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ABSTRACT

Musculoskeletal tissues are diverse and significantly different in their ability to repair upon injury.
Current treatments often fail to reproduce the natural functions of the native tissue, leading to an
imperfect healing. Gene therapy might improve the repair of tissues by providing a temporarily and
spatially defined expression of the therapeutic gene(s) at the site of the injury. Several gene transfer
vehicles have been developed to modify various human cells and tissues from musculoskeletal
system among which the non-pathogenic, effective, and relatively safe recombinant adeno-
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associated viral (rAAV) vectors that have emerged as the preferred gene delivery system to treat
human disorders. Adapting tissue engineering platforms to gene transfer approaches mediated by
rAAV vectors is an attractive tool to circumvent both the limitations of the current therapeutic
options to promote an effective healing of the tissue and the natural obstacles from these clinically
adapted vectors to achieve an efficient and durable gene expression of the therapeutic sequences

within the lesions.

Introduction

Musculoskeletal tissues, including the articular carti-
lage, bone, tendons, and muscles significantly differ in
their ability to repair spontaneously upon injury.'
While the cartilage has a very limited ability to self-
repair, most fractures of long bones heal on them-
selves except for large segmental defects. On the other
hand, self-repair of tendons often results in a poor
quality tissue.” In addition, the intrinsic ability of
muscles to heal may be compromised under severe
trauma conditions, leading to the formation of fibrous
scar tissue.’ So far, the limitations associated with the
current clinical options and the increment of inciden-
ces of musculoskeletal injuries have argued for the
necessity of looking for alternative therapeutic options
tailored to each tissue type that may lead to its
regeneration.

In this scenario, gene transfer has emerged as an
alternative technology to directly transfer genes
encoding for therapeutic factors in sites of injury,
resulting in a temporarily and spatially defined deliv-
ery of a candidate agent.* Diverse nonviral® and viral

gene vehicles (vectors derived from adenoviruses -
AdV, retro/lentiviruses, or herpes simplex viruses -
HSV)° have been developed to target human cells that
may be affected in a variety of musculoskeletal tissues.
Most particularly, vehicles based on the non-patho-
genic human adeno-associated virus (AAV) have con-
siderable advantages over other, more classical vectors
that currently make them preferred systems to treat
human disorders.*

rAAV-mediated gene transfer for
musculoskeletal system repair

Features of rAAV vectors

Recombinant AAV (rAAV) vectors are derived from a
non-pathogenic, replication-defective human parvovi-
rus’ that can be manipulated to produce recombinant
viral constructs by removing all AAV coding sequences
and replacing them by a transgene cassette,*” making
them less immunogenic than AdV and less toxic than
HSV'*'? (Fig. 1A). Most experimental work has been
initiated with the serotype 2 of the virus (AAV-2),
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Figure 1. Concepts for rAAV-mediated gene transfer using tissue engineering approaches in the musculoskeletal system. (A) Genomic
organization of rAAV vectors. Classical rAAV vector with 2 inverted terminal repeats (ITRs) at either end of a transgene cassette (heterel-
ogous promoter, gene of interest, intron/polyA signal). The arrows show the viral transcription promoter. (B) Principal tissue engineering
strategies for rAAV mediated-gene transfer in the musculoskeletal system. rAAV can be encapsulated in different biomaterials such as
hydrogels or polymeric micelles to achieve a controlled release profile at the site of injury. The vectors may be delivered ex vivo by
genetically modification of cells that are subsequently seeded onto a matrix and implanted in the recipient. Different patient-related
materials including bone marrow aspirates (BMA) and allografts can be endowed with biological factors enhancing cell/tissue reparative
processes via rAAV-mediated gene transfer. Polymers can be used to overcome rAAV physiological barriers when administered through
classical routes to achieve an efficient gene transfer in the target location.

including to target tissues of the musculoskeletal sys-
tem,*"? yet other natural serotypes have been identified
and tested in diverse cells and tissues (AAV-1 to -12,
with a focus on AAV-5 in the orthopaedic field).* One
remaining, critical issue when using rAAV is the pre-
existence of neutralizing antibodies in the human pop-
ulation, mostly directed against the AAV capsid

proteins with a higher prevalence for AAV-1 and -2,"
and possible specific cellular responses for instance by
activation of the Toll-like Receptor (TLR) 9/MyD88
and interferon-1 cascade in plasmacytoid dendritic cells
by particular serotypes (AAV-1, -2, and -9)."* Active
work is ongoing to overcome such hurdles and con-
trolled delivery approaches based on the use of solid



scaffolds and hydrogels coated with or encapsulating
rAAV vectors to mask potentially immunogenic viral
epitopes may allow to produce safer systems of gene
transfer.* rAAV are small (~20 nm) vectors, capable of
transducing both dividing and nondividing cells at rela-
tively high gene transfer efficiencies (up to 100%),*'
allowing for direct gene transfer approaches in vivo
through the dense extracellular matrix of targeted tis-
sues.'® These potential advantages from rAAV make
them as the vector of choice to treat human disorders.*

rAAV-mediated gene transfer for tissue
regeneration: Implications

rAAV vectors can be directly introduced into the body
(in vivo approach) or indirectly by collection, modifi-
cation and re-implantation of the patient’s cells in
sites of injury (ex vivo approach).” Direct administra-
tion of rAAYV is a simple and cost-effective gene trans-
fer approach but it requires the availability of a
considerable cell population in a damaged tissue sus-
ceptible to transduction for expression of the trans-
gene being delivered at appropriate therapeutic levels.
Also, direct rAAV gene transfer by intra-articular
injection as commonly performed in musculoskeletal
translational research may lead to the dissemination
of the vectors to non-target tissues early on (liver, kid-
ney, lymph nodes)'”*° while vector DNA might be
rapidly cleared, becoming detectable only at the site of
injection at extended periods of time'”"**' and lead-
ing to prolonged transgene local expression (at least a
year, the longest time points examined).’"** Another
issue is a possible contralateral effect of the gene treat-
ment in nonmodified locations (joints) upon circula-
tion of the therapeutic product and/or by trafficking
of vector-modified cells, even though this observation
has been mostly reported when using adenoviral and
retro-/lentiviral vectors™>® and only in rare cases
with rAAV.*® Yet, such effects may be prevented
when providing the vector treatment by arthrotomy
that allows for a more precise delivery of the vectors
in the joint.**** Also, the existence of patient-associ-
ated factors and of physiological barriers (pre-exis-
tence of neutralizing antibodies in the host against the
viral capsid proteins, inhibition of transduction by
particular anticoagulants) may interfere with an effec-
tive rAAV delivery, processing, and expression of the
transgene in the target cells by blocking vector trans-
duction or by redirecting distribution of rAAV to
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non-target tissues.**> Remarkably, delivery of rAAV
via polymeric biomaterials may overcome such limita-
tions by providing a controlled release of the vectors
only where necessary.*

Even though ex vivo delivery may obviate these
problems by introducing cells instead of gene products
in sites of injury, it remains a costly procedure, requir-
ing more complex and laborious steps of cell harvest-
ing and expansion. The identification of alternative,
convenient gene delivery procedures is thus under
active investigation, such as options based on the sup-
ply of tissue biopsy samples (whole bone marrow aspi-
rates, fat, muscle) instead of isolated progenitor cells.

Combination of convenient tissue engineering
strategies with clinically adapted rAAV vectors may
improve current therapeutic options while increasing
the efficiency of rAAV-mediated gene transfer, leading
to the elaboration of safe and effective treatments
against tissue injuries in patients.

Exploiting the concept of tissue engineering for
an effective rAAV-mediated gene transfer

As no single approach is capable of promoting the
regeneration of the different musculoskeletal tissues,
tailored strategies based on then optimal combination
of a therapeutic factor with a biomaterial acting as a
vehicle of the gene vector (direct in vivo approach) or
as a cell-supportive matrix (indirect ex vivo approach)
adequate to the properties of each tissue in question
are necessary to promote its regeneration. The most
advanced synergic technologies for improving both
rAAV-mediated gene transfer and current therapeutic
options in the different tissues of the musculoskeletal
system are presented in the following sections
(Fig. 1B).

rAAV gene transfer in cartilage

Articular cartilage is the smooth tissue that covers the
ends of bones, allowing for a successful load transmis-
sion and mobility within the joints. Due to the lack of
access to blood supply, the cartilage has a limited abil-
ity to self-healing and full repair of cartilage defects is
therefore a major clinical challenge that may progress
to osteoarthritis, a critical disorder affecting a large
number of patients worldwide.***> Despite the avail-
ability of several therapeutic options to repair injured
cartilage (marrow-stimulating techniques such as
microfacture, transplantation of tissue or cells



including autologous chondrocytes - ACI - or mesen-
chymal stem cells - MSCs, replacement surgery),***®
none of them can reproduce the natural functions of
the native, hyaline cartilage (type-II collagen and pro-
teoglycans), rather leading to the formation of a
poorly mechanically functional fibrocartilaginous sur-
face (type-I collagen).*’

Current approaches for improved rAAV-2-medi-
ated gene transfer in the cartilage focus on the incor-
poration of the vectors into biomaterials in order to
achieve a controlled release profile of rAAV in the site
of injury.”>>® These techniques may be combined
with bone marrow stimulation for chondral defects
and the controlled release of rAAV vectors from the
biomaterial could provide a suitable, lasting stimulus
to increase the chondrogenic potential of cells that
populate the lesion. Hydrogel systems, exhibiting a
release pattern via diffusion process, are advantageous
materials to achieve this goal as they may be modu-
lated to reduce vector spreading to non-target tissues.”
Different polymers from both natural®®*> or synthetic
origin®">> have been tested to prepare hydrogels as
rAAV controlled delivery systems in cartilage regener-
ation (Table 1). Poly(ethylene oxide) (PEO) and poly
(propylene oxide) (PPO) tri-block copolymers (polox-
amers and poloxamines), described as “smart” or
“intelligent” polymers due to their capacity to form
polymeric micelles and to undergo sol-to-gel transi-
tion upon heating,”* have recently showed to be effi-
cient rAAV-mediated delivery systems.”>>’

Combination of rAAV with tissue engineering
approaches has also been exploited to circumvent
physiological barriers limiting rAAV-mediated gene
transfer such as the neutralization by neutralizing
antibodies against the viral capsid proteins present for
instance in the synovial fluid from patients with joint
diseases’” or the inhibition of rAAV adsorption at the
target cell surface by specific anticoagulants (hepa-
rin).*>® We recently reported that encapsulation of
rAAV in poloxamer PF68 and poloxamine T908 poly-
meric micelles allowed for an effective, durable, and
safe modification of human MSCs (hMSCs) to levels
similar to or even higher than those noted upon direct
vector application (up to 95% of gene transfer effi-
ciency).”® Of further note, these copolymers were
capable of restoring the transduction of hMSCs with
rAAV in conditions of gene transfer inhibition like in
the presence of heparin or of a specific antibody
directed against the AAV capsid proteins, enabling

effective therapeutic delivery of the chondrogenic sex
determining region Y-box 9 (sox9) sequence leading
to an enhanced chondrocyte differentiation of the
cells.”

Recent gene transfer approaches for cartilage regen-
eration focused on the use of autologous compounds
capable of improving the effectiveness of the microfac-
ture technique. By these methods, a bone marrow aspi-
rate was collected from the patients and transduced ex
vivo with viral vectors.”” The resulting clotted bone
marrow containing transduced cells and vectors was
implanted into cartilage defects.”” While this approach
was initially described for the delivery of AdV,” its use
with rAAV may appear more advantageous as these
vectors allow for more sustained levels of transgene
expression and avoid the undesirable
responses associated with AdV.>*®" An increase in
chondrogenic processes have been described by transfer
of transforming growth factor B 1 (TGF-p1),>*%¢"
insulin-like growth factor I (IGF-I),””® and the tran-
scription factor sox9” to bone marrow aspirates from
both human®*>®! or minipig origin® via rAAV-2.

Treatment of large chondral defects is usually per-
formed by ACI using cells from a lesser-weight bear-
ing part of the joint. Although this technique already
showed satisfactory long-term results in patients, with
the production of hyaline-like repair tissue following

immune

transplantation of chondrocytes into chondral
defect,”” the ex vivo modification of cells via rAAV
may lead to a better quality of the repaired tissue.
Fibrin glue (FG) alone® or combined with other poly-
mers®** has been also used for the ex vivo delivery of
rAAV by encapsulation of genetically modified cells
such as chondrocytes® and periosteal cells®*®* to heal
full-thickness chondral defects.”®® Both IGF-I*®
and the bone morphogenetic protein 2 (BMP-2)°*%
incorporated in rAAV-5 or -2°*%°) have been
reported to be potent factors that increase chondro-
genesis of encapsulated cells when implanting in
defects and minipig

chondral from horse®

models.**%°

rAAV gene transfer in bone

Bone tissue has a highly hierarchical structure based
on type-I collagen fibers and nanohydroxyapatite
matrix, making it a tissue with unique mechanical
properties. The bone has an intrinsic ability to self-
repair that may nevertheless be exceeded when the
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fracture gap is too big or unstable.® Other critical
issues include the rate of morbidity during tissue graft
harvesting and the high prevalence of pseudoarthrosis
associated with lumbar spine fusion.®” Therefore,
complete regeneration of bone tissue remains a chal-
lenging issue.

Although autografts are considered the gold stan-
dard to treat large bone defects, their use is still
restricted by the limited graft availability and by donor
site morbidity.®® Even though devitalized cadaveric allo-
graft tissue may help to overcome these issues, its use is
hindered by a limited integration with the host bone.*®
Revitalization of allografts by rAAV-mediated gene
transfer of therapeutic, osteogenic factors is an advanta-
geous approach to increase allograft integration,”
based on the administration of morphogens like the
BMPs”""* and of angiogenic factors such as the vascular
endothelial growth factor (VEGF)®® (Table 2).

An innovative strategy involves the dual immobili-
zation of rAAV carrying VEGF and the receptor acti-
vator of nuclear factor kappa-B ligand (RANKL) on
the cortical surface of allografts to modulate angiogen-
esis and bone resorption,”” showing marked remodeli-
zation and vascularization that led to a new bone
collar around the graft. A limitation for rAAV immo-
bilization on allografts is the limited porosity of the
material that compromises the possibility of obtaining
a uniform and reproducible coating.”” To overcome
this limitation, a demineralization method to increase
surface absorbance while retaining the structural
integrity of the allograft was further developed.”
Demineralized bone wafers (DBW) obtained by this
procedure showed an increased absorbance for uni-
form rAAV coating, without difference in transduc-
tion efficacy when implanted in mice in vivo
compared with mineralized allografts.”> The use of
self-complementary AAV (scAAV) that bypass the
need for second-strand synthesis into the host cells
also allowed to increase the transduction efficacy in
the hematoma of healing allografts.***

An rAAV coating strategy has been also involved for
biological activation of bone-related biomaterials.”*”>
Nasu et al.”* lyophilized rAAV-lacZ and rAAV-BMP-2
(serotype 2) in hydroxyapatite, S-tricalcium phosphate
(B-TCP), and titanium (Ti) alloy. When implanted in
rat muscles, a higher B-galactosidase activity and signif-
icant induction of bone formation were observed when
rAAV-lacZ and rAAV-BMP-2 were immobilized into
hydroxyapatite scaffolds.

rAAV-mediated gene transfer in tendons

Tendons are unique connective tissue structures that
connect and transmit forces from the muscle to the
bone, storing elastic energy and withstanding high
tensile forces necessary for locomotion.”*”” Tendon
injuries are common pathologies presenting a clini-
cal challenge due to the poor responses of injured
tendons to treatments, resulting in a tissue with
inappropriate strength or limited mobility.”® Thera-
peutic options to repair ruptured tendons include
suture, autografts, allografts, and synthetic prosthe-
ses yet none of them allowed for the successful,
long-term healing, resulting instead in incomplete
tendon strength and functionality.”” Alternative
treatments based on the delivery of morphogens
may induce tendon and ligament formation from
progenitor cells basede on the use of BMP-12 (or
growth/differentiation factor 7 - GDF-7), BMP-13
(GDF-6), and BMP-14 (GDEF-5)*>®' for instance
(Table 3). Of further note, delivery of morphogens
via rAAV has been employed to target synovial
tenocytes in vitro,*® being more effective that nonvi-
ral and adenoviral vectors without eliciting immune
responses.®>

One of the main limitations of using grafts for ten-
don reconstruction is the appearance of recurrent
adhesions that may result in inflammation, fibrosis,
and paucity of tendon differentiation signals during
healing limiting joint flexion.** To solve these hurdles,
Basile et al.*’ loaded rAAV-2/5 vectors expressing
GDF-5 in tendon allografts as a means to improve the
functional properties and abolish fibrotic adhesions.
Coating of freeze-dried allografts with rAAV-GDE-5
resulted in significantly improved metatarsophalan-
geal joint flexion in a murine model compared with
rAAV-lacZ controls. More recently, the same authors
optimized rAAV-GDEF-5 loading in freeze-dried allog-
rafts, showing that lower doses of GDF-5 were more
effective to suppress adhesions, without adverse effects
on the strength of the repair.**

rAAV-mediated gene transfer in muscles

Skeletal muscles (40-45% of the adult human body
mass) generate forces permitting voluntary movement
and locomotion.” Despite a strong ability for self-
repair, exposition of muscles to compromised condi-
tions such as severe trauma may impair muscle
function, leading to contracture and chronic pain.
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Current therapeutic approaches to treat these patholo-
gies may not insure the total recover of muscle func-
tionality, often resulting in the formation of dense
scar tissue. In this sense, the challenge for muscle
repair is to stimulate tissue healing while preventing
the fibrosis.

rAAV have been described as potential transfer
tools for gene transfer to muscles (Table 3), already
involved in several clinical trials for the treatment of
related with this
Remarkably, rAAV-mediated gene transfer in muscles

different pathologies tissue.®
has been clearly identified as a safer and more effective
methodology than nonviral vectors.*>®
routes of administration of rAAV for muscle gene
transfer include both localized and systemic gene
transfer. One of the challenges limiting rAAV delivery
in muscular tissue is the existence of neutralizing anti-

Current

bodies against viral capsid proteins, considerably
reducing the efficiency of gene transfer upon intravas-
cular and intravenous injection®® and in some cases
via intramuscular administration.*

The use of polymers to coat rAAV as a means to
afford protection against neutralization without
compromising transduction efficiency is an attractive
strategy to overcome these inconveniences. Lee et al.”
tested the conjugation of rAAV-2 with activated poly-
ethylene glycol chains (PEGylation) to protect gene
transfer from neutralizing antibodies. Yet, even though
evasion from neutralization was achieved, transduction
efficiencies were reduced compared with unmodified
vectors.”’ Further modification of rAAV-2 using PEG
activated by tresyl chloride (TMPEG) allowed to pro-
tect AAV against neutralization in vitro and in vivo
when administered intravenously in mice.”*

Conclusions and perspectives

Adapting tissue engineering platforms to gene transfer
approaches mediated by rAAV vectors is an attractive
tool to circumvent not only the current limitations
from actual therapeutic options but also the natural
obstacles from these clinically adapted vectors to
achieve an efficient and durable gene expression in the
host individual. A variety of systems (hydrogels, solid
matrices, microspheres) of both natural and synthetic
origin have been exploited to control the delivery of
rAAV in a target tissue, showing promising results in
different regenerative medicine approaches to treat
disorders of the musculoskeletal system. The use of
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“smart” polymers may also contribute to achieve a
productive rAAV-mediated gene transfer by overcom-
ing natural barriers that preclude the effective vector
targeting when administered via classical routes. So
far, the manipulation of polymeric scaffolds acting as
a supportive matrix for rAAV-genetically modified
cells is a valuable strategy to increase the healing
potential while providing the mechanical strength
necessary for the functionality of the tissue. Incorpo-
ration of rAAV vectors in autologous materials har-
vested from the patients may endow them with
adapted biological signals to enhance tissue regenera-
tive processes while minimizing the risk of immuno-
logical responses and facilitating the integration of the
new tissue.
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