Skip to main content
. Author manuscript; available in PMC: 2016 Nov 23.
Published in final edited form as: Nat Methods. 2016 May 23;13(7):581–583. doi: 10.1038/nmeth.3869

Table 1.

The accuracy of DADA2, UPARSE, MED, mothur and QIIME on three mock community datasets

Output
Reads(%)
Output Sequences Reference
Strains
Total Reference Exact One Off Other
Balanced Forward DADA2 99.2 93 59 33 1 0 57
UPARSE 99.1 81 48 29 2 2 53
MED 95.5 86 59 5 22 0 57
Mothur 96.3 249 44 25 15 165 49
QIIME 99.2 378 51 34 3 290 54

Merged DADA2 96.2 87 57 29 1 0 55
UPARSE 94.2 76 45 27 2 2 50
MED 91.1 64 56 6 2 0 54
Mothur 94.1 108 42 27 11 28 47
QIIME 94.1 170 45 28 4 93 50

HMP Forward DADA2 95.1 151 23 112 8 8 21

UPARSE 96.7 161 20 123 10 8 21

MED 80.9 83 23 2 58 0 21

Mothur 95.4 849 20 177 47 605 21

QIIME 97.4 1375 20 177 60 1118 21

Merged DADA2 92.3 67 23 40 2 2 21

UPARSE 67.7 94 20 59 2 13 21

MED 64.8 32 23 3 6 0 21

Mothur 62.1 121 20 82 9 10 21

QIIME 67.6 290 20 71 8 191 21

Extreme Forward DADA2 99.5 68 26 35 3 4 23

UPARSE 99.5 74 21 40 0 13 21

MED 86.4 95 16 0 79 0 13

Mothur * * * * * * *

QIIME 99.5 3237 20 44 73 3100 20

Merged DADA2 97.6 25 24 1 0 0 21

UPARSE 69.9 23 18 4 0 1 18

MED 67.6 32 17 0 15 0 14

Mothur 94.3 44 23 14 0 7 23

QIIME 69.9 36 19 8 1 8 19

After a common filtering step, methods were applied to the forward reads, and the merged forward and reverse reads, of the Balanced, HMP and Extreme datasets (Methods). Output sequences were classified as Reference or Exact (true positives) and One Off or Other (false positives) by comparison to the known sequences of these mock communities (reference strains) and comparison to nt to identify contaminants (Methods). DADA2 detected the most reference strains and sequences, while outputting the fewest false positives. Mothur failed to complete on the Extreme forward reads.