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1.    Introduction 
Neutron scattering has proven to be an ex- 

tremely valuable tool for studying a wide variety of 
dynamical processes in solids. This is because the 
energy of thermal neutrons is comparable to the 
energies of many elementary excitations in con- 
densed matter while their wavelength is compara- 
ble to the interatomic distances. This allows one to 
simultaneously obtain information on the time 
scale and the geometry of the dynamical process 
under study; a feature which is unmatched by any 
other technique [1-6]. An important time scale for 
the investigation of dynamical phenomena such as 
diffusion, molecular reorientations and molecular 
tunneling is 10"^ to 10"^ s, the regime of ultrahigh 
resolution inelastic neutron scattering. The first 
neutron scattering instrument to operate in this 
range was a backscattering spectrometer built at 
the Munich reactor around 1970 which had an en- 
ergy resolution of 0.425 |xeV [7]. In the next section 
we describe how this excellent energy resolution is 
obtained and give a schematic description of a 
backscattering spectrometer. We also describe the 

spin-echo spectrometer which was first proposed in 
1972 [8]. The following section describes the basic 
theory and gives examples of the use of quasielastic 
scattering to determine both the time scale and 
spatial character of diffusion and molecular reori- 
entations. We then go on to discuss rotational tun- 
neling and show how neutron scattering 
measurements can yield detailed information on 
the orientational potential felt by molecules in con- 
densed systems. The final section describes the 
conceptual design of the backscattering spectrome- 
ter to be built in the CNRF at NIST and the basic 
design goals for a spin-echo spectrometer. 

2.   Fundamentals 
2.1    Types of Instruments 

2.1,1 Backscattering A neutron backscatter- 
ing spectrometer is closely related to the triple axis 
spectrometer [9] shown schematically in Fig. 1. In 
both types of instruments, a "white" beam of neu- 
trons impinges on a monochromator crystal which 
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Fig. 1. Schematic diagrams showing the relationship between a 
triple-axis spectrometer and a backscattering spectrometer. 
Note that the term "backscattering" refers to the scattering 
from the monochromator and analyzer crystals and not from the 
sample. 

selects a given neutron wavelength by Bragg diffrac- 
tion. The resulting monochromatic neutrons then 
scatter from the sample, possibly gaining or losing 
energy in the process. The energies of the scattered 
neutrons are determined by Bragg diffraction from 
an analyzer crystal. The excellent energy resolution 
is obtained by taking the triple-axis instrument to its 
extreme limit, i.e., scattering the neutrons through 
an angle of 180° at both the monochromator and 
analyzer crystals. The energy resolution 8£ for a 
single Bragg reflection can be found by differentiat- 
ing Bragg's law. One then obtains 

S£_28rf 
E      d + 2cote8e, (1) 

where 8d and d are the spread and value of the d 
spacing of the particular lattice planes used for 
monochromating or analyzing the neutron energy 
E,0\s 111 the scattering angle, and 50 is the angular 
spread of the neutrons. For a backscattering instru- 
ment the second term is zero since 6 is 90°. Thus the 
resolution is determined by Mid, which for perfect 
crystals is given by the Darwin width which is 
roughly on the order of 10"^ Of course the beam is 

not perfectly collimated so that the energy resolu- 
tion in backscattering is actually given by [7] 

(2) 

Thus, using the backscattering geometry for both 
the monochromator and analyzer, can result in 
energy resolutions <0.1 |a,eV. 

There are obvious technical difficulties inherent 
in the backscattering geometry. For instance one 
cannot simply scan energy by changing the scatter- 
ing angle of the monochromator or analyzer since to 
do so would result in moving away from the 
backscattering condition. This is overcome by 
changing the incident energy, £,-, by either Doppler 
shifting the incident neutrons by rapidly moving the 
monochromator crystals or by changing the d- 
spacing of the monochromator crystal as a function 
of time using thermal expansion. There are several 
other difficulties including the low intensity and the 
geometry of the sample detector-area which will be 
discussed later in this article where the plans for the 
NIST cold-neutron backscattering instrument are 
described in detail. 

2.1.2 The Neutron Spin Echo The NSE tech- 
nique [8] uses the Larmor precession of the neutron 
spin to measure the change in the energy of the 
neutron upon scattering from some dynamical pro- 
cess in condensed matter. The idea is to make po- 
larized neutrons precess in "very" uniform opposite 
magnetic fields before and after the sample so that 
those having slightly different wavelengths end up 
with the same spin orientation at the analyzer posi- 
tion. This allows the realization of excellent energy 
resolutions (<1 (xeV) using typical (i.e., broad) 
neutron wavelength distributions. As indicated in 
Fig. 2, cold neutrons are first polarized, then made 
to precess in very uniform magnetic fields in one di- 
rection before the sample and in the other direction 
after the sample and finally their spin orientations 
are analyzed to obtain the angular shift introduced 
by the sample on the spin orientation. This angular 
shift a is proportional to the applied magnetic field 
H, to the precession length L and to the energy shift 
during scattering /ia>=Ef—E\: 

a^[yh\-!Tlmy'^]fi(ok^HL, (3) 

where y,m,h and A are the gyromagnetic constant, 
the neutron mass, Planck's constant, and the neu- 
tron wavelength, respectively. The analyzer picks up 
the projection of the magnetic moment along a well 
defined direction so that the detected neutron 
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Fig. 2.   Schematic diagram of a spin-echo spectrometer. 

intensity is proportional to cos(a) properly weight- 
ed over the normal modes distribution S(Q,oi). 
The measured intensity is therefore given by the 
cosine Fourier transform of the dynamic structure 
factor5(G,ft>) [6]: 

position r at time t. Thus when devising a model of 
a diffusional process, it is only necessary to con-' 
sider the motion of a single atom and not how the 
motion of that atom is correlated with the motions 
of other atoms in the system. Another important 
way of expressing SmAQ, w) is in terms of the inter- 
mediate scattering function I(Q,t) 

Si^{Q,(o) = fI(Q,t)e'^(it, (5) 

where I{Q,t) is the space Fourier transform of 
Gs(r,t) and is the quantity measured by the spin- 
echo technique. 

In order to understand qualitatively how diffu- 
sion is manifested in a neutron scattering experi- 
ment, we will consider some simple models which 
display all of the basic features of more complex 
models. (For a more detailed discussion of the 
models presented here and for a far wider assort- 
ment of models see [5]). First consider simple dif- 
fusion which is governed by Fick's law 

I(Q,t)=Sd(oS(Q,a>)cx)s(_a), (4) 

where the Fourier variable is t =[yh^/2(Trmy'^] 
\^HL. In order to scan time, the magnetic field H 
is varied. 

The main components of an NSE instrument 
[10,11] (see Fig. 2) are the supermirrors to polarize 
and analyze the neutron spin direction, the coils to 
create very uniform magnetic fields (bH/H ~10~^) 
and other conventional neutron scattering compo- 
nents (velocity selector to monochromate, slits to 
collimate and a detector to count scattered neu- 
trons). Flippers are used to prepare the neutron 
spin direction before, and after the two precession 
coils by rotating its direction. 

2.2   Quasielastic Neutron Scattering 
2.2.1 Basic Theory In this section we first out- 

line basic features of quasielastic neutron scatter- 
ing and then proceed to illustrate these points with 
various experimental applications. To date, most 
quasielastic neutron scattering experiments have 
been performed using incoherent scattering [6], 
due to the simpler interpretation in terms of 
specific microscopic models. This is because the in- 
coherent scattering function Smc(Q, (o) measured by 
the backscattering spectrometer is the space and 
time Fourier transform of the self-correlation func- 
tion Gs(r,t) which represents the probability that a 
particle which was at the origin at time ? = 0 is at 

dp(r,t) 
dt 

■DV'pint), (6) 

where p(r,t) is the particle density at position r at 
time t and D is the diffusion constant. A solution of 
this equation is given by a self-correlation function 
of the form 

f;^...N-exp(-/-^/4P0 
(7) 

where we have assumed that the times of interest 
are long enough that the motion is truly diffusive, 
i.e., much longer than the time between collisions. 
Then the space Fourier transform of Eq. (6) yields 
the intermediate scattering function 

IiQ,t) = cxp(-Q'Dt) (8) 

shown in Fig. 3a. 
Since this represents an exponential decay in 

time, the time Fourier transform yields a 
Lorentzian lineshape 

(9) 

which is shown in Fig. 3b. Note that this expression 
peaks at w = 0 and has an energy width (FWHM) F 
which is given by 
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Fig. 3. a) Intermediate scattering function of time at a particu- 
lar value of the scattering vector Q.b) Scattering function for 
long-range transiatlonal diffusion as a function of energy at a 
particular Q. This is the Fourier transform of the intermediate 
scattering function. 
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Fig. 4. Full width at half maximum (FWHM) for Fickian (con- 
tinuous) diffusion (dotted line) and for the Chudley-Elliott 
model of translational jump diffusion for 1 A jumps (solid line). 
Note that they are identical at low Q which means that the 
macroscopic diffusion constants are identical. 

can be used to represent the particle's motion. Here 
p(r,t) is the probability of finding the particle at 
position r at time, r, ris the time between jumps and 
the sum is taken over the nearest neighbor sites 
at distances /!. Using the boundary condition 
p(r, 0) = 8(r) makes p(r,t) and Gi(r,t) equivalent, 
and then the Fourier transform of the previous 
equation yields 

dt T "I"- ,-IGT/>, (12) 

As for the case of pure diffusive motion, this has an 
exponential solution of the form 

r=2DQ^ (10) 

The width of the peak is thus proportional to both 
the diffusion constant and the square of the scatter- 
ing vector as shown in Fig. 4. 

Chudley and Elliott [12] generalized this picture 
to describe jump diffusion in solids by assuming that 
the jump motion is random, that the jumps can be 
considered instantaneous, and that the available 
lattice sites form a Bravais lattice. Then the simple 
rate equation 

/s(e,0 = exp(-^), (13) 

where 

/(G)=^|sin^(^). (14) 

Thus the scattering function again has a Lorentzian 
lineshape given by 

^=^i[p(r + 40-p('-,0], (11) dt sM-)=i .dfXi,^'     (15) 
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which has an energy width of 

r=f/(G). (16) 

The most important thing to note is that F oscil- 
lates in Q with the periodicity determined by the 
inverse of the jump vectors €;. Thus it is possible to 
determine the microscopic diffusion mechanism via 
the dependence of the width of the quasielastic 
scattering on the scattering vector. Another inter- 
esting feature is that for small values of Q,r^Q^I 
T. One can then connect this expression to the 
macroscopic diffusion constant since D «■ 1/T and 
r=2DQ^ for Fickian diffusion. Fig. 4 compares 
r(Q) for a powder averaged Chudley-EUiott model 
assuming 1 A jumps with that of Fickian diffusion 
for identical values of the diffusion constant. The 
possibility of extracting the macroscopic diffusion 
constant from the small Q region makes it possible 
to compare quasielastic neutron scattering results 
with those obtained using other methods and to 
discern the activation energy Eo via the Arrhenius 
law 

D=Doexp 
\kBT)- 

(17) 

For rotational motions, one is typically con- 
cerned with molecules or ions which contain more 
than one hydrogen atom. Thus it should be reiter- 
ated that to describe the motion, only a single atom 
need be considered for an incoherent scatterer, 
since the motions of other atoms are irrelevant 
even if they are coupled to that of the first [6]. The 
formalism for rotational motions is thus the same 
as for diffusion in which a single particle is con- 
fined to a limited region of space. First let us turn 
our attention to the case in which an atom under- 
goes jump diffusion on a limited number of sites 
which he on a circle of diameter R. Consider func- 
tions fi(t) which represent the probability that a 
particular atom is at site i at time t. These func- 
tions may be obtained using a rate equation similar 
to Eq. (10) 

^=bmilmi dt ^;v. 
(18) 

where T is the time between jumps and the sum is 
taken over all orientations from which the 
molecule can rotate directly to orientation i. For 
simplicity we will consider the case of two possible 
equivalent molecular orientations corresponding, 
for example, to a water molecule undergoing 
twofold jumps about its C2 symmetry axis. Then Eq. 
(17) has the solutions 

Hi 1-1-exp- ■2t 

) 

/3=i(l-exir^), 

(19) 

(20) 

where use has been made of the relations/i(0) = 1, 
/2(0) = 0 and/i 4-/2 = 1. The intermediate scattering 
function is then given by 

/(G,0=|exp(-^) 

[1-exp (iQ'R)]+^[l + exp(iQ'R)l        (21) 

where R is the vector between positions 0 and 1. 
Note that this equation has been divided into two 
parts. The first decays exponentially in time and 
thus leads to a Lorentzian component in the 
quasielastic scattering while the second is indepen- 
dent of time and, therefore, gives a 5-function in 
energy. This lineshape is displayed in Fig. 5. After 
performing a three-dimensional powder average 
and a Fourier transform, one obtains the scattering 
function 

s..(e.«.)=i[|(n-^)s(<.)+ 

(' 

QR 

IT sin(g^)\ 
QR    I (2)^ + (2WT) ] (22) 

Fig. 5. Scattering function as a function of energy at a particu- 
lar Q for diffusion confined to a particular region of space (e.g., 
rotational jump diffusion). Note the narrow component indica- 
tive of a process in which the atom has a finite probability of be- 
ing at its initial position at infinite time. 
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Note that for rotational jump diffusion, the 
Lorentzian component has a linewidth which is 
constant in Q, but that the intensity oscillates with 
the inverse periodicity of the jump length. The in- 
tensity of the 8-function component, termed the 
elastic incoherent structure factor or EISF, oscil- 
lates with the same period but out of phase with 
respect to the intensity of the Lorentzian compo- 
nent. Thus, characteristic differences exist in the 
scattering from rotational jump diffusion compared 
to translational jump diffusion where the lineshape 
is a single Lorentzian. It is worth pointing out that 
the 8-function component arises from the fact that 
at infinite time, the particle has a finite probability 
of being in its original position. Thus this 8-func- 
tion component is a characteristic feature of any 
diffusion process which is confined to a specific re- 
gion of space. 

The microscopic rotational mechanism need not 
be as well-characterized as it was for this simple 
example. For instance, if the static potential fluctu- 
ates due to phonons, the idea of a single jump fre- 
quency needs to be replaced by a distribution of 
residence times. This situation is called rotational 
diffusion since the self-correlation function obeys 
the diffusion equation if the residence time is 
short. Then for uniaxial rotational diffusion, it can 
be shown that 

5i„c (.Q,(o)=J^[^ sm9Jhiw) + 

i?4f-») Fi 

n+o)^' (23) 

where R is the diameter of circle on which the dif- 
fusion is occurring, 6 is the angle between the axis 
of rotation and Q and Fi =/^Z)R with DR represent- 
ing the rotational diffusion constant. Thus, the 
scattering function can still be divided into a com- 
pletely elastic component and a broadened compo- 
nent. However, in this case, the broadened 
component is a sum of many different Lorentzians 
of varying widths. Therefore, the total width of this 
component may vary somewhat in Q due to the 
trade-off in intensity between the various Lorentzi- 
ans. The EISF's of the two models discussed here 
are displayed in Fig. 6. Note that for the case of 
twofold jumps, the EISF decays to 1/2 at large 
values of Q. This is simply a manifestation of the 
fact that the EISF represents the Fourier trans- 
form of the self-correlation function for infinite 
times. For a two-site model the probability is 0.5 
that the particle has its original orientation, there- 

fore the EISF only drops to 1/2, but for the rota- 
tional diffusion model the EISF eventually drops to 
zero since there are infinitely many possible sites 
on a circle. In principle it is possible to tell if a 
particle is undergoing rotational jumps or continu- 
ous rotational diffusion on this basis alone. In prac- 
tice one usually cannot reach Q's which are high 
enough to distinguish continuous diffusion from 
discrete many-fold jumps. 

0.2 

0.0 

rotational diffusion 

_1_ 
2.5 5.0 7.5 

QR 
10.0 

Fig. 6. The elastic incoherent structure factor (EISF) for uni- 
axial twofold rotational jumps (solid line) and for uniaxial rota- 
tional diffusion (dotted line) as a function of QR where R is the 
diameter of the circle on which the motion occurs. 

In polymer research the intermediate scattering 
function I(Q,t) is often expressed as the density- 
density correlation between monomers: 

Nr   N 

ap     ij 

< exp [ - JG-(r<„(0) -r^;(0)] >, (24) 

where r^j{t) is the position of monomer; in polymer 
)3 at time t, Np and N are the total number of poly- 
mers and the number of monomers per polymer 
chain respectively. Its initial value is the elastic (also 
called static) structure factor: S(Q,0)=I(Q,t =0). 
Fig. 7 shows a typical set of neutron spin echo 
(NSE) data taken by Ewen [13] from polydimethyl- 
siloxane (PMDS) in a dilute solution of deuterated 
bromobenzene at the Theta temperature (84 °C). 
Note that these curves exhibit the simple exponen- 
tial behaviour displayed schematically in Fig. 3 a. 
Furthermore, Eq. (8) shows that the decay oiI(Q,t) 
increases with Q^ which is also observed in Fig. 7. 

The initial slope of I(Q,t) is called the first cumu- 
lant: 

r(Q) = Um[dIiQ,t)/dtyS(Q,0), (25) 
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where the product is taken over the various rota- 
tional and translational motions and 

Time 

Fig. 7. Neutron spin echo spectra from polydimethylsiloxane in 
a dilute solution of deuterated bromobenzene at tlie theta tem- 
perature (84 °C) [13]. 

which is identical to the energy width of S{Q,a)) 
and which can readily be modelled for various 
polymer systems. Many approaches are used: the 
Kirkwood-Riseman (KR) equation for polymer so- 
lutions, the dynamic Random Phase Approxima- 
tion [14] (RPA) for polymer melts, scaling concepts 
and renormalization group ideas for both, etc. 

The precision of extracting r(Q) is greatly im- 
proved by introducing a shape function [15, 16] 

m,r)=I(Q,t)/S(Q,0), (26) 

where time is rescaled by defining a dimensionless 
variable T = r(Q)t. This function depends only on 
QRg or Qa in the small or high Q regions (where Rg 
is the radius of gyration and a is the statistical seg- 
ment length). Moreover, it is independent of Q in 
the intermediate Q region which means that the 
scattering function follows a universal shape (the 
intermediate Q region is defined as l/R^<Q <l/a). 
An iterative procedure using the shape function 
/(Q^T) yields values for r(Q) that are more precise 
than the direct method based on simply extracting 
r(Q) as the slope of I(Q,t) at zero time. 

Many times a system will display more than one 
type of diffusive motion; then if the various mo- 
tions are uncoupled, the intermediate scattering 
function is given by the product of the individual 
intermediate scattering functions 

r\Q,t) = expi-Q'<tj.^>) (28) 

is simply the Debye-Waller factor. This results in a 
scattering function which is simply the convolution 
of the scattering functions of the individual mo- 
tions. Thus if the motions occur on somewhat dif- 
ferent time scales, the various components can 
often be separated simply because they have differ- 
ent widths (Fig. 8). This is possible because mo- 
tions which are slow on the scale of the resolution 
will appear as an elastic component and those 
which are fast compared to the resolution will ap- 
pear as an essentially flat background. In order to 
observe motions occurring on different time scales 
usually means using different instruments with dif- 
ferent dynamical windows or at least adjusting the 
resolution on a given instrument. Thus it is often 
important to have a wide dynamical range available 
in order to completely characterize a diffusional 
process. 

Background 

1/kT 

I{Q,t)=P'\Q,t)nij{Q,t), (27) 

Fig. 8. Schematic Arrhenius plots showing that a motion 
occurring on a particular time scale can give rise to scattering 
which appears elastic if the instrumental resolution is too 
coarse, while it may appear as a flat background if the resolu- 
tion is too fine. This indicates that motions which occur on 
different time scales can be separated simply by using instru- 
ments having different dynamical ranges or by changing the 
resolution on a given instrument. 
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2.2.2 Applications Li Diffusion in Lid,. LiCr, 
is a stage 1 graphite intercalation compound in 
which the Li atoms undergo a transition from an 
ordered, commensurate \/3 x V3 R30° phase to a 
disordered, commensurate lattice gas at a tempera- 
ture of 715 K [17]. Measurements of the quasielas- 
tic scattering due to Li diffusion were made by 
Magerl, Zabel, and Anderson [18] using a cold 
neutron backscattering spectrometer below the 
transition and a time of flight instrument above it. 
Figure 9 shows tfie quasielastic widths as a function 
of Q at 660 and 720 K. These energy widths were 
determined by fitting the data taken at a particular 
value of the scattering vector to a Lorenztian con- 
voluted with the instrumental resolution. The solid 
line in Fig. 9a is a fit to a model which assumes that 
the diffusion occurs by instantaneous jumps be- 
tween the nearest Li sites on the ordered sublattice 
as shown by the vector £2 in the insert. For the 
much more rapid Li diffusion in the lattice gas 
phase, the data can be fit assuming that the jumps 
occur between the nearest neighbor commensurate 
sites shown by vector ^i in the insert. In addition to 
the diffusional mechanism these fits yield values of 
the diffusion constant of 1 x lO""* mrnVs and 
24xl0"''mm7s at 660 and 720 K, respectively. 
From the temperature dependence of the diffusion 
constant in the ordered phase one obtains an acti- 
vation energy of (1.0±0.3)eV. These results 
demonstrate the ability to "tune in" different diffu- 
sional processes with different neutron scattering 
spectrometers which operate in different dynamical 
ranges. 

Self-Diffusion in bcc ^-Titanium. When plotted 
as a function of TJT, (where Tm is the melting 
temperature) self diffusion in the group IVb metals 
(ri, Zr, and Hf) is orders of magnitude faster than 
for other bcc metals. In order to determine the 
diffusional mechanism Vogl et al. [19,20] have per- 
formed an exquisite measurement of the quasielas- 
tic scattering due to self diffusion in a single crystal 
of bcc Ti. A typical spectrum, along with a fit as- 
suming a single Lorentzian convoluted with the ex- 
perimental resolution is shown in Fig. 10. Figure 11 
shows the Q dependence of the widths for two tem- 
peratures and several different crystal orientations. 
The solid lines represent fits to an encounter model 
of 1/2[111]NN jumps. In a model of this type only 
the jump vector between the original and final sites 
is relevant. The details of what happens in between 
are forgotten. The dashed lines in Fig. 11 represent 

an encounter model description of [lOOJNN jumps, 
while the dotted and dashed lines represent stan- 
dard descriptions of tetrahedral and octahedral in- 
terstitial jumps respectively. Clearly this data 
reveals that the self diffusion of Ti in ^-Ti is domi- 
nated by 1/2[111] jumps into nearest neighbor va- 
cancies, however a small additional fraction of 
jumps into second nearest neighbor positions is also 
consistent with the data. 

> 

^   200- 

0 
WAVE 

0.5        1.0 1.5 
VECTOR TRANSFER 

2.0 
) 

Fig. 9. Linewidths (FWHM) of the quasielastic neutron spectra 
measured for LiCr,. a) 660 K (below the Li sublattice melting 
temperature), b) 720 K (above the Li sublattice melting temper- 
ature). The inset shows the jump vectors used to calculate the 
solid lines in both plots. Above the transition, Li jumps to 
nearest neighbor sites while below jumps occur to sites form the 
VSx VS R30° sublattice [18]. 
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dence of the correlation time was found to be con- 
sistent with an activation energy of 182 meV 
determined using NMR. 

-10 0 10 
NEUTRON ENERGY TRANSFER (peV) 

Fig. 10. Quasielastic spectra from bcc Ti at Q = 1.6 A"' and 
r = 1530 °C. The solid line is a fit to a single Lorentzian convo- 
luted with the instrumental resolution. The dashed line repre- 
sents the measured resolution [19,20]. 

Reorientations of Benzene. The previous two 
examples described systems in which the diffusing 
atoms (Li or Ti) undergo long-range translational 
motion so that the scattering law consists of a single 
Lorentzian component. As shown earlier, if the 
quasielastic scattering is due to rotational jumps, 
the scattering law is the sum of a 8-function and one 
or more Lorentzians. An interesting example of this 
type of system is crystalline benzene which has re- 
cently been studied using cold neutron backscatter- 
ing methods by Fujara et al. [21]. The EISF 
determined at 210 K by fitting the data to a model 
of random 60° jumps is shown in Fig. 12. The solid 
line is a calculation of the EISF assuming sixfold ro- 
tational jumps and that the radius of the ring of H 
atoms is 2.479 A. The small disagreement at low Q 
can be attributed to multiple scattering effects. At- 
tempts were also made to fit the data to a model 
which allowed for 120° and 180° jumps in addition 
to 60° jumps with equal probabilities. However, the 
EISF determined using this model was consistently 
larger than expected for sixfold rotations. Thus, 
these data show that benzene rotates principally by 
60° jumps with a correlation time of approximately 
30 ns at 210 K. In addition the temperature depen- 

1    Q(A-') 2     0 1      Q(A-^)2 

Fig. 11. Linewidths at the quasielastic neutron spectra of bccTi 
at 1460 °C (left) and 1530 °C (right) as a function of Q. Left: 
scattering plane parallel to the (001) crystal plane. Right: scat- 
tering plane parallel to the (012) crystal plane, a denotes a rota- 
tion of the sample around an axis perpendicular to the scattering 
plane and is defined as the angle between the incident neutrons 
and the <100> crystal direction. The model calculations are: 
solid line, 1/2[111] nearest neighbor jumps; dashed line, [100] 
2nd nearest neighbor jumps; dotted line, tetrahedral interstitial 
jumps [19,20]. 

Dilute and Semidilute Polymer Solutions. In dilute 
(monodisperse) polymer solutions, and at the small 
Q limit (QELS), r(Q) shows a characteristic Q^ 
dependence seen in Eq. [9]: 

Lm riQ) = Q'D, (29) 

which describes the 
polymer chain with a 
termediate values of 
length scales smaller 
the monomer size), a 
acterizes the Zimm 
modes [15,22]: 

overall diffusion of the whole 
diffusion coefficient D. At in- 

Q (where scattering is probing 
than the chain but larger than 
Q^ dependence of r(Q) char- 
(internal) Brownian diffusive 
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Fig. 12. The elastic incoherent structure factor obtained by a 
model in which the benzene molecule undergoes rotational 
jumps of 60° (top) and by a model in which 60°, 120°, and 180° 
jumps are equally probable (bottom). The neutron scattering 
data clearly demonstrates that 60° jumps are the predominant 
rotational mechanism. The disagreement between the data and 
the model at small Q's is due to multiple scattering effects [21]. 

r(Q) = C(kBT/v.)Q' (30) 

where ksT is the solution temperature in energy 
units, 77u is the solvent viscosity and C is a numeri- 
cal constant that depends on solvent quality and 
preaveraging of the hydrodynamic interaction (for 
Theta solvents, C = VSir or C ~ 1/16 depending on 
whether hydrodynamic interactions are preaver- 
aged or not). The Q^ to Q^ transition has been 
observed [16] for polystyrene in various solvents 
(see Fig. 13). Moreover, at high Q, diffusion of a 
single monomer dominates and the Q" law is recov- 
ered again. This last transition (Q^ to Q-) involves 
scattering vectors that can be reached only with 
NSE [23,24] as shown in Fig. 14. 

In semidilute solutions (where individual poly- 
mer chains start overlapping each other) hydrody- 
namic interactions between monomers start being 
screened so that a Rouse description [25] of poly- 
mer dynamics is more appropriate. Moreover, ex- 
cluded volume effects remain important only 
between entanglement points so that monomers 
that are topologically farther apart do not feel each 
other even if they belong to the same chain. Scaling 
ideas based on concentration and temperature 
"blobs" [26] have been successful in describing 
both static and dynamic properties of polymer solu- 
tions. In the case of a three-component polymer 
system (two polymers and a solvent for example). 

two characteristic relaxation times are observed 
[27,28]: a slow mode representing cooperative dif- 
fusion and a fast mode representing inter-diffusion. 

Fig. 13. Quasielastic light scattering from polystyrene in vari- 
ous solvents showing the crossover from the Q^ to the Q^ scal- 
ing law (small to intermediate Q for the first cumulant) [16.] 

Fig. 14. Neutron spin echo spectra from polystyrene in CS2 
showing the crossover from the Q^ to the Q^ scaling law (inter- 
mediate to high Q) for the first cumulant. 

Concentrated Polymer Solutions and Melts. In 
contrast to the case of dilute solutions, concen- 
trated polymer solutions and polymer melt dynam- 
ics are dominated by interchain correlations. At a 
length scale smaller than the average distance be- 
tween two entanglement points, the Rouse model 
(which neglects hydrodynamic interactions) 
describes chain dynamics well. The Q^ power law 
dependence of r(Q) in the intermediate Q region 
becomes a Q'* dependence [29]. However, at longer 
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scale lengths, entanglements constrain the chain 
motion to occur in a "tube" created by surrounding 
chains. This is the reptation idea [30,31] whereby 
polymer chains perform a snake like diffusive mo- 
tion by which they renew their configurations. Rep- 
tation corresponds to the slow mode (that was 
mentioned for semidilute solutions) at high Q. In 
crosslinked gels, for example, this slow mode disap- 
pears so that only fast modes describing local 
monomer motions remain. Tests of the reptation 
idea have brought about a better understanding of 
the viscoelastic behavior of polymer systems. 

A dynamic Random Phase Approximation 
(RPA) approach [32,33] has been used to under- 
stand the effect of monomer interactions on the 
various diffusive normal modes in polymer multi- 
component melts. Within this framework, the in- 
termediate scattering function I{Q,t) and its initial 
slope r{Q) can be related to their bare (i.e., when 
no interactions are present) counterparts. This ap- 
proach has permitted the sorting out of the various 
diffusion coefficients (self, mutual, inter-, coopera- 
tive, etc.) that are measured by various techniques 
in various experimental (concentration, molecular 
weight) conditions. Self and mutual diffusion coef- 
ficients are measured in dilute polymer solutions 
and correspond to the diffusion of a single chain 
and to that of many chains respectively. Inter-diffu- 
sion and cooperative diffusion characterize ternary 
polymer systems comprising, for example, concen- 
trated solutions of two polymers A and B and cor- 
respond to the fast and slow modes when taken at 
the proper limits. The interdiffusion coefficient 
represents the diffusion of A relative to B while the 
cooperative diffusion coefficient describes the dif- 
fusion of the polymers (both of A and B) in the 
solvent. Interdiffusion for instance is the dominant 
mode in phase decomposing blends. It is interest- 
ing to note [28] that for the case of a diblock co- 
polymer in solution, the first cumulant for the 
interdiffusion mode remains finite at the Q-^Q 
limit (contrary to the definition of a diffusive 
mode). This is reminiscent of the "optical mode" in 
multilayer crystalline solids keeping in mind, of 
course, that the interdiffusion mode is nonpropa- 
gating. 

Effects of temperature, concentration, molecular 
weight and chain stiffness on the dynamics of poly- 
mer solutions have been investigated. The molecu- 
lar weight dependence of the mutual diffusion 
coefficient changes from //""^ with hydrodynamic 
interactions (dilute solutions) to A'"' in concen- 
trated solutions of short chains in long chains 
(Rouse dynamics) to W"^ for melts of long chains 

(where reptation dominates). Recall that N is the 
number of monomers per polymer chain. The NSE 
technique is also particularly useful in observing 
polymer chain stiffness [23,34] and its effects on 
diffusion at intermediate and high Q values. 

Equilibrating Polymer Blends. The previous sec- 
tions described the dynamics of polymer systems 
that are in thermal equilibrium. The observed 
(Zimm, Rouse Reptation) modes are due to Brow- 
nian diffusion in solutions and in melts. This sec- 
tion, however, briefly describes "real time" 
dynamics of polymer systems following gradients in 
temperature [35] (such as across phase transitions) 
or in concentrations [36] (two films are superposed 
face-to-face and allowed to diffuse into each other 
upon heating). In the first case, the crossing of the 
phase boundary could be towards equilibration 
(from two-phase into the miscible region) or to- 
wards growth (the other way around). The time 
scales involved are ideally suited for investigation 
by quasielastic scattering methods. 

The intermediate scattering function I(Q,t) 
described in the previous sections involves time 
correlations of the fluctuating density p{Q,t) (in 
Fourier space): 

7(2,0 = (WpA^')<p(-G0)p(aO>-       (31) 

For equilibration/growth processes, what is mea- 
sured instead is the time evolution of p(Q,t)\ 

5,(G)=(Wpiv^)<|p(aoP (32) 

The Cahn-Hilliard-Cook theory [37,38] describes 
small deviations from equilibrium (early stage of 
spinodal decomposition) and can predict decay 
rates R{Q) of the time dependent structure factor: 

S,{Q) = iS,{Q)-S.{Q)-\tx^i-2R{Q)t-\ + 

5»(Q). (33) 

Here, Sn{Q) and So,{Q) are the initial and final 
(Virtual) values of the structure factor S,(Q). 
When the concentration fluctuations are small, 
R(Q) can be simply expressed in terms of the mo- 
bility M, the interfacial free energy coefficient K 
and the inter-diffusion coefficient Dim: 

R(Q) = Q'Di„t-2Q'MK. (34) 

These temperature jump experiments [35] are ac- 
tually a means to measure Dint. Two main theories 
describe the molecular weight dependence of Dim: 
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a "slow mode" theory [39,40] based on the incom- 
pressibility assumption and a "fast mode" theory 
[41] assuming vacancies present in the relaxing 
blend. The fast mode theory predicts an additive 
superposition of the mobilities of each component 
while the slow mode theory predicts an additivity 
law for the inverse of the mobilities. This is a new 
area of research (with ongoing controversies) 
where quasielastic scattering methods are the main 
research tools. 

2.3   Tunneling Spectroscopy 
2.3.1 Basic Theory Perhaps the phenomena 

most studied using cold neutron backscattering is 
the rotational tunneling of small molecules and 
polyatomic ions in solids. In order to understand 
the origin of this effect consider a molecule in an 
m-fold potential Vm(9) given by 

Fo V„(0)=^[l-cos(me)l (35) 

where Vo is the height of the barrier and 0 is the 
rotational angle. The Schrodinger equation is then 
given by 

[-Bf^, + V„(0)]il,„ =£„,{,„ (36) 

where B =^/2I (I is the moment of inertia), if/„ is 
the wavefunction, and E„ are the energy levels. Fig- 
ure 15 shows the energy levels which are solutions 
to this equation as a function of the barrier height 
Vo assuming a threefold potential and that the ro- 
tating species is a methyl (CH3) group. Here the 
solid lines represent singly degenerate levels having 
A symmetry while the dashed lines correspond to 
doubly degenerate solutions of E symmetry. Basi- 
cally there are three regimes. The first is where the 
barrier is zero which corresponds to free quantum 
rotors characterized by doubly degenerate levels 
having energies Ej <x.f where ; is the rotational 
quantum number. The second is the limit of large 
barriers where the molecule or ion undergoes har- 
monic librations which are characterized by triply 
degenerate levels with £„ « (n +1/2). Here n is the 
librational quantum number. Perhaps the most in- 
teresting region is that between these two extremes 
which is characterized by the tunnel splitting of the 
librational ground state and of the excited states 
resulting from the overlap of the wavefunctions 
shown schematically in Fig. 16. This splitting is 
quite sensitive to Fo since the overlap of the wave- 
functions depends exponentially on the barrier. 
This approximate exponential dependence of the 
ground state tunnel splitting is shown for both CH3 
and CD3 in Fig. 17. Thus, tunneling spectroscopy is 

capable of yielding extremely detailed information 
on interatomic potentials in solids. 

100 

> 
0) 

>^   50 

0 100 200 
Barrier  (meV) 

Fig. 15. Energy levels as a function of 6 the barrier for methyl 
groups in a threefold cosine potential. The dashed lines repre- 
sent singly degenerate states (A symmetry) while the solid lines 
are doubly degenerate states (E symmetry). 

2.3.2 Applications Nitromethane. One of the 
most interesting applications of tunneling spec- 
troscopy is the determination of the rotational 
potential felt by the methyl group in solid ni- 
tromethane (CH3NO2). Nitromethane is an ideal 
candidate for such studies for several reasons. First 
the internal barrier to rotation is very small. Thus in 
the solid phase, intermolecular interactions will 
dominate the rotational potential. In addition, the 
molecule is a simple one and will display only one- 
dimensional rotation. Finally, diffraction studies 
have shown that the space group of the crystalline 
material is P2i2i2i which has only one molecule in 
the asymmetric unit [42]. Therefore, all methyl 
groups have the same environment and there is only 
one rotational potential to be determined. Diffrac- 
tion studies have also demonstrated that no phase 
transitions occur between 4.2 K and the melting 
point of 244.7 K [42]. 
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Fig. 16. Schematic diagram of the energy levels in a threefold 
cosine potential. Fo is the barrier and £A 'S the classical activa- 
tion energy. Also shown are schematic wavefunctions in the 
ground state and transitions from the first excited state. 

20 40 
Barrier  (meV) 

Fig. 17. Semilogarithraic plot of the ground state tunnel split- 
ting of a methyl group in a threefold cosine potential versus the 
barrier to rotation. The solid line is for a hydrogenated methyl 
group while the dotted line is for a deuterated one. 

The inelastic neutron scattering measurements of 
the transitions between the ground state and the 
first excited state obtained by Trevino [43] at 4.2 K 
are shown for both CH3NO2 and CD3NO2 in Fig. 18. 
From these spectra and from the temperature de- 
pendence of these spectra, the transition to the first 
excited state could be assigned to the peaks at 6.7 
and 5.3 meV for the hydrogenated and the deuter- 
ated compounds respectively. Note that these val- 
ues do not simply vary as 1/Vm which indicates that 
the potential is quite anharmonic. Further measure- 
ments also revealed a transition to the second 
excited state at 17.5 meV for CH3NO2 and 10.6 for 
CD3NO2. The most important results for the 
characterization of the potential are the measure- 
ments of the ground state tunnel splittings for both 

CO3 NO2 
0 = 3.4 A"'    T=4.2°K 

^ ¥H+^ ^    ^^/^j 

CHjNOa 

Q = 2.92 A     T = 4.2 H 

Fig. 18. Inelastic neutron scattering spectra showing the transi- 
tion from the ground state to the first excited state in CH3NO2 
(6.7 meV) and CD3NO2 (5.3 meV) [43]. 

samples performed by Trevino and co-workers 
[44,45] which are shown in Fig. 19. Here one ob- 
serves clear transitions at 35 and 1.7 |xeV for the 
hydrogenated and deuterated systems, respectively. 
Taken together these spectroscopic results are in- 
consistent with a simple threefold potential. How- 
ever, it was shown by Cavagnat et al. [46] that a 
potential of the form 

V(B) = F3 [1 -cos(30)] + Fs [1 -cos(60 + 5)] (37) 

would completely describe all of the spectroscopic 
results when 1^3 = 25.5 meV, Vi- -15.5 meV and 
5 = 30°. This potential is shown in Fig. 20 and the 
calculated energy levels are given in Table 1. In ad- 
dition, these authors showed that a potential of this 
form could be obtained by using a simple Lennard- 
Jones model to describe the interactions between 
the methyl hydrogens and the surrounding lattice 
fixed. These calculations indicated that the origin of 
the sixfold term in the potential is the repulsive 
H-O interaction and the asymmetric location of the 
sixfold term with respect to the threefold term is 
due to the asymmetric distribution of the, oxygen 
atoms with respect to the equilibrium distribution 
of the methyl groups. 

Recently however, Rice and Trevino [47] have 
pointed out that the potential produced by this H-O 
interaction does not reproduce the equilibrium 
orientation of the methyl group. Guided by the 
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Fig.  19.   Measurements of the  tunnel splitting for CH3NO2 and 
CD3NO2. [45]. 
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Fig. 20. Potential determined by Cavagnat et al. [46] which is 
consistent with all of the spectroscopic data. The solid lines are 
the energy levels for CH3NO2. 

maximum entropy method they were able to show 
that by including a small additional wiggle on the 

Lennard-Jones (Fig. 21) potential all aspects of 
both the spectroscopy and the structure, could be 
reproduced. Thus, through the use of a combina- 
tion of thermal neutron spectroscopy and diffrac- 
tion and cold-neutron spectroscopy a detailed 
description of the H-0 interaction in nitromethane 
has been determined. 

-0.03 

(c) 

R  (Angstroms) 

Fig. 21. Lennard-Joncs H-O potential used by Cavagnat et al. 
[47] compared to the Gaussian-corrected Lennard-Joncs poten- 
tial obtained by Rice and Trevino which reproduces both the 
equilibrium orientation of the methyl group and the spec- 
troscopy results. 
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Table 1.   Characteristics of the backscattering spectrometer 
being designed for installation in the CNRF 

Energy resolution -0.75 ^LeV 
Maximum energy range -lOOpteV 
Neutron energy 2.08 meV 
(2-Range 0.1-1.8 A-' 
Flux on the sample ~ 10' neutrons/cm- s 
Maximum sample size 3x3 cm- 
Sample-Monochromator distance ~2m 
Sample-Analyzer distance -2 m 

Methyl Iodide. The pressure dependence of the 
tunneling transitions in CH3I is an excellent demon- 
stration of the extreme sensitivity of these excita- 
tions to the rotational potential. Like nitromethane, 
methyl iodide has only one solid phase with only 
one molecule in the asymmetric unit cell. There- 
fore, all methyl groups feel the same potential and 
only one tunneling line will be observed. The spec- 
tra obtained using the backscattering technique are 
shown for several different pressures in Fig. 22a 
[48,49]. Note that the peaks decrease in energy as 
the pressure increases indicating an increase in the 
potential barrier. Fig. 22b shows that the ground 
state tunnel splitting depends exponentially on the 
pressure. This is to be contrasted with the results 
obtained for the energy of the transition to the first 
excited state shown in Fig. 23. The pressure depen- 
dence of this transition is linear and rather weak at 
that. Prager and coworkers [48,49] also showed that 
these spectra could be described by a potential of 
the form 

K(0) = iF3(l + cos3(9)-h|K(l-l-cos60),     (38) 

and that the threefold term accounts for —92 
percent of the total barrier, FB = F3 + Vt,. It is worth 
noting that the value of KB determined from these 
measurements increases by < 20 percent from am- 
bient pressure to 3 kbar while the tunnel splitting 
decreases by more than a factor of 2.5 clearly 
demonstrating the extreme sensitivity of this tech- 
nique to details of the rotational potential. 

3.    CNRF Instruments 
3.1   NIST Backscattering Spectrometer 

The cold neutron backscattering spectrometer 
(CNBS) which will be located in the CNRF is 
shown schematically in Fig. 24, (also see Table 1). 
The guide supplying the neutrons will have a cross 
sectional   area   of   6 x 15 cm^   and   will   have 

-5 0 5 
energy transfer [peV] 

Fig. 22. (a) Tunneling spectra in CH3I as a function of 
pressure, (b) Semilogarithmic plot of the tunneling energy as a 
function of pressure [49]. 

103 



Volume 98, Number 1, January-February 1993 

Journal of Research of the National Institute of Standards and Technology 

CH3I 

T = 35K 

5 10 15 20 
energy transfer  [meV] 

p (kbor] 

Fig. 23. (a) Inelastic neutron scattering spectra of the transi- 
tion from the ground state to the first excited state as a function 
of pressure, (b) Energy of the transition from the ground state 
to the first torsional level as function of pressure [49]. 

supermirror coatings on the tops and bottoms 
while the sides will be coated with ^''Ni. The princi- 
pal design goal has been to maximize the intensity 
of the instrument while maintaining an energy res- 
olution of < 1 (JieV. Thus the CNBS will have an 
energy resolution more than 10 times better than 

that of any instrument which currently exists in the 
United States. The first element of the instrument 
will be a wavelength selection device, the purpose 
of which is to suppress the background. This will 
consist of a Be filter, a Bi filter, possibly a velocity 
selector similar to that used on the small angle 
scattering and possibly a chopper with a duty cycle 
of about 1/2 to pulse the beam so that there are no 
neutrons striking the phase space chopper (which 
will be described in detail below) when neutrons 
are being counted in the detector. 

The remaining neutrons will then pass through a 
converging supermirror guide which will compress 
the beam cross section from 6x15 cm^ to 3 x 3 cm^. 
It is not presently possible to quantify the length or 
the angle of convergence of the guide because of 
uncertainties in supermirror development; however 
it is hoped that an increase in flux of at least a 
factor of three will be possible. The neutrons will 
then impinge on a phase space transformer [50]. 
This can result in a substantial increase in neutron 
flux at the sample position because there is typi- 
cally a substantial mismatch of the angular resolu- 
tion of the primary and secondary sides of cold 
neutron backscattering instruments. This occurs 
because the divergence of the incident beam is lim- 
ited by the neutron guide on which the instrument 
is installed, while the angular resolution of the sec- 
ondary spectrometer is quite low due to the large 
area analyzing crystals and the detector geometry. 
Therefore it is possible to increase the flux at the 
sample position without degrading the energy reso- 
lution by increasing the angular divergence of the 
incident beam. This will be done to some extent 
through the use of the converging supermirror 
guide. However, it seems impossible to match the 
Q resolution of the primary spectrometer to that of 
the secondary spectrometer with current supermir- 
ror technology. To overcome this difficulty 
Schelten and Alefeld [50] have proposed a neutron 
phase space transformation which uses moving mo- 
saic crystals to change a well-collimated, white neu- 
tron beam into a divergent, nearly monochromatic 
one. Physically, this occurs because the slower mov- 
ing neutrons are diffracted at higher angles and 
therefore, get a "push" from the moving crystal, 
while the Bragg condition is satisfied at smaller an- 
gles for the faster neutrons causing diffraction to 
occur from crystallites moving away from the inci- 
dent neutrons thereby reducing their speed. 

We have performed Monte Carlo simulations of 
this device in order to determine the gain expected 
for parameters relevant to the CNBS at NIST. The 
beam    which    emerges    from    the    converging 
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Fig. 24.   Schematic diagram of the CNRF backscattering spectrometer. 

supermirror guide will have a divergence rj approx- 
imately twice the critical angle of Ni in the horizon- 
tal plane (■77h = 20<:). For the purposes of this 
simulation, the phase space crystal was chosen to 
be pyrolytic graphite (d = 3.354 A and 00=69.181°) 
with a thickness of 5 mm. The incident distribution 
of neutrons was taken to be a 65 K Maxwell- 
Boltzmann distribution (in accord with measure- 
ments of the flux from the cold source) truncated 
at 4 A to simulate a Be filter in the incident beam 
and at 10 A because wavelengths longer than this 
have essentially no probability of being diffracted 
by the moving crystal. This distribution was then 
multiplied by the square of the incident wavelength 
in order to account for the fact that ft is propor- 
tional to the wavelength. The horizontal and verti- 
cal mosaics and the velocity of the graphite crystals 
were included as input parameters. The reflectivity 
of graphite was accounted for with the Bacon- 
Lowde equation for diffraction from ideally imper- 
fect crystals [51]. This will overestimate the 
reflectivity of the deflector crystal resulting in the 
simulated gains being somewhat larger than what 
one would actually observe. (Note that the reflec- 
tivity is a function of the crystal speed. This has 
been included.) All of these simulations have been 
performed using the assumption that  Si  (111) 

crystals will be used as the monochromator 
(A ==6.27 A). 

Two-dimensional projections of simulated Bragg 
reflections from a crystal having an isotropic 10° 
mosaic are shown in Fig. 25 for three different 
crystal speeds. Here the incident and final kx and ky 
values of the diffracted neutrons are represented 
by individual dots and the reference values are in- 
dicated by the solid lines. Two effects are evident. 
The first is that the phase space volume increases 
as the crystal velocity increases. This is because the 
Bragg reflection takes place at a lower angle in the 
Doppler frame. The second effect is that the dif- 
fracted beam tilts in phase space as the crystal ve- 
locity is changed. This tilt can be optimized so that 
the maximum number of neutrons have the correct 
energy to be backscattered from a Si (111) crystal. 
Note that this does not violate Liouville's theorem 
because the orientation, not the volume, of the fi- 
nal phase space element has been changed. 

The most important information from the stand- 
point of increasing the flux of backscattering 
instruments is displayed in Fig. 26. Here the peak 
intensity (relative to that obtained for a crystal 
velocity of zero) is shown as a function of speed for 
mosaics of 1°, 3°, 5°, 10°, and 20°. For mosaics of 
3° or larger, the relative intensity increases from 
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Fig. 25. (a) Projection of a 3-d simulation of Bragg diffraction 
from a stationary crystal with a mosaic of 10°. The dots repre- 
sent the initial and final wave vectors of the diffracted neutrons, 
(b) Same view for a crystal speed of 250 m/s. Note that the 
initial phase space volume has expanded and the fmal volume 
has been "tilted" compared to the results obtained for the sta- 
tionary crystal, (c) Crystal speed = 500 m/s. 

about 1 to a broad maximum, before decreasing 
again. For tiie parameters chosen iiere, tiie maxi- 
mum gain is about 6 which occurs for crystals with 
a 10° mosaic moving at about 300 m/s. The results 
for a 20° crystal show a smaller gain due to the 
decrease in the reflectivity. The results for a crystal 
having a mosaic of 1° appear somewhat unique. 
Here the intensity increases linearly with the crys- 
tal speed and has a relative value of only about 1/2 
for a speed of 0. This is because a 1° mosaic is too 
small when compared to the divergence of the inci- 
dent beam. 

After deflecting from  the phase space  trans- 
former, the neutrons will travel approximately 2 m 

c 
'5 4 
o 

^       II       1       1       1       1 1       1 

) -                                        ♦                              N 
/ 

/                                   A 
/                                     ^ 

* JJ~,                                ^, _ 

mosaic 
//        ^                             ^~X)          s      A 10°   - 

5" 
20°    _ 
3° 

1° 

1         1 T      1       1       1       1       1      1 
0      200      400      600      800 

Crystal speed (m/s) 

Fig. 26. Peak intensity relative to that obtained for a stationary 
crystal. For a mosaic of 10°, the phase space transform leads to 
a gain of 6 for a crystal speed of 300 m/s. The dashed lines are 
guides to the eye. 

to the focussing monochromator crystals which will 
be mounted on a Doppler drive. The Doppler 
motion is necessary to vary the energy of the neu- 
trons which impinge on the sample. The total range 
of energies available is determined by the maxi- 
mum velocity of the Doppler drive. The NIST in- 
strument will have a variable energy range (up to a 
maximum of —100 |jieV). In order to obtain the 
maximum flux, the neutrons will be focussed by the 
monochromator onto the sample. However, Fig. 24 
shows that the sample is slightly displaced from the 
phase space transformer. Thus this results in a 
small deviation of the backscattering condition. To 
match this small worsening of the resolution, the 
monochromator will not be perfect Si, but possibly 
boron-doped Si. This will result in an increased 
value of Ad/d (see Sec. 2) and therefore increased 
intensity. A similar result could be achieved by 
bowing the individual Si crystals, however this 
results in a more Lorentzian resolution function 
while the doped crystals result in a more Gaussian 
lineshape [52]. Note that the level of boron in the 
sample would not result in significant loss of inten- 
sity due to absorption. A Geo.i Si().9 monochromator 
which displaces the elastic peak by —15 |xeV will 
also be available. 

After reflecting from the monochromator, the 
neutrons will pass back through the phase space 
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transformer. This is possible because only half of 
the chopper is covered with graphite while the 
other half is transparent to neutrons. Furthermore, 
the frequency of the chopper is chosen so that time 
required for the neutrons to travel from the trans- 
former to the monochromator and return is the 
same as that for the crystals to move out of the 
beam. 

The neutrons are then scattered from the sample 
to the large (~9 m^) bank of boron-doped Si ana- 
lyzer crystals, which focus the neutrons back to the 
detectors. The focussing and boron doping will be 
chosen so that the energy resolution of the sec- 
ondary spectrometer matches that of the primary 
spectrometer. The detectors are electronically 
gated so that they are off when neutrons are strik- 
ing the sample thereby avoiding direct scattering of 
neutrons from the sample to the detector. The en- 
ergy transfer is ascertained by measuring the time 
of arrival of the neutrons at the detector. Since the 
total distance between the monochromator and 
sample and the energy of the scattered neutrons 
are known, the initial energy and therefore the en- 
ergy transferred by the scattering from the sample 
can be determined. 

Because the detectors are near the incident 
beam, the most important potential problem with 
this design is background. If this problem cannot 
be reduced to acceptable levels by reducing the 
spread in incident energies, thereby limiting the 
number of neutrons in the incident beam or by 
improving the shielding of the detectors, the detec- 
tors will have to be moved farther from the guide 
by placing a deflector in the guide. This will reduce 
the effectiveness of the phase space transformer so 
this will only be done as a last resort. However, 
contingency plans are in place for such an eventu- 
ality. 

3.2    CNRF Spin Echo Spectrometer 

The main components of the CNRF-NSE instru- 
ment which is still at a preliminary design stage 
(Fig. 2) are described here. Neutrons are first 
monochromated using a velocity selector and then 
polarized using a supermirror polarizer. Polariza- 
tion in transmission geometry is preferred for colli- 
mation reasons (with reflection polarizers the 
whole instrument has to be able to rotate around 
the polarizer axis) although the transmission ge- 
ometry is hampered by low polarization efficien- 
cies. Next, the neutron spin direction is rotated 
from the horizontal forward axis to a vertical direc- 
tion (using a irll flipper) more suitable for use in 

the first precession coil (solenoid) where the neu- 
tron magnetic moment precesses in a vertical 
plane. After the sample position, another preces- 
sion coil makes the neutron spin precess in the 
other direction. In order to flip the spin direction, 
a TT flipper is used between the two coils (just 
before the sample). Next, another irll flipper is re- 
quired to rotate the magnetic moment from the ra- 
dial direction to an axial one before reaching a spin 
analyzer (array of supermirrors). Finally, neutrons 
are detected in a position sensitive area detector. 

In order for the NSE technique to work, the 
"field integral" (i.e., the integral of the magnetic 
field over the neutron path) must remain constant 
before and after the sample (therefore creating an 
"echo"). In practice, it is difficult to make exactly 
identical main coils to be used before and after the 
sample, so that besides the main coils, other 
smaller "correcting" coils are also used. Correction 
coils are added before the sample to optimize the 
echo and around the sample to correct for the 
earth magnetic field. No steel or magnetic materi- 
als can be used in making the coils or close to the 
instrument. Moreover, because very stable DC cur- 
rent supplies are required, current stabilities of the 
order of d///~10"^ have to be achieved. 

The CNRF-NSE spectrometer is in the prelimi- 
nary design stage; detailed designs are planned to 
start soon. 

4.    Summary 
We have presented the operating principles of 

two ultrahigh energy resolution neutron scattering 
spectrometers, the backscattering spectrometer 
and the spin echo spectrometer and have described 
types of measurements which can be done with 
these instruments at the Cold Neutron Research 
Facility at NIST. We have also discussed the basic 
design of the cold neutron backscattering spec- 
trometer to be built in the CNRF. This information 
will assist researchers who are considering ultra- 
high energy resolution neutron scattering experi- 
ments at NIST. 
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