Stimulus evoked activity patterns can be conveyed from one individual cortical 

neuron to another, and thus aggregate afferent input from the extended amygdala, basal 

forebrain, cortex, and other hypothalamic nuclei may ultimately provide more specified 

ensemble information to LHA circuits which in turn generates appropriate behavioral drive.
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Figure 1. Electrical stimulation of the LHA produces reinforcement
a. Animals will self-stimulate in many regions of the ventral forebrain, but only the LHA 

electrical self-stimulation is largely insatiable (b). c. Illustration showing that the forebrain 

and hypothalamus sites (shaded) that supports electrical self-stimulation. Adapted from.
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Figure 2. The LHA contains a mixture of inhibitory and excitatory neurons
a. In situ hybridization image of LHA Vgat expression. b. Vgat targeted neurons in the 

Vgat-ires-Cre mouse line. c. In situ hybridization image of LHA Vglut2 expression. d. 

Vglut2-targeted neurons in the Vglut2-ires-Cre mouse line.
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Figure 3. Vgat-targeted neurons are distinct from MCH and Orexin producing LHA neurons
a. YFP expressing Vgat neurons (green) and MCH immunopositive neurons (red) in the 

LHA. b. YFP expressing Vgat neurons (green) and Orexin immunopositive neurons (red) in 

the LHA. c. VGat target LHA neurons thus represent a distinct population of LHA cells that 

mediate feeding. Data adapted from.
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Figure 4. Proposed neurocircuit-wiring diagram based on optogenetic studies
LHA GABAergic neurons inhibit VTA GABAergic neurons to disinhibit VTA dopamine 

neurons. Dopamine is release within the NAc where it excites D1R expressing MSNs and 

induces plasticity. These inhibitory signals then feedbacks to inhibit LHA GABAergic 

neurons to terminate feeding bouts. BNST GABAergic neurons preferentially inhibit LHA 

Glutamate neurons, some of which may project to the lateral habenula.
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