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ABSTRACT
Lignin is 1 of the 3 major components of lignocellulose. Its polymeric structure includes aromatic
subunits that can be converted into high-value-added products, but this potential cannot yet been
fully exploited because lignin is highly recalcitrant to degradation. Different approaches for the
depolymerization of lignin have been tested, including pyrolysis, chemical oxidation, and hydrolysis
under supercritical conditions. An additional strategy is the use of lignin-degrading enzymes, which
imitates the natural degradation process. A versatile set of enzymes for lignin degradation has been
identified, and research has focused on the production of recombinant enzymes in sufficient
amounts to characterize their structure and reaction mechanisms. Enzymes have been analyzed
individually and in combinations using artificial substrates, lignin model compounds, lignin and
lignocellulose. Here we consider progress in the production of recombinant lignin-degrading
peroxidases, the advantages and disadvantages of different expression hosts, and obstacles that
must be overcome before such enzymes can be characterized and used for the industrial
processing of lignin.
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Introduction

Lignocellulose is the most abundant form of sustain-
able biomass on earth and is therefore highly promis-
ing for the production of renewable fuels and
chemicals.1 Two of the components of lignocellulose
(cellulose and hemicellulose) are readily accessible for
industrial processes because they are easily degraded
by known enzymes and by chemical hydrolysis.2 How-
ever, the third component (lignin) is much more resis-
tant to degradation. Unlike the other components it is
a non-carbohydrate polymer with aromatic subunits.
Depending on the lignin source, up to 3 phenylpropa-
noid monomeric precursors are coupled to form the
lignin polymer.3 It is not currently possible to fully
exploit the potential of this polymer due to the lack of
knowledge and technologies for lignin degradation.4

The lignin obtained from lignocellulosic biomass dur-
ing industrial processes such as papermaking and bio-
mass fractionation is therefore either incinerated to
provide electricity for plants that produce cellulosic
ethanol5 or is chemically modified and used to manu-
facture products such as phenolic resins, polyurethane

foams, epoxy resins and biodispersants.6 However,
lignin has the potential for conversion into high-
value-added products such as vanillin, adipic acid,
ferulic acid, vinyl guaiacol, optically-active lignans, the
dimers of monolignols and p-coumaric acid.7,8 Lignin
could therefore replace the fossil-fuel-based feedstock
used in many current industrial processes, increasing
their sustainability and benefiting the environment.

Lignin-degrading enzymes

Studies focusing on the biological degradation of lignin
date back to the 1980s. Enzymes from white-rot and
brown-rot fungi have been studied more comprehen-
sively than those from bacteria because they were initially
considered to be more efficient, but recent reports have
shown that bacteria also degrade lignin and produce
potentially important peroxidases and laccases.9 The first
lignin-degrading enzymes to be identified were peroxi-
dases from the white-rot fungus Phanerochaete chryso-
sporium.10,11 Many further enzymes were subsequently
identified and characterized, and these can be assigned to
2major classes: heme peroxidases and laccases (Fig. 1).
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The first heme peroxidase superfamily comprises
lignin peroxidase (LiP), manganese peroxidase (MnP)
and versatile peroxidase (VP), which are typically pro-
duced by fungi.12 Non-phenolic structures are thought
to be degraded by LiP due to its high redox potential.
MnP can oxidize phenolic model compounds via the
oxidation of Mn2C to Mn3C. VP is so called because it
combines the catalytic properties of LiP and MnP.3

The second heme peroxidase superfamily com-
prises the dye-decolorizing (DyP-type) peroxidases,
which also oxidize b-O-4 non-phenolic and phenolic
lignin model compounds. Although the first DyP-type
peroxidase was isolated from fungi, subsequent
genome sequence analysis has revealed that this super-
family of enzymes is also prominent in bacteria.13

DyP-type peroxidases typically require hydrogen per-
oxide to form the oxo-ferryl intermediates of the
enzymes, which subsequently oxidize the mediator or
the substrate.

Unlike peroxidases, laccases reduce molecular
oxygen to water using the copper atoms located

within the active center in order to oxidize the
mediator or substrate. Phenolic lignin units are oxi-
dized directly whereas non-phenolic subunits are
oxidized via a redox mediator system to overcome
the low redox potential of laccase. The potential
applications of laccases in lignocellulose degrada-
tion have been comprehensively reviewed.14,15 The
remaining enzymes that support lignin degradation
are known as accessory enzymes.3 These include
enzymes that produce hydrogen peroxide and
enzymes that reduce methoxy radicals generated by
the peroxidases and laccases.

Recombinant lignin-degrading peroxidases

Although several groups have attempted to optimize
the cultivation of P. chrysosporium to increase the
yield of native LiP and MnP, a successful large-scale
production system has yet to be reported. This could
potentially be addressed by using heterologous expres-
sion systems to produce large amounts of unmodified

Figure 1. Lignin subunits attacked by enzymes and their most common reaction mechanisms. The bulky lignin polymer structure repre-
sents part of an organosolv lignin substrate.65 Both superfamilies of lignin-degrading enzymes (heme peroxidases and laccases) can oxi-
dize phenolic lignin subunits. In order to oxidize non-phenolic lignin subunits, laccase requires the presence of a mediator. Lignin
peroxidase, versatile peroxidase and DyP-type peroxidase do not require a mediator to attack non-phenolic structures. Manganese per-
oxidase and versatile peroxidase oxidize phenolic lignin subunits via the oxidation of manganese (Mn2C ! Mn3C). The inset box shows
heme peroxidases reducing H2O2 to water to catalyze the oxidation reactions, whereas laccases reduce molecular oxygen to water,
which is accompanied by the oxidation of the substrates or mediators. The atoms and bonds of the phenolic and non-phenolic lignin
subunits are highlighted in bold within the bulky structure. Abbreviations: med D mediator, sub D substrate.
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or modified recombinant enzymes for targeted indus-
trial applications.

The mechanism of cellulose degradation is well
understood and recombinant cellulases have been
produced successfully in various heterologous sys-
tems.16,17 In contrast, the mechanisms and interac-
tions of lignin-degrading enzymes (especially
peroxidases) are poorly characterized. Even so, many
recombinant lignin-degrading enzymes from diverse
fungal (Table 1) and bacterial (Table 2) sources have
been expressed in different host organisms, although
it is challenging to achieve high yields and satisfactory
catalytic activity due to the complex secondary and
tertiary structures of such enzymes. Specific posttrans-
lational modifications may be necessary during matu-
ration, such as heme assembly, glycosylation and the
formation of disulfide bridges, which may differ
between the native source and heterologous produc-
tion host.

This challenge is clearly illustrated by recent prog-
ress toward the production of high enzyme titers with
activity against complex lignin model compounds, as
well as lignin and wood (Tables 1 and 2). The first
report describing the production of recombinant fun-
gal MnP and LiP was published in 1991, but although
the authors used insect cells and the reliable baculovi-
rus expression system, only low yields were achieved
and the cost of the process was high (Table 1).18-20 P.
chrysosporium was used for the homologous produc-
tion of MnP and LiP with yields of up to 2 mg of puri-
fied LiP per liter of culture.20,21 Later, Pleurotus
ostreatus was used to express the versatile peroxidase
MnP2 homologously, with a yield of up to 21 mg
L¡1.22 However, the extensive screening required to
identify mutant production strains, as well as contami-
nation with the native enzyme, led to disappointing
results. The model bacterium Escherichia coli has been
extensively developed as an expression platform for
fungal enzymes, and many recombinant enzymes
have been isolated successfully from inclusion bodies
and refolded with 1–28% efficiency23-30 and maximum
yields of 1.5–14 mg L¡1 after in vitro activation and
purification.29 A soluble form of a VP was produced
using a thioredoxin tag31,32 or following intensive
screening.31 Few publications have described the activ-
ity of such recombinant enzymes against complex lig-
nin model compounds or synthetic lignin.29,30,33

Fungal and yeast expression systems have been used
to ensure that posttranslational modifications such as

glycosylation are carried out, because these are
thought to increase the stability of many fungal
enzymes. MnP, LiP and VP have been expressed
in various Pichia and Saccharomyces strains, the
recombinant enzymes were secreted into the medium
(e.g. 100 mg L¡1 and 21.6 mg L¡1 for Pichia methanol-
ica and Saccharomyces cerevisiae, respectively)34,35 and
catalytic activities were determined using common
substrates such as 2,2’azinobis(3-ethylbenzothiazo-
line-6-sulfonate) (ABTS) and veratryl alcohol (VA).34-38

MnP produced in this manner was suitable for the
treatment of Kraft lignin as determined by measuring
the kappa number and the increase in Klason lignin
residue.39 MnP from P. chrysosporium has also been
expressed in the filamentous fungi Aspergillus oryzae
and A. niger,40,41 yielding up to 100 mg L¡1 in A.
niger. A VP from Pleurotus eryngii was expressed suc-
cessfully in another Aspergillus strain (A. nidulans)
with a yield of 0.4 mg L-1 after protein purification.42

Recently, native LiP and MnP were expressed in P.
chrysosporium in concert with an exogenous VP, gen-
erating a recombinant strain with higher LiP and
MnP activity and detectable VP activity.43 Further
strain engineering included the introduction of an
additional laccase.44 In addition to LiP, MnP and VP,
fungal DyP-type peroxidases have also been expressed
in various heterologous production platforms,45-48

with yields of 0.1 mg L¡1 purified enzyme achieved
using E. coli47 and up to 62 mg L¡1 recovered from
the supernatant of A. oryzae expression cultures.45

The production of several recombinant bacterial
lignin-degrading enzymes has also been achieved
over the last few years (Table 2). The first recombi-
nant LiP was produced successfully in 1998 by clon-
ing a 4.1-kb fragment of Streptomyces viridosporus
genomic DNA and expressing it in the yeast Pichia
pastoris.49 Several DyP-type peroxidases from bacte-
ria have been expressed in E. coli, including enzymes
from Thermobifida fusca,50,51 Amycolatopsis sp.,52

Pseudomonas aeruginosa,53 Anabaena sp.,54 Pseudo-
monas putida,55 Bacillus subtilis,55,56 Saccharomono-
spora viridis,57 Pseudomonas fluorescens,58 and 2
enzymes (DypA and DypB) from Rhodococcus jostii
RHA1.59,60 The yields were generally in the range 3–
25 mg L¡1, but exceptional yields of 106.5 mg L¡1

and 2.1 g L¡1 have been achieved in E. coli for S. viri-
dis57 and B. subtilis56 peroxidases, respectively. The
recombinant enzymes have been extensively charac-
terized and optimized using a range of dyes as well as
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Table 1. Recombinant fungal lignin-degrading peroxidases. Examples of successfully produced fungal lignin-degrading peroxidases and the
substrates that have been used. The activity of the enzymes (if stated) is shown in parentheses. ABTS: 2,2-azinobis (3-ethylbenzothiazoline-6-sul-
fonate), DCP: 2,4-dichlorophenol, DFAD: 4-[(3,5-difluoro-4-hydroxyphenyl)azo]benzenesulfonic acid, DMP: 2,6-dimethoxyphenol, icb: inclusion
body; MHG: methoxyhydroquinone, VA: veratryl alcohol.

enzyme origin host organism localization substrate (activity) ref

LiP H8 Phanerochaete
chrysosporium

baculovirus extracellular VA (20 U mg¡1) 18

LiP H8 P. chrysosporium P. chrysosporium extracellular VA (Km 89.4 mM, kcat 23.2 s
¡1) 21

LiP H8 P. chrysosporium E. coli cytoplasm (ib) VA (29.7 s¡1)
ABTS (27.0 s¡1)
DFAD (31.1 s¡1)

24

LiP H2 P. chrysosporium E. coli cytoplasm (ib) Mn2C (14 s¡1)
VA (39 s¡1)

25

LiP H8 P. chrysosporium E. coli cytoplasm (ib) b-0-4 tetrameric lignin model compound 33

LiP Trametes cervina E. coli cytoplasm (ib) ABTS
VA (Km 3240 mM, Kcat 17.7 s

¡1)
1,4-dimethoxybenzene

ferrocytochrome c

28

LiP H8 P. chrysosporium Pichia methanolica extracellular VA (a-mating factor: 1933 U L¡1)
VA (native leader peptide: 932 U L¡1)

34

LiP H2
variants

P. chrysosporium Saccharomyces
cerevisiae

extracellular DCP (78.1 – 81.8 U mg¡1)
DCP (kcat 3520 – 3960 min¡1, Km 163 – 190 mM)

37

MnP H4 P. chrysosporium baculovirus extracellular phenol red (83 mU L¡1)
vanillylacetone (201 mU L¡1)
guaiacol (94 mU L¡1)

19

MnP isozyme
1 (mnp1)

P. chrysosporium P. chrysosporium extracellular Mn2C (341.3 U mg¡1)
DMP (158.3 U mg¡1)

20

MnP H4 P. chrysosporium E. coli cytoplasm (ib) Mn2C(140 U mg¡1) 23

MnP H4
S168W

P. chrysosporium E. coli cytoplasm (ib) Mn2C (kcat 260 s
¡1; Km 0.11 mM)

VA (kcat 11 s
¡1; Km 0.49 mM)

26

MnP P. chrysosporium Aspergillus oryzae extracellular Mn2C (0.33 U mL¡1; kcat 132 § 15 s¡1)
DMP

40

MnP H4 (mnp1) P. chrysosporium Aspergillus niger extracellular ABTS (»66.2§ 12.1 DAbs min¡1 mL¡1) 41

MnP (mnp1) P. chrysosporium Pichia pastoris extracellular DMP (160 U mg¡1)
Kraft lignin (Kappa number: 49.2 to 42.0,
Klason lignin: 7.41% to 6.75%)

39

MnP6
S168W�

Ceriporiopsis
subvermispora

E. coli cytoplasm (ib) Mn2C (kcat 60.5 § 5.0 s¡1; Km 8.5 § 1.2 mM)
ABTS (kcat 1.4 § 0.1 s¡1; Km 60.2§ 13.4 mM)
VA (kcat 0.54§ 0.04 s¡1; Km 2740§ 560 mM)
Reactive Black 5 (kcat 7.8 § 1.1 s¡1; Km 812.6 § 3 mM)
DMP
4-O-methylsyringylglycerol-ß-guaiacyl ether
(kcat 0.47 § 0.0 s¡1; Km 1.1 § 0.2 mM)

29

MnP1 – MnP6 Pleurotus ostreatus E. coli cytoplasm (ib) Mn2C��

ABTS ��

VA ��

Reactive Black 5 ��

DMP ��

30

VP (MnPL2 -mnpI2) Pleurotus eryngii Aspergillus nidulans extracellular Mn2C (Km 20 mM; kcat 99 s
¡1)

VA (Km 1780 mM; kcat 12 s
¡1)

MHQ (Km 23 mM; kcat 10 s
¡1)

DMP

42

versatile
MnP2 (mnp2)

P. ostreatus P. ostreatus extracellular Mn2C (Km 22.3 mM)
guaiacol (7300 U L¡1)
VA (Km 5080 mM)

22

VP Bjerkandera adusta E. coli cytoplasm Mn2C (27.5 mU mg¡1)
DMP (0.13 mU mg¡1)
VA (0.25 mU mg¡1)
1-napthol (70 mU mg¡1)

31

VP (vpl2) P. eryngii E. coli cytoplasm Mn2C (194 § 3.1 U mg¡1; kcat 138§ 5.2 s¡1;
Km 78 § 7.9 mM)

ABTS (8.8 § 0.03 U mg¡1; kcat 5.4 § 0.1 s¡1; Km
0.7 § 0.04 mM)

VA (7.2 § 0.6 U mg¡1; kcat 6.4 § 0.3 s¡1; Km
4090 § 523 mM)

Reactive Black 5 (2.2 § 0.2 U mg¡1; kcat 2.7 § 0.08 s¡1;
Km 4.8 § 0.3 mM)

32

VP1
VP2
VP3

P. ostreatus E. coli cytoplasm (ib) Mn2C ��

ABTS ��

VA ��

Reactive Black 5 ��

DMP ��

4-ethoxy-3-methoxyphenylglycerol-b-guaiacyl
ether
synthetic lignin

30

(Continued on next page )
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simple and also more complex lignin model com-
pounds (Table 2). These studies revealed that DyPs
are active against both non-phenolic and phenolic
substrates and can oxidize polymeric lignin. Another
DyP from R. jostii, which was expressed in its native
host, was shown to be active against wheat straw lig-
nocellulose and produced potentially valuable prod-
ucts, namely vanillin and smaller amounts of ferulic
acid and 4-hydroxybenzaldehyde.61

Future challenges

Detailed studies describing the activity of recombinant
enzymes on complex lignin model compounds, lignin
and lignocellulose substrates have been published only
in the last few years. Activity assays using lignin as a
substrate are time-consuming because both the meas-
urements and data analysis take a long time. The olig-
omeric nature of lignin model compounds affects the
catalytic activity of lignin-degrading enzymes, e.g., the
activity of LiP on the model compound b-O-4 lignin
was 25-fold lower than on the simple artificial sub-
strate VA.62 To increase the convenience of protein
characterization and engineering approaches, artificial
substrates such as ABTS, VA and DMP are used for

initial testing and simple phenolic or non-phenolic
model compounds are used in subsequent assays.
However, the degradation of these simple aromatic
compounds may require different catalytic mecha-
nisms, which makes it difficult to extrapolate the
results to typical lignin and lignocellulose samples.
For example, LiP has two substrate interaction sites: a
heme-edge site which is typical for peroxidases and a
second site for the oxidation of VA.24 The optimiza-
tion of enzyme activity by screening will only select
for increases in activity against the test substrate under
the specific conditions of the test and will not neces-
sarily have a positive impact on the degradation of
typical lignin substrates found in plant biomass or
organosolv lignin. It is also clear that the successful
degradation of lignin and lignocellulose requires mul-
tiple peroxidases and other lignin-degrading enzymes
and accessory proteins.63 Each enzyme individually
may not show promising results in vitro because opti-
mal activity requires the presence of other enzymes, or
conversely an individual enzyme may show promising
in vitro activity alone but this may not be fulfilled
under natural conditions when other enzymes are
present. Lignin degradation is not an isolated process
in nature, but is instead embedded in the more

Table 1. (Continued ).

enzyme origin host organism localization substrate (activity) ref

VP (vpl2)
variant

P. eryngii S. cerevisiae extracellular ABTS (717 U mg¡1) 35

VP (vpl2)
MnP (mnp1)
LiP (lipH8)

P. eryngii
P. chrysosporium
P. chrysosporium

P. chrysosporium extracellular Mn2C(9.084 U mL¡1 culture)
DMP (20 U mL¡1 culture)
VA (»3.8 U mL¡1)

43

DyP Thanatephorus cucumeris
(Geotrichum candidumDec 1)

A. oryzae extracellular (relative substrate specificity)
Reactive Blue 5 (100 %)
Reactive Blue 19 (100 %)
Reactive Black 5 (0.9 %)
Reactive Red 33 (1.8 %)
VA (0 %)
guaiacol (0.17 %)
DMP (0.54 %)

46

DyP T. cucumeris A. oryzae extracellular 1-amino-2-sulfonyl-4-aminomethyl-9,10-anthraquinone
sodium salt (600 U mg¡1)

45

DyP T. cucumeris E. coli periplasm (relative substrate specificity)
Reactive Blue 5 (100 %)
Reactive Blue 19 (119 %)
Reactive Blue 21 (26 %)
Reactive Blue 114 (4.4 %)
Reactive Black 5 (1.0 %)
Reactive Red 33 (2.3 %)
Reactive Red 120 (0.96 %)
Reactive Orange 13 (0.22 %)
VA (0 %)
guaiacol (9.2 %)
DMP (9.3 %)

47

�see Ref. 29 for kinetic constants for recombinant peroxidases from C. subvermispora (MnP6, MnP6-S168W-environment variants), P. ostreatus (VP1), and P. chryso-
sporium (LiP-H8).

��see Ref. 30 for kinetic constants (Km, kcat, kcat/Km) for the recombinant peroxidases from the P. ostreatus genome.
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Table 2. Recombinant bacterial lignin-degrading peroxidases. Examples of successfully produced recombinant bacterial lignin-degrad-
ing peroxidases and the substrates that have been used. The activity of the enzymes (if stated) is shown in parentheses. ABTS: 2,2-azino-
bis (3-ethylbenzothiazoline-6-sulfonate), DCP: 2,4-dichlorophenol, DMP: 2,6-dimethoxyphenol, DOPA: L-3,4-dihydroxyphenylalanine, VA:
veratryl alcohol.

enzyme origin host organism localization substrate (activity) Ref

extracellular lignin
peroxidase

Streptomyces
viridosporus

Pichia pastoris extracellular DCP (»1.1 (AU) min¡1)
DOPA

49

DyP-type (Tfu_3078) Thermobifida fusca Escherichia coli periplasm Reactive Blue 19 (Km 29 mM, kcat 10 s
¡1) 50

TfuDyP T. fusca E. coli intracellular ABTS (Km 0.86 § 0.07 mM, kcat 28.1 § 1 s¡1)
DCP (Km 5.51§ 0.5 mM, kcat 2.86 § 0.1 s¡1)
guaiacol
phenol (Km 0.126 § 0.01 mM, kcat 0.136 § 0.03 s¡1)
pyrogallol (Km 11.29 § 1 mM, kcat 6.63§ 0.25 s¡1)
Reactive Blue 4 (Km 0.179 § 0.01 mM, kcat 1.88 §

0.07 s¡1)
guaiacylglycerol-b-guaiacyl ether
Kraft lignin

51

DyP (DyP2) Amycolatopsis sp.
75iv2

E. coli extracellular kcat/ Km (M¡1 s¡1)
ABTS ((6.6 § 0.9) £ 106)
Reactive Blue 5 ((7.1§ 0.9) £ 105)
Reactive Black 5 ((1.6 § 0.1) £ 105)
Mn2C ((1.2 § 0.2) £ 105)
guaiacylglycerol-b-guaiacol ether,
veratrylglycerol-b-guaiacol ether

52

DyP-type (dyp Pa) Pseudomonas
aeruginosa

E. coli intracellular Reactive Blue 5 (4395 mM mg¡1 min¡1)
Reactive Blue 19 (107 mM mg¡1 min¡1)
Reactive Black 5 (704 mM mg¡1 min¡1)
DMP (786 mM mg¡1 min¡1)

53

DyP Anabaena sp
strain PCC7120

E. coli intracellular Reactive Blue 5 (Km 3.6 M, kcat/Km 1.2 £ 107 M¡1 s¡1) 54

PpDyP
BsDyP

Pseudomonas putida
Bacillus subtilis

E. coli intracellular (PpDyP // BsDyP)
ABTS (40 § 0.9 U mg¡1 // 15 § 1 U mg¡1)
Reactive Blue 5 (15 § 0.2 U mg¡1 // 11 § 0.6 U mg¡1)
guaiacol (0.2 § 0.004 U mg¡1 // 0.2 § 0.006 U mg¡1)
syringaldehyde (0.11 § 0.005 U mg¡1 // 0.004 §

0.0002 U mg¡1)
acetosyringone (0.16 § 0.008 U mg¡1 // 0.012 U mg¡1)

55

BsDyP B. subtilis E. coli intracellular ABTS (66.80 U mg¡1)
VA (0.13 U mg¡1)
Reactive Blue 19 (11.55 U mg¡1)
Reactive Black 5 (17.65 U mg¡1)
veratrylglycerol-b-guaiacolether (0.086 U mg¡1)

56

SviDyP Saccharomonospora
viridis

E. coli intracellular Reactive Blue 19 (1.29 U mg¡1)
Reactive Green 19 (1.32 U mg¡1)
Reactive Yellow 2 (4.86 U mg¡1)
Reactive Black 5 (0.96 U mg¡1)
Reactive Red 120 (0.69 U mg¡1)
Brilliant Green (12.24 U mg¡1)
Malachite Green (8.4 U mg¡1)
Crystal Violet (4.11 U mg¡1)
Azure B (1.62 U mg¡1)
DMP (0.06 U mg¡1)
VA (0.03 U mg¡1)
eucalyptus kraft pulp (Kappa decrease 21.8 %)

57

DyP1B Pseudomonas
fluorescens

E. coli intracellular ABTS (Km 1.13 § 0.1 mM, kcat 13.5§ 0.4 s¡1)
DCP (Km 1.25§ 0.1 mM, kcat 0.66 § 0.02 s¡1)
guaiacol (Km 0.056 § 0.006 mM, kcat 0.058 § 0.001 s¡1)
pyrogallol (Km 4.0 § 0.6 mM, kcat 2.5 § 0.1 s¡1)
Reactive Blue 4 (Km 0.12 § 0.01 mM, kcat 1.04 §

0.03 s¡1)
Kraft lignin (Km 0.006 § 0.001 mM, kcat 0.9 § 0.1 s¡1)

58

DypB Rhodococcus jostii E. coli intracellular ABTS (0.0549 DAbs min¡1)
b-aryl ether lignin model
Kraft lignin (0.24 DAbs 10 min¡1)
nitrated lignin (0.0081 DAbs 20 min¡1)
wheat straw lignocellulose

59

DyPA R. jostii E. coli intracellular ABTS (Km 8.2 mM, kcat 16.83 s
¡1) 60

peroxidase R. jostii R. jostii extracellular wheat straw lignocellulose
(96 mg L¡1 vanillin
53 mg L¡1 p-hydroxybenzaldehyde
3-120 mg L¡1 vanillic acid
23-86 mg L¡1 ferulic acid)

61
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complex process of lignocellulose degradation. For
example, the oxidative activity of lytic polysaccharide
monooxygenases against cellulose was recently linked
to lignin via long-range electron transfer.64

In conclusion, the production and characteriza-
tion of recombinant single enzymes is necessary to
understand the different reaction mechanisms
required for successful and tailored lignin degrada-
tion. Optimized expression, intensive characteriza-
tion and the analysis of enzyme structures and
reaction mechanisms will help to determine the
optimal reaction conditions of these enzymes. Nev-
ertheless, successful lignin degradation currently
appears to require a combination of enzymes. In
the future, the combination of certain lignin-
degrading enzymes will enable the effective and tar-
geted degradation of lignin feedstock sources to
obtain specific value-added products.

Abbreviations
ABTS 2,20-azinobis(3-ethylbenzothia-

zoline-6-sulfonate)
DMP 2,6-dimethoxyphenol
DyP-type peroxidase dye-decolorizing peroxidase
LiP lignin peroxidase
MnP manganese peroxidase
VA veratryl alcohol
VP versatile peroxidase
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