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Abstract

How the processing of signals carried by sensory neurons supports perceptual decisions is a 

longstanding question in neuroscience. The ability to record neuronal activity in awake animals 

while they perform psychophysical tasks near threshold has been a key advance in studying these 

questions. Trial-to-trial correlations between the activity of sensory neurons and the decisions 

reported by animals (“choice probabilities”), even when measured across repeated presentations of 

an identical stimulus provide insights into this problem. But understanding the sources of such co-

variability between sensory neurons and behavior has proven more difficult than it initially 

appeared. Below, we discuss our current understanding of what gives rise to these correlations.

Our perceptual experience of the outside world depends upon the signals delivered to the 

brain by spiking activity of sensory neurons. How the processing of these inputs allows us to 

make decisions about the world is a long-standing puzzle in neuroscience . The ability to 

record neuronal activity in awake animals while they perform psychophysical tasks near 

threshold has been a key advance in studying these questions. One observation early on was 

that there are trial-to-trial correlations between the activity of sensory neurons and the 

decisions reported by animals, even when measured across repeated presentations of an 

identical stimulus . Thus the activity of sensory neurons contains some information about an 

animals’ upcoming decision, in addition to information about the physical stimulus. The 

question of what this finding may or may not tell us about how the activity of sensory 

neurons is linked to perceptual decisions, has engaged experimental and theoretical 

neuroscientists for many years. Below, we discuss our current understanding of what gives 

rise to these correlations. In the interest of focus, we will restrict the review of experimental 

work to studies in the macaque monkey but similar observations have increasingly been 

made in other species.
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 Feed-forward interpretations and the role of noise-correlations

The first study to show a correlation systematically predicting choice , studied neurons in 

primate MT while monkeys performed a direction discrimination task with moving random 

dot patterns. They quantified the correlation with a non-parametric measure called “Choice 

Probability” (CP), which has been widely used since. This calculates the probability that a 

random pick from the measured spike count distribution associated with “preferred” choices 

is greater than a random pick from the distribution for “null” choices. This is equal to the 

proportion of responses that an ideal observer would predict choice correctly, given the spike 

count from two neurons. Britten et al reported a mean CP of 0.55, indicating a modest, but 

systematic correlation between spike count and choice. Similar observations have been 

reported in a number of sensory cortical areas –, and for a variety of tasks {Bo –.

In a task with two possible responses, uncorrelated activity would produce a CP of 0.5, so a 

mean value of 0.55 seems small at first sight. But from one perspective it is puzzlingly large. 

Suppose that CP arises because stochastic fluctuations in the activity of sensory neurons 

determine the animals’ choices near threshold. If the random fluctuations in firing rate were 

independent for all the neurons involved, and there are a large number of neurons (more than 

100), then the contribution of any one neuron to the choice would be much smaller than 

this . This study simulated a simple pooling framework, in which a binary decision was 

based on the summed activity of model neurons in two pools, each contributing evidence 

towards one of the choices. Shadlen et al pointed out that the paradox can be resolved if the 

fluctuations are not independent, but instead are positively correlated. Indeed, such “noise 

correlations”, i.e. correlations between pairs of sensory neurons that cannot be explained by 

changes in the stimulus, are commonly observed in cortical neurons (see for a review). A 

crucial requirement for the emergence of CP in this model is that these noise correlations 

have a particular structure, with high correlations between neurons that belong to the same 

pool, and weaker correlations between neurons in opposite pools ,. Again this is compatible 

with the observed properties of noise correlations, which tend to be stronger in neurons with 

similar response properties (e.g. –). Thus, observed CP are quantitatively compatible with a 

simple model in which the summed activity of sensory neurons produces psychophysical 

choices.

Recently, derived an analytical expression for the magnitude of CP in pooling models in 

which the decision is based on a linear weighting of sensory neurons. It helps to understand 

many simulation results, including those described by , and highlights the dependence of a 

neuron’s CP on it’s noise-correlation with the rest of the population.

 The importance of noise correlations for neuronal population codes

We describe above how noise correlations play a central role in explaining CP. They also 

significantly influence how reliably a population of neurons encodes information about the 

sensory stimulus ,. Some simple cases can be understood intuitively. If noise is independent 

in each neuron, then averaging the responses of many neurons will reduce the impact of the 

noise. If in a large pool of neurons the pairwise correlations are uniform and positive, this 

implies that a single common input drives the correlated fluctuations (Fig. 1). No matter how 
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many neurons are pooled, the fluctuations driven by this common input will remain, and so 

the information available about the stimulus saturates as a function of the number of 

neurons.

While intuitions derived from these simple cases are helpful, they can be misleading. An 

important result , (Fig. 2A, B) leads to a very different picture: if the members of a given 

pool have some variation in their response functions (e.g. differences in amplitude) an 

optimal linear decoder can in general recover information that does not saturate with pool 

size. Figure 2A illustrates a simple case. Notice that the optimal decoder has weights that 

depend upon knowledge of noise correlations. A “correlation-blind” decoder will in general 

be suboptimal.

An important recent study discovered the conditions under which correlations lead to a limit 

in the growth of information with pool size even for an optimal linear decoder . For a single 

pair of neurons, the important parameter is the product of their sensitivity (the slopes of the 

tuning curves of the two neurons) to stimulus changes. If the noise fluctuations in a large 

population lie along a direction defined by the sensitivity of all the neurons, they will be 

information-limiting. One way to think about this result is as the pattern of correlations that 

would be observed if there were no neuronal noise, but if the experimenter changed the 

visual stimulus. This implies that the pattern of correlations would mimic changes in the 

stimulus (Fig. 2C). A pattern of correlations that cannot be distinguished from a change in 

the stimulus obviously produces uncertainty about the stimulus. If the correlations in a 

population contain a significant component of this sort, they place an upper limit on the 

information available. Moreno-Bote et al go on to show that it is difficult to detect the 

presence of such information limiting correlations simply by measuring pairwise 

correlations. It is necessary to study the activity of entire populations to reveal this feature.

 Evidence for feed-forward models and optimal linear readout?

Thus the relationship between information, correlations, and choice probability is 

complicated, and at first sight it looks like progress will be difficult with the current tools. 

But a recent study provided a powerful way to examine the relationship under a set of 

assumptions. First, the psychophysical behavior is at threshold. Second, the brain uses an 

optimal linear decoder of a sensory population. This implies, third, that the decision process 

is noise free. For such a scheme, in the case where information-limiting correlations are 

present, there is a simple relationship between the neurometric threshold (a measure of the 

discrimination performance of individual neurons based on signal detection theory) and the 

CP for a given neuron. It predicts the relationship between CP and the ratio (neurometric 

threshold)/(psychometric threshold) for neurons in that sensory population. Pitkow at 

al. then analysed CP data from a study of neurons in area MST while animals reported the 

direction of heading in a virtual reality display, and found that they were compatible with the 

predicted relationship.

Neurons in area MSTd also show CP for the direction heading task in complete darkness, 

where the only available information is from vestibular afferents. This produces an 

opportunity to explore the contribution of peripheral afferents to CP, since for the vestibular 
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system these are fairly simple to interpret. found significant CP in neurons recorded in the 

vestibular nucleus, which at first sight seems to support a feedforward explanation. However, 

there are feedback projections from the cortex to the vestibular nucleus, so these could 

equally play a role in generating CP (see next section). Whatever the origin, this group 

provided the strongest empirical test that noise correlations are indeed central role in 

producing CP. Unilateral labyrinthectomy significantly altered the structure of noise 

correlations in the vestibular nucleus , and this produced changes in CP as predicted by 

theory .

More recently, the same group also reported the activity of the otolith afferents , which pose 

an interesting challenge to the linear read-out framework. Similar to cortical neurons, the 

threshold performance of single neurons was only slightly poorer than that of the animal. 

Given the large number of afferent neurons (ca. 6,000; ), this suggests that there must be 

information limiting correlations. Despite this, the observed CP did not deviate significantly 

from 0.5 – that is there was no evidence for a correlation between neuronal activity and 

choice for the otolith afferents. The lack of significant CPs can be readily explained in a 

feedback framework (see below), as there are no feedback projections to the otolith. But to 

explain this result in a linear framework as e.g. used by , seems to require an extremely sub-

optimal read-out , contrary to what has been found in the cortex. (Similarly, a recent 

comparison of the sensitivity for color between the signals in the retina and behavior or 

cortical signals in V1 also suggested sub-optimal read-out of the primary afferents .) One 

possibility is that nonlinear transformations that are applied downstream make it impossible 

to recover all of the information available to a linear decoder of the afferents.

Such nonlinearites may play an important role in sensing translation, since information in 

the otolith afferents cannot differentiate translation from changes in pose relative to gravity. 

The ambiguity is resolved by nonlinear combination of afferent signals in the vestibular 

nucleus . However, it is important to note that in the context of the particular task used by Yu 

et al (2015) it was not necessary to perform the disambiguation because a linear decoder 

applied to the otolith afferents is sufficient for the task. For future work it is therefore 

important to extend the linear framework successfully applied to the cortex to include 

nonlinear downstream computation. It is possible that many of the principles we have 

learned from linear decoders will remain broadly applicable. On the other hand, if nonlinear 

operations downstream of a given sensory population can substantially change these 

relationships, it is essential we understand the differences.

 Feed-back interpretations of choice probability and the origin of noise-

correlations

The theoretical insights above ,, seem entirely feedforward – noise in the sensory 

representation simply propagates all the way to the animal’s choice. However, the central 

role played by structured noise correlations in these accounts make other explanations 

equally possible. Indeed, a number of observations–, including the discrepancy in time 

course between CPs and a metric quantifying the weights the animal gives to the visual 

stimulus (‘psychophysical kernel amplitude’) as a function of time , have challenged purely 
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feedforward explanations. Importantly, a positive noise correlation between a pair of neurons 

only indicates that they receive some common input that is not derived from the stimulus. A 

frequent interpretation is that this reflects noise on shared afferent inputs (entirely 

feedforward), but any other process that generates a common input to a group of neurons 

could in principle explain the results (Fig. 1). These could include “top-down” or feedback 

phenomena, such as effects of attention. Note that we here use a broad definition of feedback 

(top-down) signals, as reflecting signals arising anywhere but the ascending sensory 

processing chain preceding the recorded neuron. The question as to whether CPs reflect only 

feed-forward or also feedback phenomena therefore becomes a question about the origin of 

noise-correlations with the required structure.

It is useful to consider one simple way in which a well-recognized top-down process could 

give rise to these structured correlations. In area MT, it is well established that feature-based 

attention can alter the firing rates of neurons in a way that depends on their preferred 

directions . If an animal is instructed to attend to leftward motion, the activity of neurons 

with preferred directions near this direction is increased on average, while the activity of 

rightward preferring neurons is reduced. The opposite pattern is produced if animals are 

instructed to attend to rightward motion. Now consider the possibility that during a left-right 

discrimination task the animal engages this same mechanism, sometimes attending to 

leftward motion, sometimes attending to rightward motion. This fluctuation in feature-based 

attention will produce exactly the pattern of noise correlations required to produce CP, with 

high correlations between pairs that both prefer leftward (or rightward) motion (because they 

are affected in the same way by changes in feature attention), and low correlations between 

neurons with opposite preferred directions (which are affected differently by feature 

attention).

One prediction of this account of CP is that changes in task instruction should give rise to 

changes in noise correlations – when doing a left-right discrimination, fluctuations in feature 

based attention to left and right will not much alter correlations involving neurons with 

preferred directions that are up or down. Cohen and Newsome (2008) recorded from pairs of 

MT neurons while animals performed direction discrimination. The animals performed two 

versions of the task, along different axes, but crucially used the same zero-signal stimulus in 

both tasks. Thus any changes in noise-correlation measured during presentation of that 

stimulus must reflect an effect of task instruction. Cohen and Newsome did indeed find 

changes with task instruction that were compatible with the scheme laid out above.

Because fluctuations in feature based attention give rise to structured correlations, they will 

also generate CPs, if the sensory population is read out with a linear decoder. This situation 

is almost indistinguishable from the standard feedforward model – the only difference is the 

proposed source of noise correlations. This illustrates how the question of what causes CP is 

reduced to the question of what gives rise to structured noise correlations (Fig. 1).

Recent studies have found that noise correlations can be influenced by a number of brain 

states such as attention (e.g. – task engagement , task difficulty, learning , or anesthesia . 

Most of these studies observed uniform changes in noise correlation, not changes in the 

structure of the noise correlations, and would therefore not influence CPs. (But see also who 
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observed changes in the structure of noise correlations with spatial attention for a 

discrimination task.) Statistical modeling , has explained noise correlations in anesthetized 

and alert animals not performing a task with slow stochastic fluctuations in a global response 

gain of the neuronal population. A recent elegant extension of these approaches could 

explain the changes in correlation with spatial attention with gain fluctuations that affected 

the neuronal population in each hemisphere independently. The gain fluctuations were 

strongest in task relevant neurons, while task irrelevant neurons were barely affected. This 

suggests that these fluctuating gain modulations are not noise but rather “meaningful 

intrinsic signals” . Global gain modulations could reflect fluctuations in alertness, possibly 

mediated by neuromodulators , while the gain modulations restricted to one hemisphere 

could reflect fluctuations in spatial attention as observed behaviorally . Note that while these 

particular fluctuations with spatial attention did not give rise to changes in the structure of 

noise correlations and hence would not affect CPs, they may be analogous to the fluctuations 

in feature attention suggested by Cohen and Newsome (2008) , which would impact CPs. 

The observation of a multitude of such systematic gain fluctuations raises the question about 

their computational role in the brain.

A number of studies have proposed useful functions for this kind of feedback, (e.g. ,) but one 

framework in which they play a particularly principled role is probabilistic inference. This 

combines prior knowledge about the world with incoming sensory information to infer the 

most likely source of inputs and has long been proposed to underlie perception (e.g. –). 

Indeed, a recently proposed neural implementation of probabilistic inference using neural 

sampling , could explain a number of experimental observations on noise correlations, their 

structure, and CPs. In this framework , cortical sensory neurons (e.g. neurons in MT) are 

influenced by feedforward input from the sensory periphery (e.g. the retina) and by top-

down influences reflecting prior information about the likely structure of the sensory inputs. 

In the model this prior information reflects the subject’s beliefs about the sensory inputs. In 

a psychophysical task (e.g. up vs down direction discrimination), a subject typically knows 

what the discriminanda are (e.g. upward motion and downward motion). The top-down 

influences on MT neurons therefore will reflect this knowledge. If the belief about the most 

likely stimulus fluctuates from trial to trial (on some trials the belief is more upward motion, 

on other trials more downward motion), this will introduce noise-correlations. Importantly, 

the structure of the noise correlations will reflect the subject’s knowledge of the task. It will 

change with the task, exactly as observed by Cohen and Newsome (2008), and more recently 

by in an orientation discrimination task. If the belief relies on information from the 

preceding choice, this could also explain recently observed effects of preceding choices on 

the activity of visual neurons in a discrimination task . The model also predicts that neurons 

with higher selectivity for the task show stronger noise correlations (similar to the 

observation by ). Its strengths are testable predictions about the structure of noise 

correlations depending on the task and offering a computational role for feedback.

Enormous progress has been made in understanding how sensory neurons support perceptual 

decisions. Computational models that apply a linear decoder to neurons in a given sensory 

representation have tremendously advanced our understanding of the nature of how sensory 

neurons support perceptual decisions. They not only describe CPs, but also constrain the 

relationship between neuronal signals and psychophysical performance. An important step 
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for the future is to extend this framework to include nonlinear computations downstream of a 

given sensory population. Neural variability, long regarded as noise, is increasingly viewed 

as partly reflecting the effect of previously unexplained or ignored signals. Understanding 

their origin and functional role are important challenges not only for understanding CP, but 

also the representation of all types of information in the brain.
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Highlights

• Decision-related activity (choice-probabilities, CP) in sensory neurons is 

widely found

• Correlated variability in sensory neurons limits information in some cases

• The structure of correlated variability in sensory neurons influences CPs

• CPs and correlated variability likely have feed-forward and feed-back 

sources
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Figure 1. 
A simple scheme that produces the structured correlations required for CP in pooling 

models. The response of each neuron on any trial is the sum of two terms – a noise term that 

is independent for each neuron, and a common input that is the same for each neuron within 

a pool. The common inputs produce uniform positive noise correlations between pairs of 

neurons within a pool, but no correlation between pools. As N becomes large the pooled 

signals become dominated by the common input terms, since the independent noise terms 

tend to cancel. Thus the choices of the model (whether pooled up > pooled down) are largely 

determined by the common input terms. These therefore also determine CP in the model 

neurons. This property of linear pooling models remains true regardless of what gives rise to 

the common input terms. Whether these reflect noise in afferent neurons, or feedback from 

higher areas makes no difference.
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Figure 2. 
Positive noise correlations need not limit the information available in a single pool, provided 

there is heterogenous tuning. A Consider a population of upward preferring neurons 

composed of two types: one with stronger rate modulation (type A) and the other weaker 

(type B). A common input to the pool (both type A and type B) generates uniform positive 

correlations between all pairs (see Fig. 1). The right panel illustrates across different trials of 

two stimulus strengths (S1 and S2), showing a high correlation between the trial-by-trial 

responses of the two neurons (blue and green circles, respectively). However, taking the 

difference of the responses between neuron A and B (bottom panel, black circles) removes 

this correlated noise, without losing the information about the stimulus. For illustration, a 

high correlation between the two neurons was used. Note that if the trial responses here 

represented the sum over a large population of type A neurons and type B neurons, the 

correlation would indeed approach 1 as pool size increases. This is because mean is 

dominated by the common input. The tuning heterogeneity means this subtraction produces 

a signal whose mean still depends on stimulus strength, so that here the ratio signal/noise 

increases with the number of neurons, with no upper bound. This is illustrated in panel B, 
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where Fisher information is plotted for increasing homogeneous neuronal populations (left) 

and heterogeneous neuronal populations (right). The two top panels schematically depict the 

tuning curves in the respective populations (modified, with permission, after Ecker et al. 

2011). C The situation when even an optimal linear decoder cannot remove the effect of 

correlated noise is illustrated with only two neurons. Left panel: the tuning curves of two 

neurons to the task relevant stimulus are shown. Right panel: The blue line depicts the 

response trajectory that corresponds to changes of the stimulus along the task-relevant 

dimension. If the correlated noise affects the population response along this trajectory, it is 

information limiting, since it cannot be differentiated from changes in the stimulus.
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