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SUMMARY It has been argued theoretically and confirmed experimentally that conduction velocity
(6) should be proportional to nerve fibre diameter for myelinated fibre tracts, such as normal
peripheral nerve, exhibiting ‘structural similarity’. In some axons, however, the nodes of Ranvier
are more closely spaced than in normal peripheral nerve. Analytic arguments have suggested that
when internodal distance (L) alone is changed, the plot of 6 versus L should have a relatively flat maxi-
mum. This was confirmed by several previous computer simulations of myelinated axons, but
internode lengths of less than half the normal case were not examined. In order to gain insight into
impulse propagation in myelinated and remyelinated fibres with short internodal lengths, the
present study examines the conduction velocity and spike configuration for a wide range of inter-
nodal lengths. As L becomes large, 8 falls and finally propagation is blocked; as L becomes small,
0 decreases more and more steeply. From this, it is predicted that for fibres with very short internodal

lengths, small local changes in L. should affect substantially the conduction velocity.

Theoretical arguments suggest that neuronal con-
duction velocity should be proportional to fibre
diameter for myelinated fibre tracts which exhibit
‘structural similarity’ (Rushton, 1951 ; Goldman and
Albus, 1968). One of the conditions of structural
similarity is that internode distance should vary
linearly with fibre diameter. Normal peripheral
nerves satisfy this constraint for a ‘similarity class’,
and the experimental data indicate that conduction
velocity is, in fact, approximately proportional to
fibre diameter (Hursh, 1939; Gasser and Grundfest,
1939; Tasaki et al., 1943). However, the nodes of
remyelinated peripheral fibres are more closely
spaced than in normal peripheral nerve (Sanders and
Whitteridge, 1946; Schroder, 1975), and they fall into
a different similarity class. Their conduction velocities
differ from those of normal peripheral axons with the
same diameter. Other axons with more closely spaced
nodes include remyelinated axons in the central
nervous system (Suzuki et al., 1969; Gledhill et al.,
1973) as well as preterminal fibres in the neuropil
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(Waxman, 1970, 1972; Lindsey, 1975), and in some
white matter tracts (Meszler et al., 1974).

Huxley and Stampfli (1949) suggested that con-
duction velocity in myelinated nerve fibres should
have a maximum at a particular internode distance,
and that the maximum should be relatively flat. They
also predicted that the internodal distances of normal
peripheral nerve fibres should fall close to the value
for maximum conduction velocity. Several studies
(Goldman and Albus, 1968; Hardy, 1971) have
tended to confirm this prediction but failed to cover
the other similarity classes noted above, because
internode lengths used were not short enough (less
than one-half normal). Therefore, we have used
computer simulations of conduction in myelinated
fibres to examine the dependence of conduction
velocity and spike configuration on internode
distance. Throughout these simulations, the diameter
(d), nodal length (NL) and nodal area are fixed and
only the internode length (L) is varied (see Table).

Methods

We used a modification of the model of FitzHugh
(1962). The equation to be integrated is
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where:

V  isthe potential across either the nodal membrane

or myelin.
re is the axial resistance of the fibre per unit length.
c(x) is the capacitance per unit length, the trans-
myelin capacitance ¢ in the internodal region,
and the nodal capacitance ¢~ at a node of
Ranvier.
im is the ionic current per unit length of membrane.
In the internodal regions,

in(x,)=gmV(x,0) (2a)

where g is the myelin conductance per unit length.
At each node j,

NL Ax NL

im(x,)=Inu.nd. ———+ [V;.gml (2b)

where the current density 4 is given by

Tua=gnamPhs[Vi— Vel +grnilVi— Vkl+
gdVi-vi ()
where my, n; and h; satisfy the usual differential
equations in time (Hodgkin and Huxley, 1955;
FitzHugh, 1962).

These equations were numerically integrated by
the Crank-Nicholson method implemented in
FORTRAN on a PDP 9 computer. This method has
been used for unmyelinated fibres (Moore et al., 1975)
and was adapted for the myelinated fibre by R. W.
Joyner This modified Crank-Nicholson method was
found to give fast and accurate computation of

Table Parameters
Symbol Explanation Value Units
ENa sodium conductance 1.2 mho/cm?
gk potassium conductance .09 mho/cm?
8L leakage conductance .02 mho/cm?
\ resting potential 0 mV
Via sodium equilibrium potential* 115 mV
Vi potassium equilibrium

potential —12 mV
\73 leakage equilibrium potential —.05 mV
d axon diameter (inner

diameter of myelin sheath) 10 pm
NL nodal lengtht 3.183 pum
Ta axoplasmic resistance per

unit axon length} 1.26 x 10® ohm/cm
34 myelin conductance per

unit length 5.60x10-°* mho/cm
(373 myelin capacitance per unit

axon length 1.87x10-'* F/cm
cN nodal capacitance per unit

axon length § 3.14x10"* F/cm
L internodal distance variable

* All voltage signs are reversed from those of the original Hodgkin-
Huxley formulation.

t Calculated from nodal area of 100 um'

1 Calculated from speclﬁc axopl of 100 oh

§ Calculated from per unlt area of 10-* F/cm?®.
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impulse propagation and is described in detail by
Moore et al. (in preparation). Extensive investigations
into the variety of mathematical models for mye-
linated fibres showed that the impulse propagation
velocity was sensitive to the relative values of nodal
to internodal characteristics but rather insensitive to
changes in the description of the nodal membrane
ionic currents.

Because of the insensitivity of propagation velocity
to nodal ionic descriptions, we chose to describe the
nodal membrane by the most convenient expression
for excitable membranes, the Hodgkin-Huxley
equations. The parameters used to describe our
standard myelinated fibre are given in the Table. The
rumbers of sodium and potassium channels were
increased by factors of 10 and 2.5, respectively, to
match the nodal conductances measured by voltage
clamp methods (Dodge and Frankenhaeuser, 1959).
The nodal resting resistance was made compatible
with the 55 megohms measured by Tasaki (1955) by
increasing gz from 0.003 to 0.02 mho/cm?. Then, to
restore the resting potential to 0 mV, we changed V.
from +10.6 mV to —0.05 mV. We adjusted the rate
constants to 20°C by multiplying all rate constants by
3@0-6.3)/10, We used a value of 5.60 X 10-® mho/cm
for gm, the myelin conductance, and a value of
1.87 x 10-11 F/cm for cu, the myelin capacitance.*

Our method requires that the space increment 4x
be larger than the node length NL, and we assign a
lumped membrane capacitance to space increments
containing a node as:

¢nNL+Cu(4X— NL) @
ax )

We used ten space segments per internodal distance L
for all cases except L =25 pm, where it was necessary
to reduce the number of segments to five, so 4X
could exceed NL.

Although the method of numerical integration
used was found to be unusually stable (compared to
other methods which we tried), the largest value of
the time increment which could be used without
oscillations varied with the internodal length L. How-
ever, we found that the computations were convergent
and stable when 4¢ of 10 us was used for L=1000 pm,
and a 4z of 5 ps for L <1000 pm.

We found that as L was decreased, the current
stimulus pulse and the termination artefact spread
inward into more and more nodes. For an internodal
length greater than 1000 um, a steady velocity of
propagation obtained within two nodes of either end,
and for these computations we used only 12 nodes.
As L was decreased from this value, the number of

c*=

* These values are 20%; higher than the values used by Moore et al.
(in preparation) because of a logarithmic expression for the cylindrical
geometry.
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nodes was increased in each case (up to 50 for an L of
25 pm) so as to obtain a sufficient region of uniform
velocity of propagation. Nevertheless, because of the
efficiency and stability of our integration method, we
were able to reduce the overall computation time
several-fold compared to previous methods.

Using these conditions and the above description,
we investigated the internodal conduction time and
conduction velocity when only the internodal length
was varied. The internodal conduction time for a
constant velocity impulse was taken as the difference
in times at which the rising phase crossed 50 mV at
two consecutive nodes. Impulse velocity was inferred
from internodal conduction time. The time course of
the action potential was plotted for several values of
internode length L, and the dependence of the action
potential shape on this parameter was thus seen.

Results

Figure 1A shows that the internodal conduction
time (ICT) is a monotonically increasing function of
internodal distance L. For small L, the relationship
is linear, but it departs from linearity as it goes above
2000 um. Figure 1B presents the same data in the
form of impulse conduction velocity as a function of
L. There is a broad maximum between 1000 and
2000 um, which corresponds to observations on frog
sciatic nerve (FitzHugh, 1962) and agrees with the
predictions of Huxley and Stimpfli (1949). Velocity
decreases steadily for L above 2000 um, and there is
conduction failure before L reaches 10000 pm.
Although internodal distances this large have not
been observed, the simulation behaviour is interesting
to note. For L= 10 000 um, a spike may be made to
spread over the first three or four nodes with very little
attenuation but proceeds no further. Apparently a
strong step of stimulating current will spread enough
so that the currents at the first few nodes exceed the
threshold for activity. However, the normal currents
generated by nodal action potentials are much
smaller and are not able by themselves to sustain
sufficient depolarisation and conduction at more
distant nodes. For internodal lengths less than
1000 um, the conduction velocity decreases dramatic-
ally. Itis clear from Figure 1B that, for short internode
lengths, the velocity is very sensitive to L.

Figure 1C presents the same data as the travel time
per unit distance (1/6) as a function of the logarithm
of L (to show the effect of relative changes of L). For
small values of L, the travel time depends almost
linearly on equal relative changes in L. Of course, the
travel time is least sensitive to L in the 10002000 xm
region.

Having carried out these computations for only
one value of d (10 um, which we henceforth call do),
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Fig. 1 (A) Plot of the internodal conduction time (ICT)
of a steadily propagating action potential versus internodal
distance L. (B) Plot of the velocity 8 of a steadily
propagating action potential versus internodal distance L.
(C) Plot of 10 for a steadily propagating action potential
versus L. 1/0 represents the time for an impulse to travel
one metre, and L is displayed logarithmically to show the
change in 1/0 accompanying relative changes in L.

we can take any point on the curve to represent a
different ‘similarity class’. By using Rushton’s (1951)
correspondence principle, we can interpret Figs. 1B
and 1C more generally for different axon diameters.
Rushton postulated that peripheral nerve fibres fall
into an equivalence class in which fibres exhibit
‘dimensional similarity’. Dimensional similarity
requires that internode length, myelin thickness, and
nodal area vary directly with fibre diameter. Given a
class of fibres that exhibit dimensional similarity and
in which the intrinsic membrane properties are all
the same, Rushton showed that internodal conduction
time should be the same for all fibres of the class—
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that is, conduction velocity varies linearly with fibre
diameter.

Therefore, given a fibre with certain internode
length L and impulse velocity 8, we can generalise
Figs. 1B and 1C to fibres of other diameters by scaling
8 and L by d/d,. It should be noted that dimensional

20mV

O'5ms
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similarity breaks down when nodal length is not
negligible compared to internodal length, so it may
not apply to fibres with the lowest values of the ratio
L/d (Waxman and Bennett, 1972). Furthermore,
Coppin and Jack (1972) have shown that the inter-
nodal conduction times of small peripheral myelin-

I>

Fig. 2 (A) Plot of voltage versus time for steadily propagating action potentials corresponding to several
values of L. For ease of comparison, peak times are made to coincide. Curves A-D represent L=50, 2000,
8000, and 9500 um, respectively; (B) the potential at nine internodal points (labelled 1-9) between nodes 4 and

5 (Na, Nis) for the case L=9500 pm (see text).
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ated fibres deviate from the constant value predicted
from dimensional similarity. Nevertheless, predic-
tions derived from dimensional similarity do appear
to apply to large myelinated fibres (FitzHugh, 1973;
Waxman, 1975).

Figure 2A presents the time course of an action
potential propagating at constant velocity, for several
values of L. The shape and amplitude of the impulse
depends strongly on L. For L= 50 pm (A), the falling
of the action potential shows a slight ‘gratuitous
hump’ which is characteristic of action potentials
calculated from the Hodgkin-Huxley (1952) equa-
tions. As the internodal length is increased, the hump
disappears by 2000 ym (B), and by 8000 um (C) the
undershoot is masked by a positive shoulder late in
the falling phase of the action potential. For lengths
just short of maximum (9500 pum, D), this shoulder
has become a distinct hump. To ascertain the origin
of this shoulder, we computed the potential at each
of nine equidistant internodal points between nodes
4 and 5. As shown in Fig. 2B, the secondary hump is
the result of electrotonus from the spike at node 5.

Discussion

From the maximum in Fig. 1B and the minimum in
Fig. 1C, it is clear that fibres with L/d=150 do not
suffer large changes in  when L/dis changed modestly.
This is consistent with the observation that, in re-
myelinated peripheral axons as compared to control
axons, conduction velocity is reduced, but to a
statistically insignificant degree (Sanders and Whitter-
idge, 1946). On the other hand, the simulations predict
that fibres with small L/d would be quite sensitive to
variations in L/d. This sensitivity might provide in-
sight as to a possible physiological significance of the
fact that some normal (Waxman, 1970; Meszler et al.,
1974; Lindsey, 1975) and remyelinated (Gledhill
et al., 1973) CNS fibres have an L/d ratio that is much
less than for normal peripheral nerve fibres. Because
the nerve impulse velocity is insensitive to small
changes in L/d, there would not seem to be any signal-
processing significance to minor local changes in L in
peripheral fibres. On the other hand, for CNS fibres
with small L/d ratios, we cannot ignore the effects of
small local changes in L on signal processing, because
the velocity of propagation depends so dramatically
on L. In those central fibres where L/d is normally
very small (Waxman, 1970, 1972; Meszler et al., 1974;
Lindsey, 1975), local changes in L may allow fine
tuning of the times of arrival of impulses at synapses
or provide a convenient way of presetting route-
dependent travel times in the central nervous system
(Bennett, 1968; Waxman, 1975). For central re-
myelinated fibres where L/d is substantially reduced
(Gledhill et al., 1973), the present results would also
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suggest a marked reduction in conduction velocity.
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