
CVXPY: A Python-Embedded Modeling Language for Convex
Optimization

Steven Diamond and Stephen Boyd
Departments of Computer Science and Electrical Engineering, Stanford University, Stanford, CA
94305, USA

Steven Diamond: DIAMOND@CS.STANFORD.EDU; Stephen Boyd: BOYD@STANFORD.EDU

Abstract

CVXPY is a domain-specific language for convex optimization embedded in Python. It allows the

user to express convex optimization problems in a natural syntax that follows the math, rather than

in the restrictive standard form required by solvers. CVXPY makes it easy to combine convex

optimization with high-level features of Python such as parallelism and object-oriented design.

CVXPY is available at http://www.cvxpy.org/ under the GPL license, along with documentation

and examples.

Keywords

convex optimization; domain-specific languages; Python; conic programming; convexity
verification

 1. Introduction

Convex optimization has many applications to fields as diverse as machine learning, control,

finance, and signal and image processing (Boyd and Vandenberghe, 2004). Using convex

optimization in an application requires either developing a custom solver or converting the

problem into a standard form. Both of these tasks require expertise, and are time-consuming

and error prone. An alternative is to use a domain-specific language (DSL) for convex

optimization, which allows the user to specify the problem in a natural way that follows the

math; this specification is then automatically converted into the standard form required by

generic solvers. CVX (Grant and Boyd, 2014), YALMIP (Lofberg, 2004), QCML (Chu et

al., 2013), PICOS (Sagnol, 2015), and Convex.jl (Udell et al., 2014) are examples of such

DSLs for convex optimization.

CVXPY is a new DSL for convex optimization. It is based on CVX (Grant and Boyd, 2014),

but introduces new features such as signed disciplined convex programming analysis and

parameters. CVXPY is an ordinary Python library, which makes it easy to combine convex

optimization with high-level features of Python such as parallelism and object-oriented

design.

HHS Public Access
Author manuscript
J Mach Learn Res. Author manuscript; available in PMC 2016 June 30.

Published in final edited form as:
J Mach Learn Res. 2016 April ; 17: .

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.cvxpy.org/

CVXPY has been downloaded by thousands of users and used to teach multiple courses

(Boyd, 2015). Many tools have been built on top of CVXPY, such as an extension for

stochastic optimization (Ali et al., 2015).

 2. CVXPY Syntax

CVXPY has a simple, readable syntax inspired by CVX (Grant and Boyd, 2014). The

following code constructs and solves a least squares problem where the variable's entries are

constrained to be between 0 and 1. The problem data A ∈ Rm×n and b ∈ Rm could be

encoded as NumPy ndarrays or one of several other common matrix representations in

Python.

Construct the problem.

x = Variable(n)

objective = Minimize(sum_squares(A*x - b))

constraints = [0 <= x, x <= 1]

prob = Problem(objective, constraints)

The optimal objective is returned by prob.solve().

result = prob.solve()

The optimal value for x is stored in x.value.

print x.value

The variable, objective, and constraints are each constructed separately and combined in the

final problem. In CVX, by contrast, these objects are created within the scope of a particular

problem. Allowing variables and other objects to be created in isolation makes it easier to

write high-level code that constructs problems (see §6).

Diamond and Boyd Page 2

J Mach Learn Res. Author manuscript; available in PMC 2016 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

 3. Solvers

CVXPY converts problems into a standard form known as conic form (Nesterov and

Nemirovsky, 1992), a generalization of a linear program. The conversion is done using graph

implementations of convex functions (Grant and Boyd, 2008). The resulting cone program is

equivalent to the original problem, so by solving it we obtain a solution of the original

problem.

Solvers that handle conic form are known as cone solvers; each one can handle

combinations of several types of cones. CVXPY interfaces with the open-source cone

solvers CVXOPT (Andersen et al., 2015), ECOS (Domahidi et al., 2013), and SCS

(O'Donoghue et al., 2016), which are implemented in combinations of Python and C. These

solvers have different characteristics, such as the types of cones they can handle and the type

of algorithms employed. CVXOPT and ECOS are interior-point solvers, which reliably

attain high accuracy for small and medium scale problems; SCS is a first-order solver, which

uses OpenMP to target multiple cores and scales to large problems with modest accuracy.

 4. Signed DCP

Like CVX, CVXPY uses disciplined convex programming (DCP) to verify problem

convexity (Grant et al., 2006). In DCP, problems are constructed from a fixed library of

functions with known curvature and monotonicity properties. Functions must be composed

according to a simple set of rules such that the composition's curvature is known. For a

visualization of the DCP rules, visit dcp.stanford.edu.

CVXPY extends the DCP rules used in CVX by keeping track of the signs of expressions.

The monotonicity of many functions depends on the sign of their argument, so keeping track

of signs allows more compositions to be verified as convex. For example, the composition

square(square(x)) would not be verified as convex under standard DCP because the

square function is nonmonotonic. But the composition is verified as convex under signed

DCP because square is increasing for nonnegative arguments and square(x) is

nonnegative.

 5. Parameters

Another improvement in CVXPY is the introduction of parameters. Parameters are constants

whose symbolic properties (e.g., dimensions and sign) are fixed but whose numeric value

can change. A problem involving parameters can be solved repeatedly for different values of

the parameters without redoing computations that do not depend on the parameter values.

Parameters are an old idea in DSLs for optimization, appearing in AMPL (Fourer et al.,

2002).

A common use case for parameters is computing a trade-off curve. The following code

constructs a LASSO problem (Boyd and Vandenberghe, 2004) where the positive parameter

γ trades off the sum of squares error and the regularization term. The problem data are A ∈

Rm×n and b ∈ Rm.

Diamond and Boyd Page 3

J Mach Learn Res. Author manuscript; available in PMC 2016 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://dcp.stanford.edu

x = Variable(n)

gamma = Parameter(sign=“positive”) # Must be positive due to DCP rules.

error = sum_squares(A*x - b)

regularization = norm(x, 1)

prob = Problem(Minimize(error + gamma*regularization))

Computing a trade-off curve is trivially parallelizable, since each problem can be solved

independently. CVXPY can be combined with Python multiprocessing (or any other

parallelism library) to distribute the trade-off curve computation across many processes.

Assign a value to gamma and find the optimal x.

def get_x(gamma_value):

 gamma.value = gamma_value

 result = prob.solve()

 return x.value

Get a range of gamma values with NumPy.

gamma_vals = numpy.logspace(-4, 6)

Do parallel computation with multiprocessing.

pool = multiprocessing.Pool(processes = N)

Diamond and Boyd Page 4

J Mach Learn Res. Author manuscript; available in PMC 2016 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

x_values = pool.map(get_x, gamma_vals)

 6. Object-Oriented Convex Optimization

CVXPY enables an object-oriented approach to constructing optimization problems. As an

example, consider an optimal flow problem on a directed graph G = (V, E) with vertex set V
and (directed) edge set E. Each edge e ∈ E carries a flow fe ∈ R, and each vertex v ∈ V has

an internal source that generates sv ∈ R flow. (Negative values correspond to flow in the

opposite direction, or a sink at a vertex.) The (single commodity) flow problem is (with

variables fe and sv)

where the ϕe and ψv are convex cost functions and I(v) and O(v) give vertex v's incoming

and outgoing edges, respectively.

To express the problem in CVXPY, we construct vertex and edge objects, which store local

information such as optimization variables, constraints, and an associated objective term.

These are exported as a CVXPY problem for each vertex and each edge.

class Vertex(object):

 def __init__(self, cost):

 self.source = Variable()

 self.cost = cost(self.source)

 self.edge_flows = []

 def prob(self):

 net_flow = sum(self.edge_flows) + self.source

 return Problem(Minimize(self.cost), [net_flow == 0])

Diamond and Boyd Page 5

J Mach Learn Res. Author manuscript; available in PMC 2016 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

class Edge(object):

 def __init__(self, cost):

 self.flow = Variable()

 self.cost = cost(self.flow)

 def connect(self, in_vertex, out_vertex):

 in_vertex.edge_flows.append(-self.flow)

 out_vertex.edge_flows.append(self.flow)

 def prob(self):

 return Problem(Minimize(self.cost))

The vertex and edge objects are composed into a graph using the edges' connect method.

To construct the single commodity flow problem, we sum the vertices and edges' local

problems. (Addition of problems is overloaded in CVXPY to add the objectives together and

concatenate the constraints.)

prob = sum([object.prob() for object in vertices + edges])

prob.solve() # Solve the single commodity flow problem.

 Acknowledgments

We thank the many contributors to CVXPY. This work was supported by DARPA XDATA.

References

Ali, A.; Kolter, Z.; Diamond, S.; Boyd, S. Disciplined convex stochastic programming: A new
framework for stochastic optimization; Proceedings of the Conference on Uncertainty in Artificial
Intelligence; 2015. p. 62-71.

Diamond and Boyd Page 6

J Mach Learn Res. Author manuscript; available in PMC 2016 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Andersen, M.; Dahl, J.; Vandenberghe, L. CVXOPT: Python software for convex optimization, version
1.1. May. 2015 http://cvxopt.org/

Boyd, S. EE364a: Convex optimization I. Dec. 2015 http://stanford.edu/class/ee364a/

Boyd, S.; Vandenberghe, L. Convex Optimization. Cambridge University Press; 2004.

Chu E, Parikh N, Domahidi A, Boyd S. Code generation for embedded second-order cone
programming. Proceedings of the European Control Conference. 2013:1547–1552.

Domahidi, A.; Chu, E.; Boyd, S. ECOS: An SOCP solver for embedded systems; Proceedings of the
European Control Conference; 2013. p. 3071-3076.

Fourer, R.; Gay, D.; Kernighan, B. AMPL: A Modeling Language for Mathematical Programming.
Cengage Learning; 2002.

Grant, M.; Boyd, S. Graph implementations for nonsmooth convex programs. In: Blondel, V.; Boyd,
S.; Kimura, H., editors. Recent Advances in Learning and Control, Lecture Notes in Control and
Information Sciences. Springer; 2008. p. 95-110.

Grant, M.; Boyd, S. CVX: MATLAB software for disciplined convex programming, version 2.1. Mar.
2014 http://cvxr.com/cvx

Grant, M.; Boyd, S.; Ye, Y. Disciplined convex programming. In: Liberti, L.; Maculan, N., editors.
Global Optimization: From Theory to Implementation, Nonconvex Optimization and its
Applications. Springer; 2006. p. 155-210.

Lofberg J. YALMIP: A toolbox for modeling and optimization in MATLAB. Proceedings of the IEEE
International Symposium on Computed Aided Control Systems Design. 2004:294–289.

Nesterov Y, Nemirovsky A. Conic formulation of a convex programming problem and duality.
Optimization Methods and Software. 1992; 1(2):95–115.

O'Donoghue B, Chu E, Parikh N, Boyd S. Conic optimization via operator splitting and homogeneous
self-dual embedding. Journal of Optimization Theory and Applications. 2016:1–27.

Sagnol, G. PICOS: A Python interface for conic optimization solvers, version 1.1. Apr. 2015 http://
picos.zib.de/index.html

Udell M, Mohan K, Zeng D, Hong J, Diamond S, Boyd S. Convex optimization in Julia. Proceedings
of the Workshop for High Performance Technical Computing in Dynamic Languages. 2014:18–28.

Diamond and Boyd Page 7

J Mach Learn Res. Author manuscript; available in PMC 2016 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://cvxopt.org/
http://stanford.edu/class/ee364a/
http://cvxr.com/cvx
http://picos.zib.de/index.html
http://picos.zib.de/index.html

	Abstract
	1. Introduction
	2. CVXPY Syntax
	3. Solvers
	4. Signed DCP
	5. Parameters
	6. Object-Oriented Convex Optimization
	References

