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Abstract

Silver nanoparticles (AgNPs) have been broadly used as antibacterial and antiviral agents. Further, interests for green
AgNP synthesis have increased in recent years and several results for AgNP biological synthesis have been reported
using bacteria, fungi and plant extracts. The understanding of the role and nature of fungal proteins, their interaction with
AgNPs and the subsequent stabilization of nanosilver is yet to be deeply investigated. Therefore, in an attempt to better
understand biogenic AgNP stabilization with the extracellular fungal proteins and to describe these supramolecular
interactions between proteins and silver nanoparticles, AgNPs, produced extracellularly by Aspergillus tubingensis—isolated
as an endophytic fungus from Rizophora mangle—were characterized in order to study their physical characteristics,
identify the involved proteins, and shed light into the interactions among protein-NPs by several techniques. AgNPs of
around 35 nm in diameter as measured by TEM and a positive zeta potential of +8.48 mV were obtained. These AgNPs
exhibited a surface plasmon resonance (SPR) band at 440 nm, indicating the nanoparticles formation, and another band
at 280 nm, attributed to the electronic excitations in tryptophan, tyrosine, and/or phenylalanine residues in fungal
proteins. Fungal proteins were covalently bounded to the AgNPs, mainly through S–Ag bonds due to cysteine
residues (HS–) and with few N–Ag bonds from H2N– groups, as verified by Raman spectroscopy. Observed
supramolecular interactions also occur by electrostatic and other protein–protein interactions. Furthermore,
proteins that remain free on AgNP surface may perform hydrogen bonds with other proteins or water increasing
thus the capping layer around the AgNPs and consequently expanding the hydrodynamic diameter of the particles
(~264 nm, measured by DLS). FTIR results enabled us to state that proteins adsorbed to the AgNPs did not suffer
relevant secondary structure alteration upon their physical interaction with the AgNPs or when covalently bonded to
them. Eight proteins in the AgNP dispersion were identified by mass spectrometry analyses. All these proteins are
involved in metabolic pathways of the fungus and are important for carbon, phosphorous and nitrogen uptake, and
for the fungal growth. Thereby, important proteins for fungi are also involved in the formation and stabilization of the
biogenic AgNPs.
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Background
Nanotechnology has attracted the attention of researchers
worldwide because of the unique properties of nanoma-
terials. Countless applications have been studied in dif-
ferent fields, such as medicine [1, 2], material science
[3], microelectronics [4], energy storing [5], and bio-
medical devices [6].
Silver nanoparticles (AgNPs) have been largely employed

in antibacterial and antiviral applications [7–16]. They
present antibacterial and antimicrobial activity against
Gram-negative and Gram-positive bacteria and some vi-
ruses as well [17–19]. Silver ions attack several targets in
the bacteria making the development of resistance difficult
[20]. The enormous surface area of nanoparticles improves
its penetrability into the cell, enhancing their antimicrobial
action [21].
AgNPs can be produced by chemical [22, 23], physical

or biological routes [24, 25]. Biological synthesis uses
clean routes, without producing toxic residues. AgNP
biosynthesis can be performed using bacteria [7, 26],
fungi [27–30], yeasts [31], plant extracts [32, 33], cyano-
bacteria [34], algae [35, 36], and actinomycetes [37]. This
synthesis can be extra- or intra-cellular [38–41].
Fungi are easy microorganisms to manipulate as they

grow in mycelial form; they are more resistant facing
adverse conditions and provide a cost-effective large-
scale production [42]. For these reasons, fungi appear to
be interesting microorganisms for the green synthesis of
silver nanoparticles. Fungus Aspergillus tubingensis is
part of the black Aspergilli as well as A. niger, A. carbo-
narius, and A. aculeatus [24, 41–46] that grows on plant
material. Many species of Aspergillus section nigri ex-
hibit important biochemical differences in secretome
[47–49]. A. tubingensis, used in this instance, was iso-
lated as an endophytic fungus from Rizophora mangle
[28]. Similar to other fungi, A. tubingensis is unable to
import polymeric compounds into the cell and relies on
enzymatic degradation to produce monomers or oligo-
mers from different plant polymers among which poly-
saccharides are the major constituents [50, 51]. Due to
structural differences in the plant polysaccharides, their
effective degradation depends on an efficient system that
regulates the production and secretion of different en-
zyme cocktails.
A. tubingensis is normally grown in a rich medium,

such as potato dextrose agar (PDA), removed from it
and washed with clean and distilled water originating
the fungal filtrate (FF), rich in proteins and fungal me-
tabolites. Then, Ag(I) aqueous solution is added into the
FF where redox reactions occur and AgNPs are formed
[51, 52]. Although various investigations have reported
the mechanism of production of AgNPs obtained
through this extracellular synthesis using different bio-
logical agents [33, 38–40], little is yet known about the

role and nature of fungal proteins and also about their in-
teractions with AgNPs and the subsequent stabilization of
the as-produced nanosilver [51–55].
Interactions between nanosilver and proteins lead to

AgNP stabilization and the formation of nanoparticle-
biomolecular-capped structures [56–58] that could be
monitored by different techniques. These biophysical and
biochemical interactions occur through covalent bonds
and electrostatic interactions [59, 60]. Silver nanoparticles
can be complexed with the thiol HS– (Cys) or amine
H2N– groups [61–63] of the proteins and through electro-
static interactions [64] that have less impact on protein
conformation and function. Sometimes, proteins cova-
lently bound to AgNPs attract other proteins in order to
form protein–protein-specific or nonspecific interactions
that are an important part of the nanosilver-protein
multilayer.
In an attempt to better understand biogenic AgNP

stabilization with extracellular fungal proteins and to de-
fine these supramolecular interactions, we have chosen
biogenic nanosilver with positive zeta potential. To the
best of our knowledge, the present study is the first to
report such data on covalently bound proteins to biona-
nosilver (AgNPs), synthesized by A. tubingensis. Biogenic
AgNPs, of well-defined size and distinct morphology, are
formed through the reduction of an aqueous solution of
Ag(I) by a fungal filtrate.
Although the involvement of proteins in the reduction

of the Ag(I) ions and the stabilization of a newly formed
AgNPs has been described [23, 28, 64, 65], data about
the way these proteins act are scarce. To fill the gap, the
present study was devised in order to identify the pro-
teins that promote the formation of AgNPs and those
involved in the stabilization of the same nanomaterials.

Methods
All chemicals used in this study were purchased from
Sigma-Aldrich (St. Louis, MO, USA) and used without
further purification unless otherwise stated.
Fungal strain of A. tubingensis (AY876924) was provided

by I. S. Melo (Embrapa/CNPMA, Brazil) and is part of the
culture collection of the “Embrapa Recursos Genéticos e
Biotecnologia (CENARGEN)” in the “Collection of Micro-
organisms for Biocontrol of Plant Pathogens and Weeds”
(http://mwpin004.cenargen.embrapa.br/jrgnweb/jmcohtml/
jmcoconsulta-externa.jsp?idcol=11) under the number
CEN1065.

Silver Nanoparticle Synthesis
The endophytic fungi A. tubingensis was cultivated in
potato dextrose agar medium (PDA) at 28 °C for 7 days.
Afterwards, the fungal colonies were transferred to tubes
containing 5 mL of saline solution (9 % NaCl). The ob-
tained suspension was added to 150 mL of potato
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dextrose broth (PDB) in a 1-L Erlenmeyer flask and in-
cubated in an orbital shaker (Marconi MA420, Brazil) at
25 °C and 150 rpm for 72 h. After this period, the bio-
mass was filtered using a polypropylene membrane and
washed with sterile water. After incubation with sterile
water at 25 °C and 150 rpm for 72 h, the biomass was
removed and the fungal filtrate (FF) was obtained using
a cellulose acetate membrane of 0.22 μm.
For AgNP synthesis, 1 mL of AgNO3 solution (0.1 mol

L-1), previously filtered through a cellulose regenerated
membrane (0.22 μm), was added to 99 mL of the FF to
reach a final concentration of 1 mmol L−1. The flask was
kept at 25 °C and protected in dark for 96 h. The formation
of AgNPs was monitored using a UV-Vis spectrophotom-
eter (Agilent 8453). Control (FF without any silver ions)
was used as blank. The average size (z-average) of AgNPs
was measured by dynamic light scattering (DLS) (Nano ZS
Zetasizer, Malvern Instruments Corp, UK) at 25 °C in poly-
styrene cuvettes with a path length of 10 mm. The zeta
potential was measured in capillary cells with a path length
of 10 mm, using the same instrument. The samples were
diluted with 0.1 mmol L−1 NaCl before the analysis.

Characterization of the Proteins Capping the AgNPs
FTIR spectroscopy measurements were carried out from
KBr tablets of two samples, AgNPs and FF, and were re-
corded in an ABB Bomem (MB series, USA) instrument
with a resolution of 4.0 cm−1 and in an interval from
4000 to 400 cm−1.
Raman spectroscopy measurements were implemented

at the Instituto de Química, Universidade de São Paulo
and recorded in a Renishaw InVia Reflex equipment
coupled to a DM2500M Leica microscope using 632.8
and 785 nm lasers at 3 mW and 30 mW, respectively.
Fifty-second accumulation in a total of three scans to each
sample between 100 and 1800 cm−1 range were obtained,
at 4 cm−1 resolution. All samples were analyzed in suspen-
sion and solid KCl was added in order to promote aggre-
gation; however, no visual change was noticed.
LC-MS/MS analysis were performed at Laboratório

Dalton, Instituto de Química, Universidade Estadual de
Campinas using a nanoACQUITY chromatograph with a
UPLC (Waters) coupled to a Synapt HDMS spectrom-
eter (Waters) with QTOF geometry equipped with a
nanoESI source operating in the acquisition-dependent
data mode (ADD).
After being quantified by the Bradford method [66],

proteins from the FF and linked to the AgNPs were ana-
lyzed by LC-MS/MS according to a method based on
denaturation followed by digestion using the trypsin en-
zyme (Sequencing Grade Modified Trypsin, Promega),
desalting and concentration. The resulting solutions
were centrifuged (10 min at 17,000×g) and the super-
natant was transferred into appropriate vials. Then, the

samples were injected into the UPLC system, first pass-
ing through the precolumn (Waters Symmetry C18,
20 mm × 180 μm, particles 5 μm), being desalted during
3 min with a flow of 5.0 μL min−1 with 97:3 water/aceto-
nitrile with 0.1 % formic acid (v/v) and, afterwards, they
were transferred to the analytical column (Waters C18
BEH130, 100 mm ID × 100 μm, particles of 1.7 μm).
Finally, the samples were eluted with a flow rate of
1.0 μL min−1 by varying the gradient of mobile phases
with a gradient of buffer A (water/formic acid 0.1 %, v/
v) and B (acetonitrile/formic acid 0.1 %, v/v) at the rates
of 97:3, 70:30, 20:80, 20:80, 97:3, and 97:3 at 0, 40, 50,
55, 56, and 60 min, respectively. The identification of
the peptides was done using the online version of the
Waters software with a mass spectrometer (Synapt HDMS-
Waters) configured to operate in dependent acquisition
data (ADD) mode containing a function MS full-scan (m/z
200–2000), a three function fragment ion spectrum (MS/
MS, m/z 50 to 50 units over the m/z of the precursor) and
a function of external standard calibration (lock-mass, m/z
200–2000). All spectra were acquired at a rate of 1 Hz. The
other parameters were capillary voltage of 3.0 kV, cone
voltage of 30 V, source temperature of 100 °C Gas Flow
nanoESI 0.5 L h−1, collision energies of 6:04 eV and a
1700-V detector. The acquisition of raw data was per-
formed with ProteinLynx Global Server v.2.2 software
(Waters). Data treatments for the deconvolutions of raw
spectra were performed with Transform software (Micro-
mass, UK). MASCOT v.2.2 system (Matrix Science Ltd.
http://www.matrixscience.com). Data banks were searched
in order to identify the fungal proteins.

Results and Discussion
Biogenic AgNP formation through a fungal-based extra-
cellular synthesis is a known, efficient, green, and rela-
tively fast way for AgNP production [28, 58, 61, 62, 65,
67, 68] as this process takes a few days to complete
(Fig. 1a). Herein, the biogenic synthesis was monitored
by UV-Vis spectroscopy (Fig. 1b). The formation of
AgNPs was completed within 72 h after the FF was chal-
lenged with AgNO3, in good agreement with what was
previously reported [28]. The UV-Vis spectrum displays
two main bands, an SPR band at 440 nm, characteristic of
the AgNP presence, and an additional band at 280 nm,
which could be attributed to the aromatic amino acids of
the capping proteins [69]. It is well-known that the ab-
sorption band in this region arises due to the electronic
excitations in tryptophan, tyrosine and/or phenylalanine
residues in fungal proteins [69–71]. These results confirm
the AgNPs formation and the presence of fungal proteins.
Silver nanoparticles were characterized, and their aver-

age diameter and zeta potential were evaluated. In DLS
analysis, these AgNPs showed a hydrodynamic diameter
of 264.9 ± 3.2 nm and relatively low polydispersity (0.32)
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(data not shown herein, already presented in [28]). Their
zeta potential was positive with a value of + 8.48 ± 0.45 mV
which could be indicative of low-charged surfaces and,
consequently, unstable AgNPs [72], contrary to what was
observed during a 6-month period. The high AgNPs stabi-
lity might be attributed to the fungal protein-capping
around the particles what confers them steric stability. The
average diameter measured by TEM was 35 ± 10 nm
(Fig. 1b and other data shown previously [28]). This value
is smaller when compared to that measured by DLS, be-
cause in the latter technique the hydrodynamic diameter
(particles and stabilization protein-capping) is taken into
account [28], on the other hand, TEM allows the measure-
ment of the AgNP diameter without the surrounding cap-
ping layers. Once again, strong evidence for fungal proteins
linked to the silver nanoparticles was obtained.
Protein adsorption on the surface of biogenic AgNPs

was also confirmed by FTIR spectroscopy (Fig. 2). For ex-
ample, the peptide bond exhibits characteristic bands
denominated amide A, B, I-VII. The Fermi resonance that

occurs among the first overtone of amide II and the N–H
stretching vibration create the bands amide A (about
3500 cm−1) and amide B (about 3100 cm−1) [72–76]. The
band in 1600–1700 cm−1 named amide I is related with
the C =O stretching vibration from the backbone con-
formation [72]. The amide II band arises from the N–H
bending vibration and from the C–N stretching vibration
[73] and is conformational sensitive. The complex bands

Fig. 1 a Image of the fungal filtrate and the AgNP suspension. b UV-Vis spectra obtained for AgNP suspension using FF as blank. c Electronic
Transmission micrograph showing the AgNPs

Fig. 2 FTIR spectra of the fungal filtrate (black) and AgNPs (red)
carried out in KBr tablets

Fig. 3 Raman spectra of AgNPs recorded with laser excitations of
632.8 nm and 785 nm. The main wavenumbers discussed further in
text are pointed
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Amide III and IV originates from a mixture of several co-
ordinate displacements [77]. The symmetric and asym-
metric vibrations of the C–H groups result in bands at
2920–2950 cm−1, respectively [78], while bands at 1620 to
1650 cm−1 are attributed to –C(O)– of peptide bonds
and/or –NH2 groups and those at 1380–1030 cm−1 to C-
N bonds [74, 75].
According to the FTIR results the proteins on AgNP

surface did not undergo relevant secondary structure
alteration along with their interaction with AgNPs, nor
when covalently bonded to them as reported in other
published data [50, 51]. The interaction between the
proteins and AgNPs might be covalent bound to the
amino groups, cysteine residues, and/or electrostatic in-
teractions via carboxyl groups.
The Raman spectra (Fig. 3) indicate the presence of

protein-capping at the surface of the investigated AgNPs
[77, 79, 80], confirming the DLS results for the hydro-
dynamic diameter. Moreover, Raman spectroscopy enable
observe if the protein binding to the surface occurs via free
amino groups or through cysteine residues. The spectrum
excited at 632.8 nm presents little vibrational information

about the molecules at the AgNP surface. The broad band
at around 214 cm−1 can be assigned to an overlap between
the Ag–Cl vibration (given the presence of Cl–) and an
Ag–S vibration suggesting an interaction between superfi-
cial Ag and the cysteine (HS–) group of the capping pro-
teins. When the samples were excited at 785 nm, strong
bands assigned to the adsorbed proteins are observed at
1338 and 1768 cm−1, assigned to the amide III and amide I
modes, respectively, as already discussed in the FTIR re-
sults above. Bands at 1120 and 1138 cm−1 are assigned to
NCH stretching and CCH bending modes, respectively,
and 1234 cm−1 to vibrations in antiparallel β-sheet in the
protein structure [81]. A broad and weak band related to
the amide II mode is present at approximately 1635 cm−1,
which was expected to be at lower frequencies (below
1600 cm-1). The observed blue shift is associated to a
response of the protein bonding to AgNPs, increasing the
vibrational frequencies of the free amine II mode. On the
other hand, it was expected to detect HCS bending
between 800 and 900 cm−1. However, such peak was not
present in any of the obtained spectra reinforcing that the
binding of protein to the AgNP surface occurred mainly

Fig. 4 Illustration of the data obtained in performed MS/MS analysis. a The chromatogram is showing the eluation times for the AgNPs trypsin-hydrolyzed
sample where sample’s peptides are given from 0 to 50 min; the peptide (red box) at 32.26 min was selected for posterior identification in MS.
b Mass spectrum that corresponds to the peptide from 32.26 min (red box in a). c MS/MS data and procedure followed for the identification
of the peptide sequence for the peptide from 32.26 min (red box in a)
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through the –SH groups. In such case, the amino group
remains free and may perform hydrogen bonds with other
proteins or water, contributing hence to the large hydro-
dynamic radius and the low charge surface of these NP.
Therefore, proteins detected in AgNPs are covalently
bound to the silver through S–Ag bonds, principally, and
with some adhered proteins via electrostatic or other pro-
tein–protein interactions.
The protein identification in the dispersion of AgNPs

was performed starting from the protein tryptic lysis
followed by LC-MS/MS analysis [82–88]. An illustration
of the LC-MS/MS results obtained for proteins capping
AgNPs is shown in Fig. 4 and all identified proteins are
shown in Additional file 1: Table S1. The most intense
signals in the chromatograms of peptides were selected
for further fragmentation and, after obtaining their MS
spectra, three to five most intense m/z ions were frag-
mented in MS/MS spectra allowing us to associate an
amino acid sequence for a fragmentation pattern, as
exemplified for one of the identified peptides (Fig. 4).
Mass spectrometry analyses enabled the identification

of eight (8) proteins in the AgNPs dispersion and these
are presented in Additional file 1: Table S1. All of them,
secreted by A. tubingensis, display low isoelectric points,
ranging from 4.0 to 5.1, characteristic for acidic proteins.
Their molecular masses varied from 39 to 65.5 kDa.
A. tubingensis was grown in broth whose pH was 6.5

to 6.8 and, therefore, the fungus extracellular proteins
should exhibit negative charge due to the deprotonation,
which could increase the zeta potential of the synthe-
tized AgNPs. Nevertheless, the positive zeta potential of
approximately 8 mV, which should be indicative of low-
charged surfaces, is probably a consequence of these
protein-capping deprotonation. Some published data on
chemical AgNPs and protein interactions also report
similar observations [50].
Among identified proteins, we have found glycoamilase

(1,4-α-D-glucanglucohydrolase, EC 3.2.1.3), acid phosphat-
ase (EC 3.1.3.2), serine carboxipeptidase (EC 3.4.21.26),
and glucanosyltransferase (EC 2.4) that are illustrated in
Fig. 5. All these proteins are involved in metabolic path-
ways of the fungi and belong to hydrolases [56, 89–93],
important for carbon, phosphorous, and nitrogen up-
take, respectively, and for the fungal growth. Further-
more, all identified hypothetic proteins also constitute
the secretome of A. tubingensis. Although of unknown
function, these proteins, which contain the signaling se-
quences at the N-terminal, are always secreted, and
their probable functions are associated with metabolic
supplies.

Conclusions
Silver nanoparticles were biosynthesized using the se-
creted proteins from the fungus A. tubingensis. This

fungal filtrate in contact with AgNO3 produced within
72 h AgNPs with 264.9 ± 3.2 nm in the hydrodynamic
diameter, 35 ± 10 nm in the nanoparticle diameter and
with a zeta potential of + 8.48 ± 0.45 mV. The nanoparti-
cle formation was followed by UV-Vis spectroscopy, and
the increase in the intensity of the SPR band was ob-
served during AgNPs synthesis. The presence of fungal
proteins in the AgNPs dispersion was verified by all
spectrometric and spectroscopic analyses used. The
FTIR along with the Raman data enabled us to identify
the amino I, II, and III bands of proteins adhered to
AgNP surface. Proteins formed covalent bonds with atoms
at the surface of AgNPs surface due to their cysteine resi-
dues (Ag–S bonds) most likely. Secondary and tertiary
structure features of proteins were preserved even when
they were chemically bound to Ag atoms at the surface of
the NPs. Eight proteins from A. tubingensis secretome
were identified by MS/MS. All data collected and analyzed

Fig. 5 a Illustration of the 3D structures (in ribbon) of the most
important biogenic AgNP proteins identified using MS/MS in
biogenic AgNP characterization. b Representation of the proteins
around the AgNPs
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strongly indicate that not all fungal proteins bind to
the formed AgNPs. However, some proteins enable the
synthesis of AgNPs and provide stability to the formed
nanosilver, not only through covalent bonds, but also
due to attraction of other proteins through hydrogen
bonds, electrostatic, or other supramolecular interac-
tions, forming a multilayer, as evidenced by zeta po-
tential measurements and size determinations of the
AgNPs.

Availability of Data and Materials
Mass spectrometry data treatments for the deconvolutions
of raw spectra were performed with Transform software
(Micromass, UK). MASCOT v.2.2 system (Matrix Science
Ltd. http://www.matrixscience.com) and the data bank
(UniProt http://www.uniprot.org/) searches were done in
order to identify fungal proteins.

Additional File

Additional file 1: Table S1. Aspergillus tubingensis identified protein in
the silver nanoparticles (AgNP) capping using LC-MS/MS. (DOC 58 kb)
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