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Abstract

Proteins are not equally digestible—their proteolytic susceptibility varies by their source and 

processing method. Incomplete digestion increases colonic microbial protein fermentation 

(putrefaction), which produces toxic metabolites that can induce inflammation in vitro and have 

been associated with inflammation in vivo. Individual humans differ in protein digestive capacity 

based on phenotypes, particularly disease states. To avoid putrefaction-induced intestinal 

inflammation, protein sources and processing methods must be tailored to the consumer’s 

digestive capacity. This review explores how food processing techniques alter protein digestibility 

and examines how physiological conditions alter digestive capacity. Possible solutions to 

improving digestive function or matching low digestive capacity with more digestible protein 

sources are explored. Beyond the ileal digestibility measurements of protein digestibility, less 

invasive, quicker and cheaper techniques for monitoring the extent of protein digestion and 

fermentation are needed to personalize protein nourishment. Biomarkers of protein digestive 

capacity and efficiency can be identified with the toolsets of peptidomics, metabolomics, microbial 

sequencing and multiplexed protein analysis of fecal and urine samples. By monitoring individual 

protein digestive function, the protein component of diets can be tailored via protein source and 

processing selection to match individual needs to minimize colonic putrefaction and, thus, 

optimize gut health.
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INTRODUCTION

The majority of dietary proteins are fully degraded and absorbed in the small intestine: after 

a meal, proteins are denatured by acid and hydrolyzed by gastric pepsin in the stomach, 

further hydrolyzed by pancreatic proteases, subsequently degraded by small intestinal 

enterocyte membrane exopeptidases and absorbed across the small intestinal enterocytes into 

the bloodstream as individual AA for use in the body. However, proteins are not always 

digested in this way. High levels of protein in the diet lead to more protein surviving past the 

small intestine and into the large intestine. Some proteins are not easily digested (either 

inherently based on their source or due to processing conditions) and can survive intact or 

partially intact to the colon. Likewise, some humans have low proteolytic capacity, which 

also increases the survival of intact or partially intact proteins to the colon. Proteins that 

reach the colon no longer serve as a direct AA supply to the host: the colon does not secrete 

digestive proteases to break them down and contributes little to net AA absorption 

(Moughan, 2003; Fuller and Tomé, 2005). Therefore, any protein that arrives to the colon 

represents incomplete protein utilization.

Some of the protein arriving in the colon serves as an AA source for colonic microbes. Some 

of the protein serves as an energy source for resident protein fermentation (putrefaction)-

capable microbial species such as Clostridium perfringens, Desulfovibrio, 

Peptostreptococcus, Acidaminococcus, Veillonella, Propionibacterium, Bacillus, Bacteroides 
and Staphylococcus (Macfarlane et al., 1986; Shen et al., 2010; An et al., 2014).

Increasing protein in the colon correlates with increased putrefactive bacteria and 

metabolites (Toden et al., 2007; Lubbs et al., 2009) and reduced carbohydrate-fermenting 

bacteria such as Eubacterium rectale, Roseburia spp. and Bifidobacterium spp. (Duncan et 

al., 2007). Unlike carbohydrate-based fiber fermentation in the colon, which is considered 

beneficial or benign, microbial protein putrefaction could be detrimental (Davila et al., 

2013). In fermenting fiber, commensal microbes produce beneficial metabolites, including 

short-chain fatty acids (e.g., butyrate, which serves as the primary energy source for the 

colonic epithelium (Roediger, 1980; Roediger, 1982; Hamer et al., 2008)) and certain 

vitamins (LeBlanc et al., 2013). Beyond serving as an energy source, the short-chain fatty 

acids produced also lower the intraluminal pH, which inhibits the growth of some pathogens 

(Byrne and Dankert, 1979). Like fiber fermentation, putrefaction leads to some short-chain 

fatty acid production. However, unlike fiber fermentation, putrefactive bacteria also produce 

an array of metabolic byproducts including ammonia, sulfides, phenols (e.g. p-cresol), 

indoles and biogenic amines (Windey et al., 2012; Rist et al., 2013), which can, in vitro, 
reduce colonic epithelial cell viability (Pedersen et al., 2002), increase intestinal 

permeability (Ng and Tonzetich, 1984; Jowett et al., 2004; Hughes et al., 2008; McCall et 

al., 2009), provoke DNA damage (Attene-Ramos et al., 2006) and inhibit colonocyte cellular 

respiration and proliferation (Roediger et al., 1993; Leschelle et al., 2005; Medani et al., 

2011; Andriamihaja et al., 2015). Increasing protein intake by humans from 15.4% to 23.8% 

of the diet for one week, while maintaining resistant carbohydrate intake, increased fecal and 

urinary markers of putrefaction—including ammonia, valeric acid, urinary p-cresol and 

volatile sulfur-containing metabolites (Geypens et al., 1997). Other studies also demonstrate 

that increased dietary protein correlates with increased ammonia production and other 
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putrefactive products in the colon (Gibson et al., 1976; Macfarlane et al., 1986; Richardson 

et al., 2013). Increased putrefaction in the distal gut increases putrefactive metabolite 

production, which can be toxic to colonocytes (Cummings et al., 1979) and can induce 

inflammation (Lan et al., 2015). Indeed, prospective human and animal studies demonstrate 

that excess protein in the diet can lead to damage in the colon (increased relapse risk in 

ulcerative colitis in humans (Jowett et al., 2004), increased colonic DNA damage and 

thinned colonic mucus barrier in rats, depending on protein type (Toden et al., 2007), 

reduced brush border membrane height in rats (Andriamihaja et al., 2010), decreased 

telomere length and increased DNA breaks in colonic cells of rats fed red meat, which were 

reversed with addition of resistant starch (Toden et al., 2007; Toden et al., 2007; 

O’Callaghan et al., 2012) and increased risk of post-weaning diarrhea in piglets (Heo et al., 

2009; Kim et al., 2011)). Though more in vivo studies are needed, the data suggests that 

protein overconsumption may interfere with optimal gut health, especially in individuals 

with lowered protein digestion capacity. Understanding the consequences of high protein 

diets on both healthy individuals and those with various disease states is necessary.

Whether protein reaching the colon and putrefaction causes damage likely depends on the 

amount of undigested protein and amount of putrefactive metabolites produced. The 

presence of low levels of putrefactive compounds is unlikely to be harmful—indeed, 

ammonia production has an important role in nitrogen recycling (Blachier et al., 2007; 

Bergen and Wu, 2009). Likewise, polyamine compounds, including putrescine and 

spermidine, are important for cellular growth and proliferation and are synthesized in cells 

but can also be absorbed from the gut lumen (Osborne and Seidel, 1990; Bardócz et al., 

1998). Rather, it is when these levels become excessive that gut health may be affected. 

However, the concentrations of putrefactive compounds required for negatively impacting 

gut health in vivo remain unknown. Some protein enters the colon continually from healthy 

people consuming low protein diets. Endogenous proteins, including enzymes and proteins 

from sloughed off cells (e.g., mucins), enter the colon daily (Moughan et al., 2005). Between 

endogenous protein and dietary protein, approximately 12–18 g enter the colon each day, of 

which the majority come from proteins (50%) and peptides (20–30%) (Chacko and 

Cummings, 1988). The precise amount of additional dietary protein surviving to the large 

intestine to cause inflammation in the gut remains unknown and deserves further study.

The amount of putrefaction in the colon also depends on the amount of fiber in the diet. 

Most starch and small sugars are absorbed in the small intestine, but fiber survives to the 

colon, where it can serve as a carbon source for colonic microorganisms, most of which are 

saccharolytic (Macfarlane and Macfarlane, 2012). As carbohydrates are the preferred carbon 

source for microbes in the gut, protein putrefaction arises only becomes dominant when 

most of the dietary fiber has been fermented (Macfarlane and Macfarlane, 2012). Therefore, 

putrefaction becomes more likely the more distal in the large intestine. Consequently, adding 

fiber to diets can reduce putrefaction. Supplementing the diet with fiber lowers apparent 

putrefaction in the gut (Pieper et al., 2012; Windey et al., 2012; Pieper et al., 2014). 

Resistant starch supplementation in rats decreased the protein fermentation markers urinary 

nitrogen (Heijnen and Beynen, 1997) and p-cresol (Shen et al., 2010). In humans, adding 

resistant starch decreased fecal ammonia, p-cresol and total phenol concentrations (Birkett et 

al., 1996). The addition of fiber to a high protein diet in humans reduced fecal putrefactive 
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metabolites (ammonia and putrescine) but did not return them to levels found in a low 

protein diet. This incomplete reduction of putrefactive metabolites may explain why the 

added fiber did not lower markers of mucosal inflammation (Pieper et al., 2012). The degree 

to which fiber prevents high protein-induced putrefaction in the gut and the degree to which 

reductions in putrefactive compounds reduce gut inflammation deserves further examination.

On an individual basis, monitoring the diet for the optimal amount of protein is challenging. 

Therefore, tests for markers of gut putrefaction could aid individuals in controlling their 

daily protein intake.

Beyond the amount of protein in the diet, two factors are important for controlling colonic 

putrefaction—the protein’s digestibility and the consumer’s digestive capacity. Dietary 

proteins are not all the same—they differ in digestibility based on source and processing 

methods. Likewise, consumers differ in their ability to digest proteins based on disease state, 

age and other phenotypes. To avoid the consequences of incomplete protein digestion in the 

small intestine, the protein component of diets should be tailored to match specific digestive 

phenotypes, particularly for various disease states. This review discusses the effects of 

incomplete protein digestion on overall health, how protein source and processing methods 

lead to differences in protein digestibility and how individuals differ in their digestive 

capacity. The review examines potential solutions for improving protein digestion, ranging 

from consumption of common pre-digested foods (e.g., yogurt), to protease pre-treatments 

of proteins to protease and hormonal supplementation. The analytical toolsets—including 

peptidomics, metabolomics, microbial sequencing and protein biomarker testing—needed to 

determine an individual’s digestive capacity are identified. How this knowledge can be 

applied to design tailored protein nutrition to optimize gut health is clarified.

PROTEINS VARY IN DIGESTIBILITY

Proteins vary in digestibility based on their three-dimensional structure and chemical 

modifications. Digestibility differs across protein sources (e.g., plant vs. animal proteins) 

and processing methods (e.g., various heat treatments).

Chemical and Physical Protein Structure Influence Protein Digestibility

Dietary proteins vary greatly in their susceptibility to digestive processes in the human gut 

due to size, charge, AA sequence, tertiary structure and post-translational modifications, 

especially glycosylation (Sareneva et al., 1995; Yu et al., 2007) and phosphorylation 

(Sareneva et al., 1995; Yu et al., 2007; Boutrou et al., 2010; Dupont et al., 2010). Generally, 

globular and compact proteins like β-lactoglobulin (Reddy et al., 1988) and compact storage 

proteins like phaseolin (a protein found in kidney beans) (Venkatachalam and Sathe, 2003), 

wheat gluten (Mitea et al., 2008) and soy protein glycinin (Nielsen et al., 1988) are less 

susceptible to hydrolysis in the gut. Other proteins with looser structure, like native milk β-

casein, are easily hydrolyzed into AA via endogenous proteases (Lindberg et al., 1997; 

Lindberg et al., 1998; Dupont et al., 2010; Dupont et al., 2010). Glycosylation of a protein 

can decrease digestibility through steric hindrance of digestive protease activity (Bernard et 

al., 1983; Semino et al., 1985). Likewise, phosphorylation lowers protein digestibility: 

compared with non-phosphorylated β-casein (1–25), the phosphorylated version is highly 
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resistant to in vitro digestion by brush border peptidases, likely also through steric hindrance 

(Boutrou et al., 2010).

Variation in Protein Digestibility with Protein Source

Protein digestibility varies depending on the source, and the digestibility of animal proteins 

(meat and dairy proteins) is higher (typically >90%) than that of plant proteins (70–90%). In 

early weaned-piglets, plant sources of protein such as soybean meal were lower in 

digestibility compared with animal proteins such as whey and fish (Yun et al., 2005). Milk 

casein proteins are slightly more digestible than meat proteins (Gilbert et al., 2011). In rats 

fed diets with different proteins (milk casein, fish meal and soy protein), fish meal and soy 

protein increased fecal putrefactive metabolites (indole, phenol and hydrogen sulfide) 

compared with milk casein (An et al., 2014). These findings suggested that more soy and 

fish meal protein survived intact to the colon and increased putrefaction. These different 

proteins also altered the microbiome, possibly due to increased putrefaction (An et al., 

2014).

Differences in protein digestibility among sources derive partially from matrix effects. 

Within a food source, other components alter the overall digestibility of the proteins. Some 

plant foods contain anti-nutritional factors that decrease protein digestibility. Legumes, 

cereals, potatoes and tomatoes contain inhibitors that reduce protein digestibility by 

blocking trypsin, pepsin and other gut proteases (Savelkoul et al., 1992; Liener, 1994; 

Friedman and Brandon, 2001). Cereal grains and legume seeds contain tannins 

(polyphenols) that bind strongly to dietary proteins and digestive enzymes, thus inhibiting 

protein digestion (Jansman, 1993; Jansman et al., 1994). Nuts, seeds and grains contain 

phytic acid (Lott et al., 2002), which chelates minerals such as calcium and zinc. As these 

minerals are necessary cofactors for digestive enzymes (e.g., alkaline phosphatase, 

carboxypeptidases and aminopeptidases), phytic acid in foods reduces overall protein 

digestibility (Ryden and Selvendran, 1993). Many legumes and alliums contain saponins, 

which form part of the plant’s defense system (Francis et al., 2002). These saponins reduce 

protein digestibility by forming saponin-protein complexes (Potter et al., 1993). Likewise, 

many plant proteins are surrounded by complex carbohydrates (non-starch polysaccharides 

or fiber)—often as cell wall components—that can impede enzyme access to the proteins 

(Duodu et al., 2003). The abundance of anti-nutritional factors and complex carbohydrates in 

plant protein sources likely explains their overall lower digestibility than that of typical 

animal proteins.

PROCESSING TECHNIQUES ALTER PROTEIN DIGESTIBILITY

Various processing techniques alter food proteins digestibility (Table 1), and thereby 

influence protein survival to the colon. Understanding how these processing techniques alter 

protein digestibility is essential for individualizing and optimizing protein nutrition. 

Common food processing techniques, including heat treatments, extrusion, spray drying, 

fermentation, homogenization, high pressure processing and enzymatic/chemical hydrolysis, 

can alter protein structure, anti-nutritional factors and complex carbohydrates that can in 

turn alter protein digestibility (Table 1).
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Heat Treatment

The effects of heat treatment depend on the temperature and time. Moderate temperature and 

short times typically denature proteins and deactivate anti-nutritional factors, which 

increases their digestibility (Lassé et al., 2015). Heat pre-treatment of egg whites increases 

ileal protein digestibility in humans from a low value of 51.3% for raw eggs to 90.9% 

(Evenepoel et al., 1998). The investigators suggest that the improvement in digestibility 

results from protein denaturation and deactivation of egg protein protease inhibitors. Lower 

digestibility of raw egg protein compared with cooked egg proteins was also shown in 

humans via an increase in fecal 15N excretion and urinary isotopically-labelled protein 

putrefaction end-products (p-cresol, phenol) (Evenepoel et al., 1999). Heat treatment of 

legumes increases their overall digestibility by denaturing the endogenous trypsin inhibitors 

(Kakade and Evans, 1966). Heating legume seeds (Jack beans) in water for 1 hour at 100 °C 

reduced trypsin inhibitor concentration by 48.4% (Babar et al., 1988). A number of heat 

treatments (boiling, autoclaving, microwave cooking and roasting) can deactivate anti-

nutritional factors in legumes and seeds and improve in vitro digestibility (Embaby, 2010).

High temperatures and long heating times also denature proteins and destroy anti-nutritional 

factors, which improves digestibility, but can also cause chemical changes and render 

proteins insoluble, which reduces their digestibility (deWit and Klarenbeek, 1984). Some 

reported chemical changes that proteins undergo when exposed to heat include racemization 

(complete racemization took 8 hours at 151 °C or 2 hours at 185 °C) (Spies and Chambers, 

1949), hydrolysis (occurs at 160 °C for 45–60 minutes, at 170 °C for 30–45 minutes and at 

180 °C for 30 minutes) (Csapá et al., 1997), formation of oxidation-induced cross links, 

including disulfide and dityrosine bridges (Duodu et al., 2003; Santé-Lhoutellier et al., 

2008), and deamidation (complete deamidation occurs at 121 °C for 3 hours) (Qiu et al., 

2013). Heating foods to high temperatures also initiates non-enzymatic browning (the 

Maillard reaction) where the amino group of AA and the carbonyl group of reducing sugars 

react to form a complex array of products including melanoidins and aromatic compounds. 

For example, lysine reacts with reducing sugars to produce lactulosyl-lysine and fructosyl-

lysine (Hurrell, 1990). The Maillard reaction negatively impacts protein nutritional quality 

because it decreases the bioavailability of AA, especially lysine, through chemical 

modification (Mottu and Mauron, 1967; Erbersdobler and Hupe, 1991). The combination of 

sugars with AA in Maillard reactions can also make protein digestion and absorption 

difficult or impossible for the host (Seiquer et al., 2006; Mills et al., 2008). Moreover, some 

Maillard reaction products, including DL-2-formyl-5-(hydroxymethyl)pyrrole-l-norleucine, 

directly inhibit the activities of proteases such as carboxypeptidase A and aminopeptidase N 

(Oeste et al., 1987). Overall, high heat treatments for extended times can decrease 

digestibility. Heating casein at 180 °C for 1 hour decreased protein digestibility and 

increased protein fermentation markers (fecal ammonium; urinary phenol, cresol and 

indol-3-ol) in rats (Corpet et al., 1995). Likewise, cooking meat protein at 100 °C for 45 

minutes oxidized proteins, thus inducing disulfide and dityrosine bridge formation, protein 

aggregation and decreased protein in vitro digestibility (Santé-Lhoutellier et al., 2008).

Other types of heat treatments, including spray drying, pasteurization and ultra-high-

temperature treatment, drum drying and in-can sterilization, also alter protein digestibility. 
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With each processing step that involves heat, the degree of denaturation and chemical 

modifications (hence, changes to digestibility) depend on the temperature, heating time and 

moisture content. Even when these variables are constant, these effects vary with protein 

source.

Fermentation

For millennia, humans have altered foods with bacteria and fungi. Lactic acid bacteria used 

to make kefir and yogurt partially digest milk proteins in addition to fermenting lactose 

(Adolfsson et al., 2004). Lactic acid bacteria produce many extracellular serine proteases 

which can hydrolyze the milk proteins (Pritchard and Coolbear, 1993), increasing their 

digestibility. Commercially, cheese proteins are partially pre-digested by the bacteria and 

mold used for ripening/ageing (De Angelis Curtis et al., 2000). This microbial proteolytic 

activity can improve protein digestibility. As compared with milk, lactic acid bacteria-

fermented milks (kefir, yogurt and sour milk) were more digestible using in vitro pepsin 

digestibility assays of free amino-nitrogen and growth rate monitoring in rats (Vass et al., 

1983). In other studies, in vitro digestibility of yogurt was greater than that of non-fermented 

milk (Breslaw and Kleyn, 1973). Fermentation of milk to yogurt also improved digestibility 

and feed efficiency in rats (Lee et al., 1988).

Fermented soybean-based foods such as miso and soy sauce (fermented by the fungi 

Aspergillus oryzae) have higher protein digestibility than unfermented soybeans. Aspergillus 
oryzae secretes proteases that break down proteins in fermented soy (Chancharoonpong et 

al., 2012). When fed to piglets, Aspergillus oryzae-fermented soybean meal had higher 

protein fecal digestibility than unfermented soybean meal (Feng et al., 2007). The authors 

attributed this improved digestibility to the inactivation of soybean’s trypsin inhibitors and 

degradation of other proteins (Feng et al., 2007).

Alkali fermentation is applied to create numerous traditional foods in Southeast Asia and 

Africa (Parkouda et al., 2009). Typically, these fermentations rely on Bacillus subtilis, which 

not only ferments carbohydrates but produces proteases that degrade the food proteins into 

peptides and AA (Steinkraus, 2002; Hong et al., 2004). Bacillus subtilis also degrades AA 

and releases ammonia, which increases the pH—hence ―alkali fermentation‖ (Parkouda et 

al., 2009). Soybeans are fermented by Bacillus subtilis to produce Japanese natto (Wang and 

Fung, 1996). The degradation of proteins in alkali fermentations likely means that these 

proteins have increased digestibility. Bacterial protein degradation also can degrade trypsin 

inhibitors, thus improving overall protein digestibility (Hong et al., 2004).

Fermentation of rye flour with lactic acid bacteria sourdough cultures hydrolyzes prolamins 

(a group of plant storage proteins high in proline and similar to gluten). This fermentation 

approach could reduce reactivity in humans with celiac disease by degrading prolamin 

epitopes that may contaminate a gluten-free diet (De Angelis et al., 2006). Similarly, a 24-

hour lactic acid bacterial fermentation of wheat flour degraded gliadin and did not increase 

intestinal permeability in celiac patients (Di Cagno et al., 2004). Indeed, specific 

Lactobacillus species with the ability to degrade the immunotoxic peptides related to celiac 

responses have been identified (Duar et al., 2015). A 48-hour fermentation of wheat flour 

with three Enterococcus strains and Rhizopus oryzae degraded 98% of the gluten protein 
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(M’hir et al., 2009). Fermentation approaches not only reduces the allergenicity of some 

proteins but also improves overall protein digestibility.

Future personalization of protein digestibility to protein digestive capacity can take 

advantage of naturally pre-digested foods to match the protein digestibility requirements of 

individuals with lower digestive capacity.

Hydrolysates

Proteins can be hydrolyzed, either extensively or partially, via treatment with proteases, acid 

or alkali (Clemente, 2000). Acid and alkali hydrolyses are difficult to control and they can 

modify/destroy AA, which lowers the nutritional quality of a product. As proteases do not 

alter the AA, they are preferred for making hydrolysates. Common protein sources used for 

preparing nutritional hydrolysates are bovine milk and soybeans (Chiang et al., 1999). 

Hydrolyzed foods have a variety of uses, including in infant formulas, nutritional 

supplements for the elderly and sports nutrition products.

Other Processing

A variety of other processing methods, including soaking, germination, dehulling, pressure 

cooking, high pressure processing, extrusion, transglutaminase treatment and alkaline 

treatment, alter protein digestibility.

Soaking uncooked beans improves protein digestibility (Barampama and Simard, 1994). In 

one study, soaking mung beans improved in vitro protein digestion 4% in 6 hours and 21% 

in 18 hours by lowering anti-nutritional factors (phytic acid, saponins and polyphenols) in 

the legume seed (Kataria et al., 1989). The investigators hypothesized that these anti-

nutritional factors leached out during the soaking; however, mechanistic evidence for this 

hypothesis was not presented.

Germination of seeds after soaking further improves their overall protein digestibility. In 

vitro protein digestibility of cowpeas after 12 hours of soaking followed by 48 hours of 

germination improved 7.7% compared with digestibility after 12 hours of soaking only 

(Preet and Punia, 2000). Overall, germination significantly improved the in vitro protein 

digestibility of legume seeds compared with that of the raw seeds (14–18%) (Ghavidel and 

Prakash, 2007). The increased protein digestibility after germination of legumes may result 

from reduction in anti-nutritional factors such as phytic acid, tannins (polyphenols) and 

saponins and degradation of storage proteins (Kataria et al., 1989). Decreases in these anti-

nutritional factors may result from leaching into the soaking medium through simple 

diffusion (Khokhar and Chauhan, 1986). During extended germination for 2–8 days, plant 

proteases are activated and begin to degrade plant storage proteins, which also increases 

digestibility (Shastry and John, 1991).

Dehulling of seeds also improves digestibility. Dehulling after germination improved the in 

vitro digestibility of various legume seeds 3–5% compared with digestibility of germinated-

only seeds (Ghavidel and Prakash, 2007). Dehulling improved protein digestibility by 

reducing concentrations of anti-nutritional factors, including phytic acid, tannins and dietary 

fiber, present in the seed coat.
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High pressure processing can either increase or decrease protein digestibility. Treatment of 

β-lactoglobulin at 400 MPa for 30 minutes at 50 °C denatured the protein, which improved 

its in vitro pepsin digestibility (Chicón et al., 2008). Similarly, with treatment at 600 MPa 

and 800 MPa for 10 minutes at 20 °C, in vitro pepsin digestibility of β-lactoglobulin was 

greatly improved (Zeece et al., 2008). However, the effect of high pressure processing on 

digestibility varies with the protein source and type. For instance, red kidney beans treated at 

400 MPa and above for 20 minutes at 25 °C had significantly lower trypsin digestibility than 

untreated beans (Yin et al., 2008). Yin et al. hypothesized that protein aggregation reduced 

digestibility.

Depending on the protein source and conditions, extrusion can increase or decrease protein 

digestibility. Extrusion increased in vitro digestibility for cereal grains, depending on the 

temperature and moisture content (Dahlin and Lorenz, 1993). This improved digestibility is 

likely due to denaturation of proteins with heat and degradation of antiproteases. Extrusion 

at high temperatures (> 180 °C), high shear (>100 rpm) and low moisture (<15 %) causes 

Maillard reactions, leading to reduced digestibility (Camire et al., 1990). Extrusion at high 

moisture and lower temperatures (85–135 °C) causes cross-link formation and protein 

aggregation in soybean protein isolates (Chen et al., 2011), which may also reduce 

digestibility.

Transglutaminases are used frequently in dairy product manufacturing, meat processing and 

producing wheat-based baked goods (Kieliszek and Misiewicz, 2014). Transglutaminases 

create covalent cross-links between proteins (Mahmoud and Savello, 1993), which improves 

the protein product functional properties, including increasing solubility, water-binding 

capacity, viscosity, elasticity and gelation. Transglutaminase treatments of food may, 

however, reduce protein digestibility. One study reported that transglutaminase-treated β-

casein was more resistant to pepsin degradation than non-cross-linked β-casein (Monogioudi 

et al., 2011). However, in another study, transglutaminase digestibility of cross-linked casein 

was similar to that of normal casein in an in vitro assay simulating gastric and small 

intestinal conditions (Havenaar et al., 2013). Differences in these results may be due to the 

degree of cross-linking. Phaseolin, the major storage protein in the common bean (Phaseolus 
vulgaris), had decreased digestibility in in vitro pepsin and trypsin assays after 

transglutamination (Mariniello et al., 2007). The investigators predicted that the 

transglutaminated phaseolin would survive to the colon intact.

Alkaline treatment is often used in food processing to improve protein solubility (Maga, 

1984). Alkali solutions are used to extract proteins from soybeans, cereal grains, oilseeds, 

peanuts and milk (sodium caseinate) (Friedman, 1999). Alkaline treatment with heating 

causes β-elimination. β-Elimination allows formation of a variety of intramolecular and 

intermolecular cross-links, which can reduce protein digestibility. These cross-links include 

lysinoalanine (LAL), lysinomethylalanine (Walter et al., 1994), lanthionine (Aymard et al., 

1978) and histidinoalanine (Friedman, 2005). A complete review of the cross-links caused 

by alkali and heat treatment is outside out the scope of this paper, but was thoroughly 

reviewed previously (Gerrard, 2002). LAL formation results in essential AA losses (such a 

lysine, cysteine and threonine) and reduced the protein digestibility due to the formation of 

cross-links, which inhibit proteolysis (Maga, 1984). LAL began to appear at pH 9 and 
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increased as pH increased (Friedman et al., 1984). But when temperature increased, LAL 

was produced at lower pH—LAL formation occurred at pH 5 when casein was heated to 

100 °C (Sternberg and Kim, 1977). The combination of alkali and heat is particularly 

problematic for digestibility. Heating at 65 °C for 24 hours at pH 10.5–11.5 caused LAL 

formation and racemization, resulting in 13–18% decreases in ileal digestibility for casein, 

β-lactoglobulin and wheat proteins in minipigs (Vrese et al., 2000). Digestibility of alkali 

and heat-treated caseins and soy proteins is also reduced in rats (Sarwar et al., 1999).

Typical meat processing steps (e.g., mincing, salting, irradiation and aging) can also 

influence protein digestibility. During these processes, protein can be oxidized via free 

radical chain-reactions (typically induced by oxidized lipids). This oxidation causes the 

formation of carbonyl derivatives and disulfide protein cross-links (Mercier et al., 1998; 

Renerre et al., 1999; Rowe et al., 2004; Rowe et al., 2004). Oxidation-induced cross-links 

can lead to protein aggregation, which can decrease protein susceptibility to proteolytic 

degradation (Morzel et al., 2006; Santé-Lhoutellier et al., 2008; Baron et al., 2009). 

However, increases in oxidation do not always decrease protein digestibility. For example, 

refrigerated storage for 7 days significantly increases carbonyl group formation in meat 

protein, but this storage time has little effect on protein digestibility in either pepsin or 

trypsin and α-chymotrypsin in vitro digestion assays (Santé-Lhoutellier et al., 2008). Further 

research is needed to fully understand the consequences of oxidation on protein digestibility.

CONSUMERS DIFFER IN DIGESTIVE CAPACITY

Beyond variations in basic protein requirements, consumers vary in their ability to digest 

protein, particularly across disease states. Host proteolytic capacity depends on a number of 

facets of gut health and function, including the concentration and activity of endogenous 

luminal proteases (partially determined by certain gastrointestinal hormones such as gastrin 

and cholecystokinin (CCK)) and brush border peptidases, luminal pH and transit time. 

Across conditions, variations in these factors lead to differences in overall proteolytic 

capacity. Lowered protein digestion can be observed with techniques beyond traditional 

protein digestibility measurements such as examining the residual peptides, microbiota, 

microbial metabolites and protein biomarkers.

Variations in Protein Digestion Capacity with Disease Conditions with impaired gastric 
digestion

Both protein entering the stomach and a gastric pH >4 stimulate G-cells to release gastrin 

(Figure 1A). Gastrin stimulates enterochromaffin-like (ECL) cells to release histamine, and 

histamine induces parietal cells to release gastric acid (Waldum et al., 2014). Gastric acid 

activates pepsinogen, denatures proteins and protects against pathogens (Martinsen et al., 

2005; Beasley et al., 2015) (Figure 1A). Hypo-or achlorhydria (low or absent gastric acid, 

respectively) can result from a variety of conditions, including atrophic gastritis (Strickland 

and Mackay, 1973), gastrectomy (Hoya et al., 2009), acid suppression therapy (e.g., proton 

pump inhibitors, antacid medication) (Schubert, 2014) and Helicobacter pylori infection 

(Schubert, 2014). Though the lowered gastric acid production increases infection risk 
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(Martinsen et al., 2005), the consequences of low acidity in protein digestion remain poorly 

understood.

Medications such as antacids, proton pump inhibitors and H2 blockers reduce gastric acidity 

and may negatively impact protein digestion (Figure 1B). Low gastric pH (between pH 1.8–

3.5) allows for optimum gastric pepsin activity and food protein denaturation (Freeman and 

Kim, 1978). As the acidity of the stomach decreases, peptic activity and protein denaturation 

diminishes. Pepsin activity is reduced to less than 5% with pH >5 (Koop, 1992), and these 

medications can elevate gastric pH to around pH 5.0 for 11 hours (Prichard et al., 1985). Ten 

percent of the middle-aged population uses antacids for dyspeptic disorders (i.e., heartburn) 

(Furu and Straume, 1999).

Initial studies measuring fecal nitrogen digestibility suggested that gastric digestion has a 

limited effect on protein assimilation since patients with little or no gastric function have 

adequate digestibility (Bradley et al., 1975; Freeman and Kim, 1978; Erickson and Kim, 

1990; Rinaldi Schinkel et al., 2006; Skroubis et al., 2006). However, unlike the preferred 

ileal nitrogen digestibility, fecal nitrogen digestibility discounts the effect of colonic protein 

fermentation, which can provide falsely high digestibility values (Evenepoel et al., 1998). 

Evenepoel et al. took a different approach, using a 13C-egg white breath test to evaluate the 

influence of acid suppression therapy (Omeprazole) on overall protein assimilation in 

humans. After one month of Omeprazole usage, protein assimilation was impaired. 

Moreover, urinary phenol and p-cresol, markers of colonic protein fermentation of tyrosine 

and tryptophan, respectively (Blachier et al., 2007), were increased. Therefore, antacid use 

can decrease overall protein digestion and assimilation and increase colonic microbial 

putrefaction (Evenepoel et al., 1998).

Decreased digestion capacity with antacid intake occurs in animal models with common 

allergenic proteins. Normal pH 2.0 gastric conditions quickly degrade the fish protein 

parvalbumin. However, mice treated with antacids (gastric pH 5.0) were unable to digest 

parvalbumin as demonstrated by detection with a parvalbumin specific IgE antibody 

(Untersmayr et al., 2003). Decreased digestibility with antacid intake in mice also occurs for 

other proteins, including cod protein (Untersmayr et al., 2005), egg ovalbumin (Diesner et 

al., 2008) and hazelnut proteins (Schöll et al., 2005). In humans, several dietary antigens 

(including those from peanut, walnut, almond, potato, tomato, celery, carrot, orange, wheat 

flour and rye flour) become less digestible after antacid intake, as demonstrated by increased 

dietary protein-specific IgE antibodies detected in the blood after 3 months of antacid 

treatment, suggesting increased survival of immune-stimulating epitopes within the intestine 

(Untersmayr et al., 2005).

Diseases can also induce hypochlorhydria, and typically result in a cyclical relationship with 

initial low gastric acid progressing to hypergastrinemia and eventual long-term 

hypochlorhydria. Renal failure, gastritis, gastric ulcers, gastric cancer and H. pylori infection 

are all characterized by hypo-or achlorhydria along with hypergastrinemia (Strid et al., 

2002) (Figure 1B). In renal failure, 70–79% of patients experience gastrointestinal 

complications, many of which can alter protein digestion (Shirazian and Radhakrishnan, 

2010). Renal failure leads to uremia—the build-up of nitrogenous amino acid metabolism 
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end products in the blood—which alters gastrointestinal function and impairs protein 

digestion (Bammens et al., 2003; Sirich, 2015). In uremia, excess urea leaks into the 

stomach and is metabolized by H. pylori into ammonia, thereby increasing gastric pH (el 

Nujumi et al., 1992; Malyszko et al., 1995; Bammens et al., 2003; Bammens et al., 2004). 

As discussed above, increased gastric pH limits protein denaturation and pepsin activation 

and thus reduces protein degradation (Evenepoel et al., 1998). Uremia is also associated with 

hypergastrinemia (Kang, 1993), the build-up of gastrin in the blood. This excess gastrin may 

be caused by the inability of kidneys to excrete gastrin (Hällgren et al., 1978) and/or 

increased G-cell stimulation by the H. pylori-induced increased pH (Chuang et al., 2004). 

Gastrin is a trophic hormone, and excessive amounts, as seen in renal failure and other 

conditions (e.g., atrophic gastritis, H. pylori infection and acid suppression therapy) results 

in ECL hyperplasia, which potentially leads to ECL neoplasia and further hypochlorhydria 

(Freston et al., 1995; Waldum et al., 2014). As a result, renal failure seems to impair protein 

assimilation, which is supported by various studies (Ala-Kaila et al., 1989; Bammens et al., 

2003; Meijers and Evenepoel, 2011).

Gastric bypass and other weight-loss surgeries also can reduce gastric digestion by removing 

or bypassing the stomach and/or the upper small intestine (Figure 1B). Bariatric surgeries, 

particularly the Roux-en-Y gastric bypass (RYGB) procedure, are becoming increasingly 

common as a treatment for obesity, but may lead to impaired protein digestion. The RYGB 

procedure bypasses most of the stomach and part of the small intestine, and the shrunken 

stomach produces less pepsinogen and HCl (Smith et al., 1993; Behrns et al., 1994; 

Sundbom et al., 2003). The lower HCl production also means that there is lower pepsin 

activity (as low pH is required for pepsinogen activation). RYGB typically causes hormonal 

changes, including increased anorectic peptide YY (Suzuki et al., 2005) and glucagon-like 

peptide-1 (Bose et al., 2010), which may slow intestinal motility. As RYGB impairs the 

gastric phase of protein digestion and slows intestinal motility, undigested protein may 

remain longer in the colon, representing a source for increased putrefaction. Indeed, RYGB-

operated rats compared with sham-surgery controls had higher concentrations of 1H NMR-

identified putrefactive metabolites in stool (e.g., putrescine, tyramine, uracil and gamma-

aminobutyric acid) and urine (e.g., p-cresol sulfate, p-cresyl glucuronide, 5-aminovalerate, 

phenylacetylglycine, p-hydroxyphenylacetate, indoxyl sulphate) (Li et al., 2011). From a 

microbial perspective, the RYGB procedure in humans, rats and mice causes a common 

dramatic shift in the gut microbiome, significant increases in typically putrefactive 

Gammaproteobacteria and decreases in typically fermentative Firmicutes (Zhang et al., 

2009; Li et al., 2011; Liou et al., 2013). Further research is needed on how the microbiome 

and microbial metabolism influence the immediate and long-term health of patients who 

undergo bariatric surgery.

Conditions with impaired intestinal digestion

A few disorders, including chronic pancreatitis and cystic fibrosis, can cause near complete 

loss of pancreatic enzymes (Keller and Layer, 2005) (Figure 1B). Cystic fibrosis is caused 

by a mutation that inhibits the transport of chloride outside the cell, which limits the lungs 

ability to fully hydrate its mucus secretions (Ferrone et al., 2007). As a result, a thick mucus 

accumulates on the cells of the respiratory tract and pancreas and limits cell function 
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(Tucker et al., 2003). Exocrine pancreatic insufficiency is observed in 85–90% of cystic 

fibrosis patients and causes decreased digestive capacity, increased risk for diarrhea, protein 

malnutrition, decreased anabolism and increased putrefaction (Engelen et al., 2014). In 

chronic pancreatitis (induced primarily by gallstones, alcohol abuse, medications, renal 

failure and surgery complications), enzyme activation of trypsin within the pancreatic cells 

leads to auto-digestion of the gland and local inflammation, causing reduced pancreatic 

function and reduced enzyme secretion (Greenberger, 1999). In chronic pancreatitis patients, 

30–40% have concurrent pancreatic insufficiency (Bruno et al., 1995). Pancreatic 

insufficiency or poor protein digestion are also caused by variety of rare genetic conditions, 

including enterokinase deficiency (Canani and Terrin, 2011), trypsinogen deficiency, 

Shwachman–Diamond syndrome, Johanson–Blizzard syndrome and Pearson syndrome 

(Guarino et al., 2012).

Other variations in proteolytic capacity are less dramatic. Milder cases of pancreatic 

insufficiency (i.e., insufficient release of pancreatic proteases, assessed by fecal elastase-1 

(E1) concentration (< 200 μg/g stool)) are common in gastrointestinal disorders such as 

celiac disease (Carroccio et al., 1991; Carroccio et al., 1994; Nousia-Arvanitakis et al., 1999; 

Evans et al., 2010), Crohn’s disease and ulcerative colitis (UC) (Maconi et al., 2008), 

giardiasis and cow milk-related enteropathy (Walkowiak and Herzig, 2001) and irritable 

bowel syndrome (Leeds et al., 2010) (Figure 1B). Mucosal damage and villous atrophy, as 

seen in most of these conditions, can decrease CCK release from I cells in the crypts and 

villi of the duodenum and jejunum, which results in pancreatic insufficiency. Pancreatic 

sufficiency returns to normal once villi and mucosa are restored (Nousia-Arvanitakis et al., 

1999; Nousia-Arvanitakis et al., 2006). In celiac patients, pancreatic exocrine function does 

not completely return to normal until at least 12 months on a gluten-free diet (Walkowiak 

and Herzig, 2001).

Pancreatic insufficiency can also be induced by enteric pathogen colonization leading to 

acute enteritis in adults (Salvatore et al., 2003). Low E1 activity also occurs in some 

diabetics (Rathmann et al., 2001; Larger et al., 2012). In insulin-dependent (type II) diabetes 

mellitus, pancreas atrophy decreases pancreatic enzyme secretion (including proteases) and 

bicarbonate secretion (Silva et al., 1993). Pancreatic insufficiency associated with several 

diseases such as diabetes, celiac disease and cystic fibrosis was extensively reviewed by 

others (Keller and Layer, 2005).

Pancreatitis and/or pancreatic insufficiency are associated with inflammatory bowel disease 

(IBD) (i.e., UC and Crohn’s disease). Pancreatitis can occur prior to IBD onset or after IBD 

is established (Barthet et al., 1999). In IBD patients, the leading causes of pancreatitis 

include gallstones (Fraquelli et al., 2001; Parente et al., 2007), IBD medications (Bermejo et 

al., 2008) and alcohol use (Moolsintong et al., 2005; Pitchumoni et al., 2010). Some IBD 

patients experience idiopathic pancreatitis (i.e., not linked to a known cause) (Seyrig et al., 

1985). These associations suggest that IBD may increase risk of pancreatitis. The prevalence 

of pancreatitis in IBD is likely higher than recognized, as pancreatitis can be present prior to 

overt symptoms (Barthet et al., 1999; Herrlinger and Stange, 2000). Some UC patients with 

no pancreatitis symptoms had pancreatic duct abnormalities as imaged via magnetic 

resonance cholangiopancreatography (Toda et al., 2005). IBD patients without pancreatitis 
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may instead have pancreatic insufficiency. Exocrine pancreatic insufficiency was found in 

both Crohn’s disease and UC patients, as measured by the fecal elastase test (insufficiency 

defined as < 200 µg/ml) (Maconi et al., 2008; Burkovskaia et al., 2010).

IBD is characterized by intestinal inflammation. Crohn’s disease involves non-continuous 

inflammation throughout the intestine, with inflammation reaching the deeper tissues layers, 

which results in strictures, fistulas and abscesses. Inflammation of UC begins in the rectum 

and continuously spreads up the colon, with the inflammation limited to the superficial 

mucosa and submucosa layers (Khor et al., 2011). The development of IBD has been related 

to genetic (Khor et al., 2011), environmental and microbial factors (Ho et al., 2015); 

however, the exact etiology of these diseases remains unknown. Putrefactive metabolism of 

sulfur-containing amino acid compounds and inorganic sulfates to release hydrogen sulfide 

by sulfate-reducing microbes is strongly associated with the progression of UC (Rowan et 

al., 2009; Khalil et al., 2014). Hydrogen sulfide can permeate cell membranes and induce 

DNA damage, inhibit cytochrome C oxidase activity (essential for ATP generation) and 

impede butyrate production in colonocytes in vitro (Rowan et al., 2009). When compared 

with healthy control biopsies, colonic mucosal biopsies of UC patients displayed increased 

sulfate-reducing bacteria (Rowan et al., 2010). Fecal samples from UC patient had lower 

microbial diversity and proportionally higher sulfate-reducing bacteria counts compared 

with healthy control samples (Khalil et al., 2014). In addition to the increased sulfate-

reducing bacteria counts, IBD disease patients display other characteristic shifts in the 

microbiota, including decreased Bacteroides and Firmicutes (typically associated with 

fermentation), and increased Gammaproteobacteria (associated with putrefaction), which 

could contribute to the progression of these diseases (Linskens et al., 2001; Frank et al., 

2007; Walker et al., 2011; Kostic et al., 2014).

Variation in Protein Digestion with Nutritional Status

Chronic malnutrition may reduce protein degradation. Severely undernourished patients had 

lower pentagastrin-stimulated gastric acid output, and secretion of CCK-stimulated trypsin 

and other non-protease pancreatic enzymes compared with controls (Winter et al., 2000). 

Severely undernourished patients also secreted significantly less gastric acid and trypsin in 

response to both CCK and enteral feeding stimulation (Winter et al., 2001). After 2 weeks to 

3 months of nutritional support, non-protease pancreatic enzyme concentrations returned to 

normal, whereas trypsin and gastric acid concentrations remained low (Winter et al., 2000; 

Winter et al., 2001). This lack of recovery likely corresponds to longer term gastric parietal 

and pancreatic acinar cell dysfunction (Winter et al., 2001). However, because many of the 

undernourished patients in these test groups had coincident gastrointestinal disease, 

including Crohn’s disease, small bowel disease and short bowel, more research is needed to 

determine whether undernourishment, in the absence of gastrointestinal disease, causes 

lower gastric acid and trypsin production.
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ENZYME AND HORMONE SUPPLEMENTATION, AND USE OF 

HYDROLYSATES FOR HUMANS WITH PROTEOLYTIC LIMITATIONS

For optimal human health, the ability to digest protein must be matched to the digestibility 

of a protein. Therefore, personalizing protein nourishment would mean recommending 

groups with lower digestive capacity to consume foods that are more digestible. As 

mentioned above, many plant proteins are difficult to digest due to structure and the 

presence of anti-nutritional factors. Therefore, animal proteins, including milk proteins, 

which are more digestible, could be recommended over plant proteins. For consumption of 

vegetable proteins, a preparation method that improves their digestibility could also be 

recommended (i.e., fermentation or cooking to appropriate temperatures). Beyond dietary 

advice, individuals with low digestive function could be recommended specific enzyme or 

hormone supplementation or specific hydrolysate products. Nutritional products already 

available that could be applied for personalization of protein digestibility are discussed 

below.

Enzyme Supplementation for Humans

Enzyme supplementation of human diets has a long history for a few clinical conditions such 

as chronic pancreatitis and cystic fibrosis. Both diseases can cause pancreatic exocrine 

enzyme secretion insufficiency, which causes chronic nutrient malabsorption. Therefore, 

supplementation with the deficient enzyme(s), sometimes called enzyme therapy, is an 

important treatment modality for these conditions (Pairent and Howard, 1975; Fieker et al., 

2011).

Enzyme supplementation with lipases, glycosidases and proteases is used extensively in 

patients with chronic pancreatitis (Greenberger, 1999). Enzyme supplements effectively 

increase digestion (primarily of lipids, as steatorrhea is a major problem) and decrease 

malabsorption (Valerio et al., 1981). Increasing the dose of proteases in these supplements 

enhanced protein absorption in patients with chronic pancreatitis (Morrison et al., 1992). 

More research is needed to determine the effectiveness of enzyme supplementation 

treatments to enhance protein digestion in patients with chronic pancreatitis.

Enzyme therapy is also commonly used for patients with cystic fibrosis. Pancreatic enzyme 

supplementation improves protein digestion (Engelen et al., 2014), which prevents protein 

malnutrition and putrefaction. Supplementation with pancreatic enzymes (Creon) increased 

protein digestibility in patients with cystic fibrosis from about 47% at baseline to a 

maximum of 90% of the digestion rate of healthy control patients (Engelen et al., 2014).

Enzyme replacement therapy is often used to treat individuals with rare genetic conditions 

that cause pancreatic insufficiency or poor protein digestion. Enterokinase supplements are 

provided to patients with enterokinase deficiency, which allows the normal activation of 

trypsin and improves overall pancreatic protease activity in the small intestine (Tarlow et al., 

1970; Haworth et al., 1971).

Enzyme supplementation may also be beneficial in cases of less severe pancreatic enzyme 

insufficiency. Celiac patients have a higher rate of pancreatic insufficiency than healthy 
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controls (Leeds et al., 2007), most likely due to allergy-induced dysfunction. Patients with 

celiac disease, pancreatic insufficiency and persistent diarrhea, and who consumed an 

ostensibly gluten-free diet experienced improved stool frequency when supplemented with 

pancreatic enzymes (Leeds et al., 2007). This finding suggests that the enzyme supplements 

improved protein digestion, but no data on protein digestibility were provided.

Supplemental proteases may also be useful for the elimination of allergic sensitization or 

allergic response. A variety of enzymes are under investigation for enhancing gluten 

degradation to prevent flare-ups in patients with celiac disease (Stepniak et al., 2006; Tye-

Din et al., 2010). Increased protein digestibility and thus decreased putrefaction could have 

additional benefits for reducing gut inflammation and the sequelae of the allergic disease.

Protease supplementation is also applied to treat humans for kinesiology research. Specific 

protease supplementation protocols accelerated muscle recovery after strenuous exercises 

(Miller et al., 2004; Beck et al., 2007; Buford et al., 2009). These findings may indicate that 

protein digestibility was improved; however, the reported studies lacked direct 

measurements of protein digestibility. Further examination is necessary to determine 

whether the means by which protease supplementation aids muscle recovery is by enhancing 

protein digestion and AA absorption.

Numerous companies produce non-prescription supplements containing proteases, lipases 

and glycosidases, and market them for general use in healthy individuals. Beyond improving 

digestibility, these supplements are marketed for a wide range of mostly unsubstantiated 

benefits, including enhanced blood flow, improved immune response, improved 

detoxification (e.g., Protease 375K by Transformation Enzymes), tissue repair activation, 

improved joint health and support of optimal viscosity of nasal mucus (e.g., Best Proteolytic 

Enzymes 90VC). To date, none of these supplements have been clinically validated in the 

general population. Many companies do not provide information describing the exact 

proteases included in the supplements that they promote, leading to questions of enzyme 

activity in vivo. Beyond uses for pancreatitis and cystic fibrosis, allergy elimination and 

muscle recovery, no clinical trials on the effects on protein digestibility of protease 

supplementation in the general population were identified in a search of the literature. Future 

work needs to explore the effectiveness of protease supplementation for minor cases of poor 

protein digestibility.

Digestive Hormone Supplementation

CCK is a peptide hormone released from inclusion (I) cells in the crypts and villi of the 

duodenum and jejunum in response to protein or fat in the proximal small intestine (Little et 

al., 2005). CCK is released into the bloodstream, and through binding to the CCK-A 

receptors on vagal afferent neurons (Jensen, 2002), has a number of physiological effects, 

including slowing gastric emptying, suppressing gastric acid secretion, suppressing energy 

intake and stimulating pancreatic fluid secretion (Nousia-Arvanitakis et al., 2006). Damage 

to the proximal intestinal mucosa (sloughing of epithelial cells, flattening of epithelium), 

e.g., in Crohn’s disease and cow milk protein enteropathy, can impair CCK production and 

thereby reduce pancreatic enzyme secretion (Nousia-Arvanitakis et al., 2006). Potentially, in 

individuals with inflammatory conditions that suppress CCK production, injection with 
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CCK could return pancreatic enzyme secretion to normal. Not only would this method 

enhance overall protein digestion, it could also lower putrefaction and inflammation and 

prevent further digestion impairment. Healthy humans injected with 2.5 pmol CCK/kg/h 

demonstrated a 280% increase in trypsin secretion (Kerstens et al., 1985). If CCK is used as 

a therapy, the dose must be kept in a normal biological range. Injections of 10 times the 

amount of CCK required to generate the maximal secretory response induced pancreatitis in 

rats (Saluja et al., 2007). Overstimulation of the pancreas with CCK leads to activation of 

protease zymogens, which can damage acinar cells and initiate pancreatitis. Lower doses of 

CCK (less than 0.1 µM) injected into rats did not activate zymogen activation nor damage 

cells (Grady et al., 1998).

Enzyme Hydrolysates for Humans with Limited Proteolytic Capacity

Enzyme hydrolysates can be used to prevent allergic reactions to food proteins, such as the 

use of hypoallergenic hydrolyzed infant formulas to prevent cow milk protein allergy flare-

ups. Beyond their use to prevent allergic responses, hydrolysates can also be used to help 

improve digestion, generally in humans with low digestive capacity.

The most common use of non-fermented partially hydrolyzed foods for humans is in 

hypoallergenic infant formulas. To reduce epitope exposure, infants are often given partially 

or extensively hydrolyzed protein formulas after they develop bovine milk protein allergies. 

Infants without allergies but at high risk for developing them (due to family history) are 

often fed hydrolyzed formulas rather than traditional formula as a preventative measure. 

These formulas successfully reduce exposure to allergenic protein epitopes. Compared with 

regular infant formulas, both partially and extensively hydrolyzed formulas reduced atopic 

severity in infants with milk allergies (Chandra, 1997; Greer et al., 2008; von Berg et al., 

2008) and lowered rates or milk protein allergy development in infants with high familial 

allergy risk (Osborn and Sinn, 2006; Alexander and Cabana, 2010; Szajewska and Horvath, 

2010). The ―partially hydrolyzed‖ formulas typically consist of peptides between 8 and 20 

kDa (Wahn, 1993), whereas ―extensively hydrolyzed‖ formulas consist of peptides under 5 

kDa—peptides in most commonly available extensively hydrolyzed products are below 1.2 

kDa (Maldonado et al., 1998). Extensively hydrolyzed formula may reduce the risk for milk 

allergy more than partially hydrolyzed formula (Halken et al., 2000). Though use of 

hydrolysates in formula targets allergy elimination, this approach also likely increases 

protein digestibility. However, there is little evidence that the extent of AA uptake is greater 

for hydrolysates.

For non-infants, protein hydrolysates are used in energy drinks, sports nutrition beverages 

and foods, geriatric products and weight control diets (Clemente, 2000). In sports beverages, 

protein hydrolysates are added because di-and tripeptides are absorbed more rapidly than 

proteins or free AA (Di Pasquale, 2008). The hypothesis behind this formulation is that the 

increased absorption rate will improve muscle recovery (Manninen, 2004), but this concept 

remains unverified. Consumption of a casein protein hydrolysate compared with intact 

casein by elderly men accelerated gut AA absorption (Koopman et al., 2009). This finding 

implies improved digestibility, but there is no evidence of overall increased AA absorption.
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Feeding free AA to patients with cystic fibrosis can prevent the consequences of protein 

malnutrition (Engelen et al., 2013) and likely reduce putrefaction in the gut. Likewise, 

hydrolyzed proteins are used by humans with acute and chronic liver disease, short bowel 

syndrome, Crohn’s disease, pancreatitis and UC (Clemente, 2000). In Crohn’s disease 

patients, feeding either protein hydrolysates or elemental AA-based diets induced remission 

and reduced intestinal inflammation (Mansfield et al., 1995). Feeding elemental AA was as 

effective as corticosteroid treatment in causing remission in Crohn’s disease patients 

(O'moráin et al., 1984; Saverymuttu et al., 1985; Hunt et al., 1989).

Why Complete Protein Hydrolysis is Problematic

Elemental diets containing free AA in lieu of intact proteins, such as in hypoallergenic infant 

formulas, can be detrimental to gut health. Feeding total hydrolysates impedes the 

development of the exocrine pancreas and its ability to produce adequate proteases. 

Kinouchi et al. (Kinouchi et al., 2012) showed that large intact proteins were required during 

the suckling period for proper pancreatic digestive function to develop in rats. After a gastric 

application of extensively hydrolyzed milk proteins in rats, there was no enhancement of 

pancreatic enzyme secretion, as is found with intact proteins. Rats fed extensively 

hydrolyzed milk proteins had lower pancreas weight and stock of pancreatic enzymes. When 

intact proteins were reintroduced to the diet to restimulate pancreatic protease production, 

pancreatic secretions did not recover to normal levels. Therefore, partial hydrolysis or 

protease supplementation are likely better interventions than extensive hydrolysis as they 

maintain stimulatory signals for pancreatic function. Based on the study with rats, one can 

speculate that consumption of extensively hydrolyzed proteins may set patients up for lower 

digestive function in the long-term, although more research is needed in this area.

A partially hydrolyzed protein diet yields better results than an extensively hydrolyzed 

protein or an elemental AA diet on a variety of metrics. Compared with an elemental AA 

diet, an oligopeptide-based diet produced a substantial trophic effect on the small intestine, 

including increased bowel weight, increased mucosal weight, and increased DNA content 

(Zaloga et al., 1991). Feeding of a milk protein hydrolysate (with 50% of peptides <5 AA in 

length) versus a free AA mixture also increased the amount and rate of AA absorption 

(Rerat et al., 1988).

The findings described above provide further evidence that dietary proteins must be 

personalized congruently with changes in health and digestive capacity. Personalizing 

proteins for optimal digestibility will require continual monitoring of intestinal function to 

gradually transition individuals through appropriate dietary regimens. Some individuals may 

first need to control intestinal inflammation through consumption of extensively hydrolyzed 

protein. As the intestine is repaired and immune balance is restored, these individuals can 

then begin to consume partial protein hydrolysates and eventually intact proteins to return to 

full digestive capacity. Based on the reviewed information, we hypothesize that by 

monitoring protein digestion as individuals progress from consuming hydrolyzed proteins to 

increasingly difficult-to-digest protein components, optimal gut health can be obtained.
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HOW MUCH PROTEIN IS TOO MUCH?

Though the metabolic consequences of excess protein intake (e.g., aminoacidemia, 

hyperammonia) have been investigated (Bilsborough and Mann, 2006), the physiological 

consequences of excess protein entering the colon and undergoing putrefaction remain 

poorly understood. High protein intake by healthy humans clearly increases protein 

metabolizing bacterial counts in the colon and putrefactive metabolites, and many of these 

metabolites are toxic in in vitro assays (Geypens et al., 1997; Evenepoel et al., 1999). 

However, direct links between the concentrations of these toxic metabolites in stool and 

urine, and numbers of protein metabolizing bacteria in stool to specific health changes (e.g., 

inflammation, tissue damage) remain unknown.

Human participants who consumed a maintenance low protein diet (13% protein) excreted 

significantly fewer toxic metabolites (N-nitroso compounds) in the fecal samples than those 

who consumed either a high protein diet (29% protein) (Russell et al., 2011); however, how 

these diets altered health (e.g., tissue damage, inflammation) was not reported. In another 

study with human subjects, consumption of a high protein diet (27% of kcal, 124 g/day) 

induced excretion of more p-cresol compared with consumption of a low protein diet (12% 

of kcal, 50 g/day) (Windey et al., 2012). However, fecal genotoxicity (measured by Comet 

Assay) and cytotoxicity (measured by WST-1 Assay) did not differ between the two groups 

of subjects. The investigators concluded that protein fermentation did not induce gut toxicity 

in healthy human subjects. The assays used for the measurements do not represent a 

comprehensive analysis of gut health metrics. Measurements of inflammation (inflammatory 

cytokines, tissue histology) would be useful to determine how specific levels of putrefactive 

metabolites in the intestinal tract affect gut health. Further investigation is warranted to 

determine how changes in gut microbiota and microbial metabolism impact health 

outcomes.

CONCLUSIONS: POSSIBLE SOLUTIONS AND NEW DIRECTIONS

Proteins differ in their digestibility and consumers differ in their ability to digest, 

particularly across disease state. Incomplete protein digestion stimulates the growth of 

putrefactive colonic microbes and the production of toxic metabolites. Therefore, it is clear 

that the future of optimizing nutrition must include monitoring individual protein digestive 

capacity, especially in diseases that reduce digestive capacity. As measuring digestibility 

with the gold standard approach, true ileal digestibility, is impossible for a personalization 

approach due to its invasive nature, alternative approaches to monitor digestion must be 

developed—i.e., identification of specific metabolites, microbes and protein biomarkers as 

indices of protein digestibility. Based on the assessed digestive capacity of an individual, 

protein source, processing treatment, enzymes or hormonal supplementation can be tailored 

to that individual. Continual monitoring of these markers of digestion and gut health will be 

essential to determine how digestive capacity changes with these interventions.

Further research is needed to explore the incorporation of supplemental enzymes and 

hormones as part of a personalized diet to improve digestive capacity in humans with 

digestive problems. As post-translational modifications (i.e., glycosylation) and processing-
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induced protein chemical alterations (i.e., Maillard reaction products) can increase resistance 

to digestion, enzymatic removal of these modifications or enzyme supplementation of 

humans should be explored for their ability to increase overall protein digestibility.

Perhaps the most important advance needed is better techniques for simple, quick and cost-

effective analysis of the degree of protein digestion occurring in the gut, the growth of 

protein putrefactive bacteria and the production of inflammatory metabolites. Simply 

monitoring these markers frequently will allow determination of which individuals are at 

risk for incomplete protein digestion and need to have tailored personalized protein diets.

So, what are the toolsets available to make such personalized determination of protein 

digestibility? The most useful tools include peptidomics, metabolomics, genetic sequencing 

and multiplexed enzyme-linked immunosorbent assays (ELISAs). Protein digestion can be 

measured with extreme precision with peptidomics (Dallas et al., 2013; Dallas et al., 2015), 

putrefactive metabolites can be quickly measured via metabolomics, increases in 

putrefactive bacteria can be measured with next-generation sequencing technologies and 

markers of inflammation in the gut can be measured by multiplexed ELISAs (measuring 

proteins like calprotectin, calgranulins, lactoferrin, defensins, osteoprotegerin) (Pang et al., 

2014). Personalization of protein digestion will mean that these technologies must be 

available in simple, quick, single-platform formats, such as breath tests for putrefactive 

metabolites, that are easily interpreted by the consumer. Enabling consumers to quickly 

observe a measurement of the degree of putrefaction in their gastrointestinal tract will 

empower them to make important changes to their diet and behaviors. Individuals with 

chronic pancreatitis are treated with enzyme supplementation, but supplementation is often 

inadequate and clinical guidelines to monitor treatment effectiveness are lacking (Fieker et 

al., 2011). With tools to observe their own personal digestion, patients can determine what 

changes need to be made to their enzyme supplementation doses or to their diets.

Designing strategies for specific protein sources to meet the personalized needs of 

consumers will be essential to optimize nutrition, particularly across disease states. The 

insights gained from this research will have profound implications for agricultural 

processing, food formulations and the value of foods within the marketplace.
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Fig 1. 
Diagram of the effects of protein maldigestion and putrefaction in the gut. A) Healthy 

protein digestion: I. Dietary protein enters the stomach. II. Protein in the stomach stimulates 

G-cells secrete gastrin. III. Gastrin stimulates enterochromaffin-like (ECL) cells, which 

releases histamine that stimulates parietal cells. Gastrin also stimulates chief cells to release 

pepsinogen. IV. HCl denatures the proteins and activates pepsinogen into pepsin. Pepsin 

begins cleaving proteins into smaller peptides. V. Cholecystokinin (CCK) and secretin 

released by the small intestine and stimulates the pancreas to release digestive enzymes and 

HCO3. VI. The pancreas releases HCO3 and enzymes (trypsinogen, chymotrypsinogen, 

procarboxypeptidase, etc.). Enterokinase (released by intestinal cells) activates trypsin, and 

trypsin activates chymotrypsinogen and procarboxypeptidase. VII. Amino acids and di-and 

tripeptides get absorbed into the enterocytes primarily in the jejunum. VIII. Primarily 

carbohydrates reach the colon and undergo fermentation releasing vitamins and short-chain 

fatty acids (SCFA). B) Incomplete protein digestion and pathogenesis: I. Decreased HCl 

limits protein denaturation and pepsin activation. II. Pancreatitis and pancreatic insufficiency 

result in decreased secretion of digestive enzymes. III. Inflammation in the intestine can 

impair CCK release and thus lower pancreatic secretion of proteases. IV. Protein escapes 

digestion and reaches the colon, which can promote microbial putrefaction. Colonic 

putrefaction produces toxic metabolites such as hydrogen sulfide, ammonia and p-cresol.
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Table 1

Effects of food source processing on protein modifications

Increases protein digestibility Decreases protein digestibility

Processing
technique

Protein
denaturati
on

Protein
degradati
on

Deactivati
on of anti-
nutritional
factors

Remova
l of anti-
nutrition
al
factors

Maillar
d
reactio
ns

Formati
on of
cross-
links

Protein
aggregati
on

Heat (lower
temp, short
time)

X X

Heat (higher
temp, longer
time)

X X X

Extrusion* X X X X X

High pressure
processing

X X X

Fermentation X X

Enzymatic
hydrolysis

X X

Soaking X

Dehulling X

Germination X X X

Alkaline/heat
treatment
(lysinoalanine)

X X X

Transglutamin
ase

X

Heat (lower
temp, short
time)

X X

*
Digestibility changes depend on protein source, temperatures, times and other variables
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