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ABSTRACT
Species-rich genus Primula L. is a typical plant group with which to understand

genetic variance between species in different levels of relationships. Chloroplast

genome sequences are used to be the information resource for quantifying this

difference and reconstructing evolutionary history. In this study, we reported the

complete chloroplast genome sequence of Primula sinensis and compared it with

other related species. This genome of chloroplast showed a typical circular

quadripartite structure with 150,859 bp in sequence length consisting of 37.2% GC

base. Two inverted repeated regions (25,535 bp) were separated by a large single-copy

region (82,064 bp) and a small single-copy region (17,725 bp). The genome consists

of 112 genes, including 78 protein-coding genes, 30 tRNA genes and four rRNA

genes. Among them, seven coding genes, seven tRNA genes and four rRNA genes

have two copies due to their locations in the IR regions. The accD and infA genes

lacking intact open reading frames (ORF) were identified as pseudogenes. SSR and

sequence variation analyses were also performed on the plastome of Primula sinensis,

comparing with another available plastome of P. poissonii. The four most variable

regions, rpl36–rps8, rps16–trnQ, trnH–psbA and ndhC–trnV, were identified.

Phylogenetic relationship estimates using three sub-datasets extracted from a matrix

of 57 protein-coding gene sequences showed the identical result that was consistent

with previous studies. A transcript found from P. sinensis transcriptome showed a

high similarity to plastid accD functional region and was identified as a putative

plastid transit peptide at the N-terminal region. The result strongly suggested that

plastid accD has been functionally transferred to the nucleus in P. sinensis.

Subjects Genomics, Plant Science
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INTRODUCTION
Chloroplast is one of the most important organelles in green plant cells, and plays

a central role in plant photosynthesis. Sequence data from chloroplast genomes (or

plastomes) has been widely used in phylogenetic studies, because of its recombination-

free and maternal inheritance (Graham & Olmstead, 2000). More importantly, they are
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structurally highly conserved, which facilitates PCR primer design and sequencing

(Shaw et al., 2005; Shaw et al., 2014). However, obtaining accurate phylogenies using a

small standardized set of chloroplast genes is challenging in some rapidly evolving plant

groups, such as Gaertnera (Malcomber, 2002). Recently, chloroplast phylogenomics has

been successfully used in several plant groups since the advent of 454 and/or Illumina

technologies (Moore et al., 2006; Cronn et al., 2008; Ma et al., 2014; Ruhfel et al., 2014;

Parks, Cronn & Liston, 2009), which offer an increasingly easy-to-access source of

characters to resolve ambiguous phylogenetic relationships in some rapidly evolved

plant groups (Folk, Mandel & Freudenstein, 2015; Wysocki et al., 2015).

The structure or functional change for the chloroplast genome is interesting as well.

The chloroplast is considered to be a descendant of cyanobacterium-like progenitors

(Raven & Allen, 2003). Since its endosymbiotic origin, the size of the chloroplast genome

has been greatly reduced (Timmis et al., 2004). This shrunken genome is the consequence

of the loss or transfer of genes to the nucleus (Martin et al., 2002). Loss of genes has

been found in many lineages of angiosperms (Blazier, Guisinger & Jansen, 2011;

Li et al., 2013). Meanwhile, only four genes transferred to nucleus have been confirmed

by several studies, including infA, accD, rpl22 and rpl32 (Millen et al., 2001; Ueda et al.,

2007;Magee et al., 2010; Jansen et al., 2011; Park, Jansen & Park, 2015). To better understand

this transfer, it is necessary to explore more data from both the plastid and nucleus at a wide

range of angiosperms.

The genus Primula L. is one of the largest genera in the family Primulaceae, and it was

characterized by a rapid speciation at East Himalaya-Hengduan Mts. Region (Hu, 1994;

Richards, 2003; Yan et al., 2015). Understanding the chloroplast genome of this genus will

benefit us in constructing a solid phylogeny of the genus in the future. However, the

complete chloroplast sequences of species in this genus still have been poorly understood

except for a recently released chloroplast genome of P. poissonii Franch. without additional

analyses (Yang, Li & Li, 2014).

In this study, we released a complete chloroplast genome of an endemic Primula species

in China, P, sinensis Sabine ex Lindley, by using high-throughput sequencing technology.

To start with this plastome sequence, firstly, we characterized gene content, sequence

variation, and compared with other related species, which will facilitate further

phylogenetic studies of the genus. Secondly, we verified the accD gene lacking intact

open reading frames (ORF) from P. sinensis plastid and search clue in its transcriptome

to get lines of evidences for functional transfer to nucleus.

MATERIALS AND METHODS
Library preparation and Illumina sequencing
Fresh leaves of P. sinensis were collected from the South China Botanical Garden, Chinese

Academy of Sciences (CAS). Modified CTAB method was used to isolate whole-genome

DNA (Porebski, Bailey & Baum, 1997). RNAs in the initial extracts was digested by

RNase A to acquire pure genomic DNA. Eight primer pairs involved in this study were

designed according to Yang, Li & Li (2014), to amplify the whole chloroplast genome

sequence. Primers were designed to cover inverted repeat region only once. A region of
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approximately 16 kb was amplified by each primer pair. Long-range PCR was performed

with 25 ml reaction system by using Primestar GXL DNA polymerase (TaKaRa Bio.,

Dalian, China). Reactions were initially denatured for 1 min at 95 �C, followed by 35

cycles of 10 sec at 94 �C, 1 min at 60 �C, and 15 min at 68 �C. Eventually the additional
extension step performed on 5 min at 68 �C.

PCR products were mixed to build pair-end library using Nextera XT DNA Library

Prep Kit (Illumina Inc., San Diego, CA, USA). PCR products mixture was fragmented into

∼300 bp size by the Nextera XT transposome. Library Sequencing acquired 2� 250 bp

paired reads using Illumina Miseq Desktop Sequencer at Kunming Institute of

Botany, CAS. All reads data were deposited to NCBI SRA database with an accession

number SRP068226.

Plastome assembly and annotation
Reads were assembled using CLC Genomics Workbench v7.5.1 (CLC Bio., Aarhus,

Denmark) after removing adaptors and trimmed low quality reads. Assembly was

conducted twice separately with two different k-mer value 60 and 64. Contigs generated

by assembling were subjected to BLAST searches against the complete chloroplast

sequence of P. poissonii (NC_024543). Then, relative position and direction of each

hitting contig were determined. Subsequently, hitting contigs were assembled manually

to acquire complete chloroplast sequence in Geneious R7 (Biomatters, Auckland,

New Zealand). The resulting plastome sequence was used as the reference, which was

subsequently verified by remapping initial reads. Regions of four SC-IR junctions were

identified by Sanger sequencing using four pair primers. Primer sequences used in

this study can be found (Table S1).

Plastome annotation was performed using DOGMA (http://dogma.ccbb.utexas.edu/)

(Wyman, Jansen & Boore, 2004) and compared with other Primulaceae species in

alignment matrix. Annotations of each gene was adjusted to appropriate start and stop

codons in accordance with the genetic codon for plant plastid. Incomplete genes identified

from P. sinensis were verified by Sanger sequencing. The names of a few genes were

updated according to the latest study, including ycf3 to pafI and ycf4 to pafII (Wicke

et al., 2011). The annotated chloroplast genome sequence was submitted to GenBank

(accession number: KU321892). Finally, a circular genome map was illustrated using

OGDRAW (http://ogdraw.mpimp-golm.mpg.de/) (Lohse et al., 2013).

Sequence variance and SSR analysis
To further identify highly variable regions in chloroplast genome of Primula, sequences

of P. sinensis and P. poissonii were compared according to variability (Pi). Alignment

was performed with MAFFT version 7 (Katoh & Standley, 2013). The genetic diversity

(Pi) were calculated in each split regions (400 bp) of alignment using DnaSP version 5

(Librado & Rozas, 2009). The adjacent split regions were overlapped each other with

300 bp. Gaps in the alignment were excluded from analysis. With the variance of

recommended barcode rbcL + matK + ITS as reference (Yan et al., 2015), the top

40 regions with most variable sites, whose aligned lengths are longer than 200 bp were
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extracted for the next informative character (PICs) analysis. We followed the method of

Shaw et al. (2005) to count manually the numbers of nucleotide substitutions and indels

for each regions and plot them in Fig. 3.

To detect and locate simple sequence repeats (SSRs), GMATo v1.2 (Wang, Lu &

Luo, 2013) was used to screen the chloroplast sequence of two Primula species. The

parameter settings of mononucleotide and dinucleotide to hexanucleotide were at least

eight repeat units and four repeat units, respectively.

RNAseq and accD gene characterizing
Total RNA was extracted using a modified CTAB method. Quantified total RNA

(concentration � 100 ng/mL; rRNA ratio � 1.5) was delivered to Majorbio (Shanghai,

China), where cDNA sequencing was performed with Illumina Hiseq4000 platform. Raw

data were filtered and deposited in the Sequence Reads Archive (SRA) database under

accession number SRX1665905. The cleaned reads were assembled de novo using Trinity

with the default parameters to obtain 48,887 unisequences. Eight different software,

namely TargetP (Emanuelsson et al., 2000), Protein Prowler (Hawkins & Bodén, 2006),

BacelLo (Pierleoni et al., 2006), CELLO2GO (Yu et al., 2014), Euk-mPLoc2 (Chou & Shen,

2010), EuLoc (Chang et al., 2013), HybridGO-Loc (Wan, Mak & Kung, 2014), and

Predotar (Small et al., 2004), were used to identify the subcellular location signals from

N-terminal sequence of putative nuclear-encoded protein.

Phylogenetic analysis
Plastome of P. sinensis together with eight other plastomes published previously from

different genera in Ericales was involved in this phylogenetic analysis, and Agrostemma

githago from Caryophyllales was used as outgroup. All plastomes used in this study are

available in GenBank (Table S2). A total of 57 plastid protein-coding genes were

concatenated to generate three data sets according to the different strategies, such as

all CDS, codon1+2 and condon3, respectively. On the other hand, the fourth datasets

were generated including 30 pt-accD genes from six families in Ericales and putative

n-accD gene in P. sinensis. All sequences from four datasets were aligned using the default

option implemented in MAFFT version 7 (Katoh & Standley, 2013). Maximum likelihood

(ML) trees was constructed with RAxML (RAxML-VI-HPC, http://www.trex.uqam.ca/)

using GTR + C nucleotide substitution model (Stamatakis, 2006). Branch supports

were assessed with 500 bp replicates.

RESULTS AND DISCUSSION
Chloroplast genome assembly
The P. sinensis chloroplast genome was sequenced using Illumina Miseq sequencer,

producing total number of 2� 250 bp pair-end reads 2,640,572. The mean coverage

depth is about 3,838.8�, ranging from 40� minimum to 25,814� maximum. Two

assemblies with different k-mer values successfully generated identically complete

sequence with no gaps. Six contigs from assembly with k-mer value 60 were

matched to reference plastome sequence, which was used to determine relative position
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and direction respectively. A new draft chloroplast genome was generated by

identifying overlap regions manually. The draft genome was then checked and

corrected according to quality and coverage of each base position by reads remapping

(Fig. S1). The annotated genome was deposited into GenBank under the accession

number KU321892.

Features of the P. sinensis chloroplast genome
The chloroplast genome of P. sinensis has a total length of 150,859 bp. It is divided

into three parts: 82,064 bp of large single-copy (LSC) region, 17,725 bp of small

single-copy (SSC) region, and two inverted repeat (IR) regions with 25,535 bp of one

copy in length. The nucleotide composition of this genome has a GC content of 37.2%.

Comparative analysis revealed that the genome structure of P. sinensis shared a high

similarity structure to other Primulaceae species (P. poissonii NC_024543, Lysimachia

coreana NC_026197, Ardisia polysticta KC465962) (Ku, Hu & Kuo, 2013; Son &

Park, 2014) (Table 1).

A total of 112 genes were detected in this chloroplast genome, which could be

classified into 78 protein-coding genes, 30 tRNA genes and four rRNA genes. Among

them, seven coding genes, seven tRNA genes and four rRNA genes have two copies due

to their locations in the IR regions. As we expected, split genes also exist in this

plastome. Among them, 15 genes contain an intron and two genes have two introns

(Table 2; Fig. 1).

In particular, the rps12 gene is interrupted into three pieces which resulted in trans-

splicing because of its first exon located in LSC, while its second and third exons located

in IRs (Hildebrand et al., 1988). Notably, the phenomena that two coding regions

sharing overlapped sequence with different reading frames was found in psbD and psbC,

atpE and atpB, and rps3 and rpl22. In addition, three genes, rps19, ndhF and ycf1, cross the

LSC-IRb, IRb-SSC, SSC-IRa boundary, respectively. Furthermore, the ndhF 3′-terminal

sequence shares the region in the IRb with the rest of ycf1 5′-terminal sequence, while

the IRb-SSC boundary of P. poissonii was separated from the start codon of ndhF with

10 bp length (Fig. 2). Significantly, the accD in P. sinensis were identified as pseudogene

with an extremely reduced ORF. Meanwhile, the infA lacked intact ORF in P. sinensis,

P. poissonii and L. coreana, which strongly indicated that pseudogenization remains

occurred in certain angiosperm groups. Further studies are necessary to focus on the

mechanism of occurrence of these pseudogenes and applications of orthologous genes

for phylogenetic analysis.

SSR analysis of Primula sinensis
Perfect SSRs were screened in P. sinensis and P. poissonii conducted by GMATo v1.2.

Mono-, di- and tri-nucleotide repeats were found in both species (Table 3). The total

number of SSRs in P. sinensis chloroplast genome is 193, of which 148 homopolymers,

44 dipolymers and 1 tripolymers are respectively found in this genome. Among them,

85.49% SSRs are only composed of A/T bases. Similar quantity level and base proportion

of SSRs were also found in P. poissonii (Tables S3–S5).
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Sequence variation in two Primula plastomes
Although the chloroplast genome of P. sinensis has a similar genome structure in gene

contents and orders in comparison with P. poissonii, there are considerable differences

in noncoding regions, especially in intergenic sequence (IGS) regions. Highly divergence

regions are potential molecular genetic markers for population genetics studies. We

therefore compared the regional divergence of chloroplast genome sequences of these two

Primula species. The Pi value generated by DnaSP version 5 was used to indicate the

level of divergence between P. sinensis and P. poissonii (Fig. S2). Then, the top 40 regions

with most variable sites, with aligned length longer than 200 bp, were extracted from the

alignment for further analysis (PIC calculation).

The result shows the genetic diversity (Pi) varied from 0–0.47 (Table S6). Most of

the variation occurs in the non-coding regions of the LSC and SSC, while less variable

characters were found in IRs. The four most variable loci, namely rpl36–rps8, rps16–trnQ,

trnH–psbA and ndhC–trnV, were identified. All of these loci have been reported previously

(Shaw et al., 2007). Remarkably, rpl36–rps8 exhibits the improved degree of variation.

A total of 41 regions had been extracted to calculate their PICs (Fig. 3). Comparing

the result with sequence variance, PICs are considered to be affected by sequence

length apparently. For example, the trnH-psbA spacer has the lower number of PICs as

its aligned length is only 213 bp. In contrast, ycf1 have the high PICs with the sequence

length coming up to 2,500 bp in total. However, difficulties in primer designing and PCR

Table 1 Comparison of the general features of four plastomes in Primulaceae.

Primula sinensis
(KU321892)

Primula poissonii
(NC_024543)

Lysimachia coreana
(NC_026197)

Ardisia polystica
(KC465962)

Plastome size

Total size 150,859 151,664 155,386 156,506

LSC size 82,064 83,444 85,229 86,078

SSC size 17,725 17,822 17,951 18,328

IR size 25,535 25,199 26,103 26,050

Base content (%)

Total A content 31.1 31.1 31.1 31.2

Total T content 31.7 31.8 31.8 31.8

Total C content 19 18.8 18.9 18.9

Total G content 18.2 18.2 18.2 18.2

LSC GC content 35.2 34.9 35 34.9

SSC GC content 30.5 30.1 30.5 30.2

IR GC content 42.8 42.9 42.9 43

Total GC content 37.2 37 37.1 37.1

Number of genes

Total 112 113 113 114

Protein encoding 78 79 79 80

tRNA 30 30 30 30

rRNA 4 4 4 4
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amplification limit them (such as ycf1) for further phylogenetic use. We therefore

recommend rpl32–trnL, trnS–trnG, pafII–cemA, trnC–petN, trnT–trnL, trnK–rps16 as

efficient chloroplast markers, considering their balanced PICs and length size, although

additional researches of their utilities are necessary in future.

Pseudogenization of pt-accD and evidence for transfer to nucleus
AccD gene encodes b subunit of the Acetyl-CoA Carboxylase, which is unique related to

fatty acid synthesis within the chloroplast. Gene knockout experiments in tobacco

indicated that accD gene function is indispensable, suggesting it should be an essential

gene (Kode et al., 2005). So far, several researches have reported that lack of a plastid

accD (pt-accD) gene or pseudogenization of pt-accD are widely present in multiple

distant lineages, including Acoraceae, Campanulaceae, Ericaceae, Fabaceae, Geraniaceae

and Poaceae (Goremykin et al., 2005; Guisinger et al., 2008; Haberle et al., 2008; Magee

et al., 2010; Fajardo et al., 2013; Harris et al., 2013;Martı́nez-Alberola et al., 2013), which

implied the lack of pt-accD gene or events of pseudogenization occur independently.

Owing to its fundamental function in plastid development, there should be some

Table 2 Gene contents in Primula sinensis chloroplast genome (112 genes, two pseudogenes).

Category Class Gene

Genetic apparatus DNA-dependent RNA polymerase rpoA, rpoB, rpoC1*, rpoC2

Maturase matK

Large ribosomal subunits rpl2*(x2), rpl14, rpl16*, rpl20, rpl22, rpl23(x2), rpl32, rpl33, rpl36

Small ribosomal subunits rps2, rps3, rps4, rps7(x2), rps8, rps11, rps12, rps14, rps15, rps16*, rps18, rps19

Protease clpP**

Ribosomal RNAs rrn4.5(x2), rrn5(x2), rrn16(x2), rrn23(x2)

Transfer RNAs trnH-GUG, trnK-UUU*, trnQ-UUG, trnS-GCU, trnG-UCC*, trnR-UCU, trnC-GCA,

trnD-GUC, trnY-GUA, trnE-UUC, trnT-GGU, trnS-UGA, trnG-GCC, trnfM-CAU,

trnS-GGA, trnT-UGU, trnL-UAA*, trnF-GAA, trnV-UAC*, trnM-CAU, trnW-CCA,

trnP-UGG, trnI-CAU(x2), trnL-CAA(x2), trnV-GAC(x2), trnI-GAU*(x2), trnA-UGC*(x2),

trnR-ACG(x2), trnN-GUU(x2), trnL-UAG

Light-dependent

photosynthesis

Photosystem I psaA, psaB, psaC, psaI, psaJ

Photosystem II psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK, psbL, psbM, psbN, psbT, psbZ

NAD(P)H dehydrogenase complex ndhA*, ndhB*(x2), ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, ndhJ, ndhK

F-type ATP synthase atpA, atpB, atpE, atpF*, atpH, atpI

PS I assembly factor pafI**, pafII

Cytochrome b6/f complex petA, petB*, petD*, petG, petL, petN

Light-independent

photosynthesis

Inner membrane protein cemA

Cytochrome c biogenesis protein ccsA

Large subunit of Rubisco rbcL

Other Function unknown ycf1, ycf2(x2), ycf15(x2)

Pseudogene Subunit of acetyl-CoA-carboxylase accD

Translation initiation factor infA

Notes:
* Represent gene with one intron.
** Represent gene with two introns; “x2” represent gene location within IR region; Bold represent genes with alternative splicing.
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reveal GC content in dark grey with the 50% threshold line.
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equivalent genes replaced functionally in other subcellular structures. In recent years, a

few case of nuclear encoded accD genes (n-accD) originated from plastid have been

found in different taxa, such as Sciadopitys verticillata (Sciadopityaceae) (Li et al., 2016),

Trifolium repens (Fabaceae) (Magee et al., 2010), Trachelium caeruleum

(Campanulaceae) (Rousseau-Gueutin et al., 2013). These n-accD genes share a similar 3′-

terminal region with pt-accD genes which corresponds to the carboxylase domain, while

the 5′-terminal regions are completely different from pt-accD. Products of these n-accD

have a putative transit peptide at the 5′-terminus. The functional prediction suggests

that the transit peptide guides the protein product relocation to chloroplast.

Fluorescence microscopy showed that n-ACCD-GFP fusion protein was imported in
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Figure 2 Comparison of the SC-IR boundary of four plastomes from Primulaceae.

Table 3 Number of chloroplast SSRs present in two Primula species.

Taxon Length (bp) GC%

Number of SSRs

Homo (> 8 units) Di (> 4 units) Tri (> 4 units) Total

Primula sinensis 150,859 37.20% 148 44 1 193

Primula poissonii 151,664 37% 129 46 2 177
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plastids contained in tobacco guard cells (Rousseau-Gueutin et al., 2013), which

provided strong evidence that nuclear encoded accD gene still returns to plastid to play

its roles as the same as other subunits of nuclear-encoded plastid ACCase do.

In this study, plastid accD locus in Primula sinensis shows the truncated gene with

incomplete ORF. We found a portion of pt-accD gene near the start position was absent

with about 400 bp in length by comparing with other plastomes from Primulaceae.

This deletion has been verified by PCR amplification using a pair of primers located

on both flanks. Reads mapping also showed high coverage levels on flanking regions of

the deletion. Due to the presence of the deletion, pt-accD coding sequence was terminated

prematurely with the introduction of the stop codon. The remaining ORF with

residual sequences does not include the conserved functional region. Actually, pt-accD

has become a pseudogene, with a deletion involved (Figs. S3 and S4).

Owing to its important function in plastid development, accD should probably be

transferred into other subcellular structures, and still retained its catalytic activity

(Rousseau-Gueutin et al., 2013). We therefore checked the transcriptome of P. sinensis

using P. poissonii pt-accD as reference. The result of blast searching showed only one

transcript, which was highly identical to the plastid accD functional region of P. poissonii.

This transcript contained an intact ORF encoding a protein with 362 amino acids.

In comparison with pt-accD sequences of other related species (such as Androsace

0

100

200

300

PI
C P

i

0.1

0.2

0.3

0

trn
H-

ps
bA

ps
bA

-m
at

K
m

at
K

trn
K-

rp
s1

6
rp

s1
6-

trn
Q

ps
bK

-p
sb

I
trn

S-
trn

G
trn

G
 in

tro
n

at
pH

-a
tp

I
rp

s2
-rp

oC
2

rp
oB

-tr
nC

trn
C-

pe
tN

pe
tN

-p
sb

M
ps

bM
-tr

nD
trn

T-
ps

bD
ps

bZ
-rp

s1
4

ps
aA

-p
af

I
pa

fI-
trn

S
trn

T-
trn

L
trn

L-
trn

F
trn

F-
nd

hJ
nd

hC
-tr

nV
pa

fII
-c

em
A

pe
tA

-p
sb

J
ps

bE
-p

et
L

pe
tL

-tr
nP

trn
P-

ps
aJ

ps
aJ

-rp
l3

3
rp

l2
0-

cl
pP

cl
pP

-p
sb

B
rp

l3
6-

rp
s8

nd
hF

 p
ar

t
nd

hF
-rp

l3
2

rp
l3

2-
trn

L
cc

sA
-n

dh
D

ps
aC

-n
dh

G
nd

hG
-n

dh
I

nd
hA

 in
tro

n
rp

s1
5-

yc
f1

yc
f1

 p
ar

t1
yc

f1
 p

ar
t2

rb
cL

+m
at

K+
IT

S

Indels

NSs

Pi

LSC SSC

Figure 3 Bar plot that compares potential marker regions with PICs and genetic diversity (Pi). PICs were determined as the sum of nucleotide

substitutions and indels. Barcode rbcL +matK + ITSwas used here as a reference as proposed previously for the barcoding analysis of genus Primula

(Yan et al., 2015).

Liu et al. (2016), PeerJ, DOI 10.7717/peerj.2101 10/18

http://dx.doi.org/10.7717/peerj.2101/supp-1
http://dx.doi.org/10.7717/peerj.2101/supp-1
http://dx.doi.org/10.7717/peerj.2101
https://peerj.com/


bulleyana, Lysimachia coreana and Ardisia polystica, Fig. 4), the ORF of this transcript

is different from pt-accD coding regions of other species. However, their C-terminal

regions are conserved, which all contained three putative motifs, such as acetyl-CoA

binding sites, carboxybiotin binding sites and carboxyltransferase catalytic sites (Lee

et al., 2004). In contrast, N-terminal of the ORF shows no similarity against any plastid-

encoded sequences (Fig. 4). In order to test whether the software (TargetP and Protein

Prowler) affect the results of subcellular localization prediction of this putative protein-

encoded sequence, we also predicted the protein sorting signals using other six software

(BacelLo, CELLO2GO, Euk-mPLoc2, EuLoc, HybridGO-Loc, and Predotar). Our

conclusion of the protein subcellular localization was confirmed by identical results

provided by other software (data not shown). Prediction results showed a chloroplast

transit peptide of 72 residues length located at the N-terminus (Fig. 4). The chloroplast

transit peptides of nuclear-encoded plastid proteins (NUPTs) are necessary for targeting

and import of proteins into chloroplasts. It is strongly suggested that plastid accD has

been functionally transferred to the nucleus in P. sinensis. This is the fourth report

in angiosperms (to our knowledge) for the transferability of accD gene with lines of

solid evidences.

Phylogenetic analysis of the n-accD transcript in P. sinensis with pt-accD from other

30 species, which belongs to six families in Ericales, was performed by RAxML. This

dataset contained multiple alignment of 31 sequences of the C-terminal functional

regions, since the regions are relatively conserved as discussed above. The maximum

likelihood tree showed n-accD from P. sinensis was located within the clade of the

Primulaceae with P. poissonii as the sister group (Fig. 5). Considering the close

relationship between P. sinensis and P. poissonii, this result probably indicated that accD

of P. sinensis might have transferred to nucleus recently. Available data showed that

complete pt-accD genes have been lost functionally from three species, Arbutus unedo

e

e

e

e

A

CB D

e

Figure 4 Alignment of the putative nuclear accD from Primula sinensis and the plastid accD from Primula poissonii, Androsace bulleyana,
Lysimachia coreana and Ardisia polystica. (A) indicates the putative transit peptide at the N-terminal region of nuclear accD. (B, C, D) indicates

three putative motifs, acetyl-CoA binding sites, carboxybiotin binding sites and carboxyltransferase catalytic sites, respectively.
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(JQ067650), Vaccinium macrocarpon (JQ757046), and Chamaedaphne calyculata

(KJ463365) in Ericaceae. It is likely that the missing or pseudogenization of pt-accD

genes occurred accidently and independently in Ericales.
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Phylogenetic analysis based on plastome sequence
The family interrelationships within the large order Ericales, constrained by the data

available, have remained unclear (Anderberg, Rydin & Källersjö, 2002; Bremer et al., 2002;

Geuten et al., 2004). Recently, advances in high-throughput sequencing have provided

a large amount of data, which was an improvement of the phylogenetic resolution

(Wen et al., 2013; Yang et al., 2015). With the expectation, nine plastome sequences

represented different genera in Ericales involved in phylogenetic analysis, with

Agrostemma githago as outgroup. Phylogenetic relationships were inferred using 57 plastid

protein-coding genes. As we know, the third base position of codon evolves faster than the

rest of two positons with higher substitution rate. ML trees were produced by using three

different datasets, all coding sequence, codon 1 + 2 and codon3, respectively. The result

showed that topologies of three datasets were highly congruent with one another and all

nodes were well supported (Fig. 6). Primuloideae and Myrsinoideae within Primulaceae s. l.

fall in two branches separately with strong supports. Primulaceae s. l. was placed as sister to

the clade that comprising Theaceae, Actinidiaceae, and Ericaceae. The phylogenetic positions

of these groups are in agreement with recent studies (Stevens, 2012; Zhang et al., 2015).
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